1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 // TODO: Should these be here or in LoopUnroll?
47 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
48 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
49 
50 static cl::opt<bool>
51 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
52                     cl::desc("Allow runtime unrolled loops to be unrolled "
53                              "with epilog instead of prolog."));
54 
55 static cl::opt<bool>
56 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
57                     cl::desc("Verify domtree after unrolling"),
58 #ifdef NDEBUG
59     cl::init(false)
60 #else
61     cl::init(true)
62 #endif
63                     );
64 
65 /// Convert the instruction operands from referencing the current values into
66 /// those specified by VMap.
67 static inline void remapInstruction(Instruction *I,
68                                     ValueToValueMapTy &VMap) {
69   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
70     Value *Op = I->getOperand(op);
71     ValueToValueMapTy::iterator It = VMap.find(Op);
72     if (It != VMap.end())
73       I->setOperand(op, It->second);
74   }
75 
76   if (PHINode *PN = dyn_cast<PHINode>(I)) {
77     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
78       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
79       if (It != VMap.end())
80         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
81     }
82   }
83 }
84 
85 /// Folds a basic block into its predecessor if it only has one predecessor, and
86 /// that predecessor only has one successor.
87 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
88 /// successful references to the containing loop must be removed from
89 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
90 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
91 /// of loops that have already been forgotten to prevent redundant, expensive
92 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
93 static BasicBlock *
94 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
95                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
96                          DominatorTree *DT) {
97   // Merge basic blocks into their predecessor if there is only one distinct
98   // pred, and if there is only one distinct successor of the predecessor, and
99   // if there are no PHI nodes.
100   BasicBlock *OnlyPred = BB->getSinglePredecessor();
101   if (!OnlyPred) return nullptr;
102 
103   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
104     return nullptr;
105 
106   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
107 
108   // Resolve any PHI nodes at the start of the block.  They are all
109   // guaranteed to have exactly one entry if they exist, unless there are
110   // multiple duplicate (but guaranteed to be equal) entries for the
111   // incoming edges.  This occurs when there are multiple edges from
112   // OnlyPred to OnlySucc.
113   FoldSingleEntryPHINodes(BB);
114 
115   // Delete the unconditional branch from the predecessor...
116   OnlyPred->getInstList().pop_back();
117 
118   // Make all PHI nodes that referred to BB now refer to Pred as their
119   // source...
120   BB->replaceAllUsesWith(OnlyPred);
121 
122   // Move all definitions in the successor to the predecessor...
123   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
124 
125   // OldName will be valid until erased.
126   StringRef OldName = BB->getName();
127 
128   // Erase the old block and update dominator info.
129   if (DT)
130     if (DomTreeNode *DTN = DT->getNode(BB)) {
131       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
132       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
133       for (auto *DI : Children)
134         DT->changeImmediateDominator(DI, PredDTN);
135 
136       DT->eraseNode(BB);
137     }
138 
139   // ScalarEvolution holds references to loop exit blocks.
140   if (SE) {
141     if (Loop *L = LI->getLoopFor(BB)) {
142       if (ForgottenLoops.insert(L).second)
143         SE->forgetLoop(L);
144     }
145   }
146   LI->removeBlock(BB);
147 
148   // Inherit predecessor's name if it exists...
149   if (!OldName.empty() && !OnlyPred->hasName())
150     OnlyPred->setName(OldName);
151 
152   BB->eraseFromParent();
153 
154   return OnlyPred;
155 }
156 
157 /// Check if unrolling created a situation where we need to insert phi nodes to
158 /// preserve LCSSA form.
159 /// \param Blocks is a vector of basic blocks representing unrolled loop.
160 /// \param L is the outer loop.
161 /// It's possible that some of the blocks are in L, and some are not. In this
162 /// case, if there is a use is outside L, and definition is inside L, we need to
163 /// insert a phi-node, otherwise LCSSA will be broken.
164 /// The function is just a helper function for llvm::UnrollLoop that returns
165 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
167                                      LoopInfo *LI) {
168   for (BasicBlock *BB : Blocks) {
169     if (LI->getLoopFor(BB) == L)
170       continue;
171     for (Instruction &I : *BB) {
172       for (Use &U : I.operands()) {
173         if (auto Def = dyn_cast<Instruction>(U)) {
174           Loop *DefLoop = LI->getLoopFor(Def->getParent());
175           if (!DefLoop)
176             continue;
177           if (DefLoop->contains(L))
178             return true;
179         }
180       }
181     }
182   }
183   return false;
184 }
185 
186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
187 /// and adds a mapping from the original loop to the new loop to NewLoops.
188 /// Returns nullptr if no new loop was created and a pointer to the
189 /// original loop OriginalBB was part of otherwise.
190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
191                                            BasicBlock *ClonedBB, LoopInfo *LI,
192                                            NewLoopsMap &NewLoops) {
193   // Figure out which loop New is in.
194   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
195   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
196 
197   Loop *&NewLoop = NewLoops[OldLoop];
198   if (!NewLoop) {
199     // Found a new sub-loop.
200     assert(OriginalBB == OldLoop->getHeader() &&
201            "Header should be first in RPO");
202 
203     NewLoop = new Loop();
204     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
205 
206     if (NewLoopParent)
207       NewLoopParent->addChildLoop(NewLoop);
208     else
209       LI->addTopLevelLoop(NewLoop);
210 
211     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
212     return OldLoop;
213   } else {
214     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
215     return nullptr;
216   }
217 }
218 
219 /// The function chooses which type of unroll (epilog or prolog) is more
220 /// profitabale.
221 /// Epilog unroll is more profitable when there is PHI that starts from
222 /// constant.  In this case epilog will leave PHI start from constant,
223 /// but prolog will convert it to non-constant.
224 ///
225 /// loop:
226 ///   PN = PHI [I, Latch], [CI, PreHeader]
227 ///   I = foo(PN)
228 ///   ...
229 ///
230 /// Epilog unroll case.
231 /// loop:
232 ///   PN = PHI [I2, Latch], [CI, PreHeader]
233 ///   I1 = foo(PN)
234 ///   I2 = foo(I1)
235 ///   ...
236 /// Prolog unroll case.
237 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
238 /// loop:
239 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
240 ///   I1 = foo(PN)
241 ///   I2 = foo(I1)
242 ///   ...
243 ///
244 static bool isEpilogProfitable(Loop *L) {
245   BasicBlock *PreHeader = L->getLoopPreheader();
246   BasicBlock *Header = L->getHeader();
247   assert(PreHeader && Header);
248   for (Instruction &BBI : *Header) {
249     PHINode *PN = dyn_cast<PHINode>(&BBI);
250     if (!PN)
251       break;
252     if (isa<ConstantInt>(PN->getIncomingValueForBlock(PreHeader)))
253       return true;
254   }
255   return false;
256 }
257 
258 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
259 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
260 /// can only fail when the loop's latch block is not terminated by a conditional
261 /// branch instruction. However, if the trip count (and multiple) are not known,
262 /// loop unrolling will mostly produce more code that is no faster.
263 ///
264 /// TripCount is the upper bound of the iteration on which control exits
265 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
266 /// via an early branch in other loop block or via LatchBlock terminator. This
267 /// is relaxed from the general definition of trip count which is the number of
268 /// times the loop header executes. Note that UnrollLoop assumes that the loop
269 /// counter test is in LatchBlock in order to remove unnecesssary instances of
270 /// the test.  If control can exit the loop from the LatchBlock's terminator
271 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
272 ///
273 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
274 /// needs to be preserved.  It is needed when we use trip count upper bound to
275 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
276 /// conditional branch needs to be preserved.
277 ///
278 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
279 /// execute without exiting the loop.
280 ///
281 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
282 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
283 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
284 /// iterations before branching into the unrolled loop.  UnrollLoop will not
285 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
286 /// AllowExpensiveTripCount is false.
287 ///
288 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
289 /// number of iterations we want to peel off.
290 ///
291 /// The LoopInfo Analysis that is passed will be kept consistent.
292 ///
293 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
294 /// DominatorTree if they are non-null.
295 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
296                       bool AllowRuntime, bool AllowExpensiveTripCount,
297                       bool PreserveCondBr, bool PreserveOnlyFirst,
298                       unsigned TripMultiple, unsigned PeelCount,
299                       bool UnrollRemainder, LoopInfo *LI,
300                       ScalarEvolution *SE, DominatorTree *DT,
301                       AssumptionCache *AC, OptimizationRemarkEmitter *ORE,
302                       bool PreserveLCSSA) {
303 
304   BasicBlock *Preheader = L->getLoopPreheader();
305   if (!Preheader) {
306     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
307     return false;
308   }
309 
310   BasicBlock *LatchBlock = L->getLoopLatch();
311   if (!LatchBlock) {
312     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
313     return false;
314   }
315 
316   // Loops with indirectbr cannot be cloned.
317   if (!L->isSafeToClone()) {
318     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
319     return false;
320   }
321 
322   // The current loop unroll pass can only unroll loops with a single latch
323   // that's a conditional branch exiting the loop.
324   // FIXME: The implementation can be extended to work with more complicated
325   // cases, e.g. loops with multiple latches.
326   BasicBlock *Header = L->getHeader();
327   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
328 
329   if (!BI || BI->isUnconditional()) {
330     // The loop-rotate pass can be helpful to avoid this in many cases.
331     DEBUG(dbgs() <<
332              "  Can't unroll; loop not terminated by a conditional branch.\n");
333     return false;
334   }
335 
336   auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
337     return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
338   };
339 
340   if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
341     DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
342                     " exiting the loop can be unrolled\n");
343     return false;
344   }
345 
346   if (Header->hasAddressTaken()) {
347     // The loop-rotate pass can be helpful to avoid this in many cases.
348     DEBUG(dbgs() <<
349           "  Won't unroll loop: address of header block is taken.\n");
350     return false;
351   }
352 
353   if (TripCount != 0)
354     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
355   if (TripMultiple != 1)
356     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
357 
358   // Effectively "DCE" unrolled iterations that are beyond the tripcount
359   // and will never be executed.
360   if (TripCount != 0 && Count > TripCount)
361     Count = TripCount;
362 
363   // Don't enter the unroll code if there is nothing to do.
364   if (TripCount == 0 && Count < 2 && PeelCount == 0) {
365     DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
366     return false;
367   }
368 
369   assert(Count > 0);
370   assert(TripMultiple > 0);
371   assert(TripCount == 0 || TripCount % TripMultiple == 0);
372 
373   // Are we eliminating the loop control altogether?
374   bool CompletelyUnroll = Count == TripCount;
375   SmallVector<BasicBlock *, 4> ExitBlocks;
376   L->getExitBlocks(ExitBlocks);
377   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
378 
379   // Go through all exits of L and see if there are any phi-nodes there. We just
380   // conservatively assume that they're inserted to preserve LCSSA form, which
381   // means that complete unrolling might break this form. We need to either fix
382   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
383   // now we just recompute LCSSA for the outer loop, but it should be possible
384   // to fix it in-place.
385   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
386                         any_of(ExitBlocks, [](const BasicBlock *BB) {
387                           return isa<PHINode>(BB->begin());
388                         });
389 
390   // We assume a run-time trip count if the compiler cannot
391   // figure out the loop trip count and the unroll-runtime
392   // flag is specified.
393   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
394 
395   assert((!RuntimeTripCount || !PeelCount) &&
396          "Did not expect runtime trip-count unrolling "
397          "and peeling for the same loop");
398 
399   if (PeelCount)
400     peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
401 
402   // Loops containing convergent instructions must have a count that divides
403   // their TripMultiple.
404   DEBUG(
405       {
406         bool HasConvergent = false;
407         for (auto &BB : L->blocks())
408           for (auto &I : *BB)
409             if (auto CS = CallSite(&I))
410               HasConvergent |= CS.isConvergent();
411         assert((!HasConvergent || TripMultiple % Count == 0) &&
412                "Unroll count must divide trip multiple if loop contains a "
413                "convergent operation.");
414       });
415 
416   bool EpilogProfitability =
417       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
418                                               : isEpilogProfitable(L);
419 
420   if (RuntimeTripCount && TripMultiple % Count != 0 &&
421       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
422                                   EpilogProfitability, UnrollRemainder,
423                                   LI, SE, DT, AC, ORE,
424                                   PreserveLCSSA)) {
425     if (Force)
426       RuntimeTripCount = false;
427     else {
428       DEBUG(
429           dbgs() << "Wont unroll; remainder loop could not be generated"
430                     "when assuming runtime trip count\n");
431       return false;
432     }
433   }
434 
435   // Notify ScalarEvolution that the loop will be substantially changed,
436   // if not outright eliminated.
437   if (SE)
438     SE->forgetLoop(L);
439 
440   // If we know the trip count, we know the multiple...
441   unsigned BreakoutTrip = 0;
442   if (TripCount != 0) {
443     BreakoutTrip = TripCount % Count;
444     TripMultiple = 0;
445   } else {
446     // Figure out what multiple to use.
447     BreakoutTrip = TripMultiple =
448       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
449   }
450 
451   using namespace ore;
452   // Report the unrolling decision.
453   if (CompletelyUnroll) {
454     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
455           << " with trip count " << TripCount << "!\n");
456     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
457                                  L->getHeader())
458               << "completely unrolled loop with "
459               << NV("UnrollCount", TripCount) << " iterations");
460   } else if (PeelCount) {
461     DEBUG(dbgs() << "PEELING loop %" << Header->getName()
462                  << " with iteration count " << PeelCount << "!\n");
463     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
464                                  L->getHeader())
465               << " peeled loop by " << NV("PeelCount", PeelCount)
466               << " iterations");
467   } else {
468     OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
469                             L->getHeader());
470     Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count);
471 
472     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
473           << " by " << Count);
474     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
475       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
476       ORE->emit(Diag << " with a breakout at trip "
477                      << NV("BreakoutTrip", BreakoutTrip));
478     } else if (TripMultiple != 1) {
479       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
480       ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple)
481                      << " trips per branch");
482     } else if (RuntimeTripCount) {
483       DEBUG(dbgs() << " with run-time trip count");
484       ORE->emit(Diag << " with run-time trip count");
485     }
486     DEBUG(dbgs() << "!\n");
487   }
488 
489   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
490   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
491 
492   // For the first iteration of the loop, we should use the precloned values for
493   // PHI nodes.  Insert associations now.
494   ValueToValueMapTy LastValueMap;
495   std::vector<PHINode*> OrigPHINode;
496   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
497     OrigPHINode.push_back(cast<PHINode>(I));
498   }
499 
500   std::vector<BasicBlock*> Headers;
501   std::vector<BasicBlock*> Latches;
502   Headers.push_back(Header);
503   Latches.push_back(LatchBlock);
504 
505   // The current on-the-fly SSA update requires blocks to be processed in
506   // reverse postorder so that LastValueMap contains the correct value at each
507   // exit.
508   LoopBlocksDFS DFS(L);
509   DFS.perform(LI);
510 
511   // Stash the DFS iterators before adding blocks to the loop.
512   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
513   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
514 
515   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
516 
517   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
518   // might break loop-simplified form for these loops (as they, e.g., would
519   // share the same exit blocks). We'll keep track of loops for which we can
520   // break this so that later we can re-simplify them.
521   SmallSetVector<Loop *, 4> LoopsToSimplify;
522   for (Loop *SubLoop : *L)
523     LoopsToSimplify.insert(SubLoop);
524 
525   if (Header->getParent()->isDebugInfoForProfiling())
526     for (BasicBlock *BB : L->getBlocks())
527       for (Instruction &I : *BB)
528         if (const DILocation *DIL = I.getDebugLoc())
529           I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
530 
531   for (unsigned It = 1; It != Count; ++It) {
532     std::vector<BasicBlock*> NewBlocks;
533     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
534     NewLoops[L] = L;
535 
536     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
537       ValueToValueMapTy VMap;
538       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
539       Header->getParent()->getBasicBlockList().push_back(New);
540 
541       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
542              "Header should not be in a sub-loop");
543       // Tell LI about New.
544       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
545       if (OldLoop) {
546         LoopsToSimplify.insert(NewLoops[OldLoop]);
547 
548         // Forget the old loop, since its inputs may have changed.
549         if (SE)
550           SE->forgetLoop(OldLoop);
551       }
552 
553       if (*BB == Header)
554         // Loop over all of the PHI nodes in the block, changing them to use
555         // the incoming values from the previous block.
556         for (PHINode *OrigPHI : OrigPHINode) {
557           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
558           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
559           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
560             if (It > 1 && L->contains(InValI))
561               InVal = LastValueMap[InValI];
562           VMap[OrigPHI] = InVal;
563           New->getInstList().erase(NewPHI);
564         }
565 
566       // Update our running map of newest clones
567       LastValueMap[*BB] = New;
568       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
569            VI != VE; ++VI)
570         LastValueMap[VI->first] = VI->second;
571 
572       // Add phi entries for newly created values to all exit blocks.
573       for (BasicBlock *Succ : successors(*BB)) {
574         if (L->contains(Succ))
575           continue;
576         for (BasicBlock::iterator BBI = Succ->begin();
577              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
578           Value *Incoming = phi->getIncomingValueForBlock(*BB);
579           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
580           if (It != LastValueMap.end())
581             Incoming = It->second;
582           phi->addIncoming(Incoming, New);
583         }
584       }
585       // Keep track of new headers and latches as we create them, so that
586       // we can insert the proper branches later.
587       if (*BB == Header)
588         Headers.push_back(New);
589       if (*BB == LatchBlock)
590         Latches.push_back(New);
591 
592       NewBlocks.push_back(New);
593       UnrolledLoopBlocks.push_back(New);
594 
595       // Update DomTree: since we just copy the loop body, and each copy has a
596       // dedicated entry block (copy of the header block), this header's copy
597       // dominates all copied blocks. That means, dominance relations in the
598       // copied body are the same as in the original body.
599       if (DT) {
600         if (*BB == Header)
601           DT->addNewBlock(New, Latches[It - 1]);
602         else {
603           auto BBDomNode = DT->getNode(*BB);
604           auto BBIDom = BBDomNode->getIDom();
605           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
606           DT->addNewBlock(
607               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
608         }
609       }
610     }
611 
612     // Remap all instructions in the most recent iteration
613     for (BasicBlock *NewBlock : NewBlocks) {
614       for (Instruction &I : *NewBlock) {
615         ::remapInstruction(&I, LastValueMap);
616         if (auto *II = dyn_cast<IntrinsicInst>(&I))
617           if (II->getIntrinsicID() == Intrinsic::assume)
618             AC->registerAssumption(II);
619       }
620     }
621   }
622 
623   // Loop over the PHI nodes in the original block, setting incoming values.
624   for (PHINode *PN : OrigPHINode) {
625     if (CompletelyUnroll) {
626       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
627       Header->getInstList().erase(PN);
628     }
629     else if (Count > 1) {
630       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
631       // If this value was defined in the loop, take the value defined by the
632       // last iteration of the loop.
633       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
634         if (L->contains(InValI))
635           InVal = LastValueMap[InVal];
636       }
637       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
638       PN->addIncoming(InVal, Latches.back());
639     }
640   }
641 
642   // Now that all the basic blocks for the unrolled iterations are in place,
643   // set up the branches to connect them.
644   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
645     // The original branch was replicated in each unrolled iteration.
646     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
647 
648     // The branch destination.
649     unsigned j = (i + 1) % e;
650     BasicBlock *Dest = Headers[j];
651     bool NeedConditional = true;
652 
653     if (RuntimeTripCount && j != 0) {
654       NeedConditional = false;
655     }
656 
657     // For a complete unroll, make the last iteration end with a branch
658     // to the exit block.
659     if (CompletelyUnroll) {
660       if (j == 0)
661         Dest = LoopExit;
662       // If using trip count upper bound to completely unroll, we need to keep
663       // the conditional branch except the last one because the loop may exit
664       // after any iteration.
665       assert(NeedConditional &&
666              "NeedCondition cannot be modified by both complete "
667              "unrolling and runtime unrolling");
668       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
669     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
670       // If we know the trip count or a multiple of it, we can safely use an
671       // unconditional branch for some iterations.
672       NeedConditional = false;
673     }
674 
675     if (NeedConditional) {
676       // Update the conditional branch's successor for the following
677       // iteration.
678       Term->setSuccessor(!ContinueOnTrue, Dest);
679     } else {
680       // Remove phi operands at this loop exit
681       if (Dest != LoopExit) {
682         BasicBlock *BB = Latches[i];
683         for (BasicBlock *Succ: successors(BB)) {
684           if (Succ == Headers[i])
685             continue;
686           for (BasicBlock::iterator BBI = Succ->begin();
687                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
688             Phi->removeIncomingValue(BB, false);
689           }
690         }
691       }
692       // Replace the conditional branch with an unconditional one.
693       BranchInst::Create(Dest, Term);
694       Term->eraseFromParent();
695     }
696   }
697 
698   // Update dominators of blocks we might reach through exits.
699   // Immediate dominator of such block might change, because we add more
700   // routes which can lead to the exit: we can now reach it from the copied
701   // iterations too.
702   if (DT && Count > 1) {
703     for (auto *BB : OriginalLoopBlocks) {
704       auto *BBDomNode = DT->getNode(BB);
705       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
706       for (auto *ChildDomNode : BBDomNode->getChildren()) {
707         auto *ChildBB = ChildDomNode->getBlock();
708         if (!L->contains(ChildBB))
709           ChildrenToUpdate.push_back(ChildBB);
710       }
711       BasicBlock *NewIDom;
712       if (BB == LatchBlock) {
713         // The latch is special because we emit unconditional branches in
714         // some cases where the original loop contained a conditional branch.
715         // Since the latch is always at the bottom of the loop, if the latch
716         // dominated an exit before unrolling, the new dominator of that exit
717         // must also be a latch.  Specifically, the dominator is the first
718         // latch which ends in a conditional branch, or the last latch if
719         // there is no such latch.
720         NewIDom = Latches.back();
721         for (BasicBlock *IterLatch : Latches) {
722           TerminatorInst *Term = IterLatch->getTerminator();
723           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
724             NewIDom = IterLatch;
725             break;
726           }
727         }
728       } else {
729         // The new idom of the block will be the nearest common dominator
730         // of all copies of the previous idom. This is equivalent to the
731         // nearest common dominator of the previous idom and the first latch,
732         // which dominates all copies of the previous idom.
733         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
734       }
735       for (auto *ChildBB : ChildrenToUpdate)
736         DT->changeImmediateDominator(ChildBB, NewIDom);
737     }
738   }
739 
740   if (DT && UnrollVerifyDomtree)
741     DT->verifyDomTree();
742 
743   // Merge adjacent basic blocks, if possible.
744   SmallPtrSet<Loop *, 4> ForgottenLoops;
745   for (BasicBlock *Latch : Latches) {
746     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
747     if (Term->isUnconditional()) {
748       BasicBlock *Dest = Term->getSuccessor(0);
749       if (BasicBlock *Fold =
750               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
751         // Dest has been folded into Fold. Update our worklists accordingly.
752         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
753         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
754                                              UnrolledLoopBlocks.end(), Dest),
755                                  UnrolledLoopBlocks.end());
756       }
757     }
758   }
759 
760   // Simplify any new induction variables in the partially unrolled loop.
761   if (SE && !CompletelyUnroll && Count > 1) {
762     SmallVector<WeakTrackingVH, 16> DeadInsts;
763     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
764 
765     // Aggressively clean up dead instructions that simplifyLoopIVs already
766     // identified. Any remaining should be cleaned up below.
767     while (!DeadInsts.empty())
768       if (Instruction *Inst =
769               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
770         RecursivelyDeleteTriviallyDeadInstructions(Inst);
771   }
772 
773   // At this point, the code is well formed.  We now do a quick sweep over the
774   // inserted code, doing constant propagation and dead code elimination as we
775   // go.
776   const DataLayout &DL = Header->getModule()->getDataLayout();
777   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
778   for (BasicBlock *BB : NewLoopBlocks) {
779     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
780       Instruction *Inst = &*I++;
781 
782       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
783         if (LI->replacementPreservesLCSSAForm(Inst, V))
784           Inst->replaceAllUsesWith(V);
785       if (isInstructionTriviallyDead(Inst))
786         BB->getInstList().erase(Inst);
787     }
788   }
789 
790   // TODO: after peeling or unrolling, previously loop variant conditions are
791   // likely to fold to constants, eagerly propagating those here will require
792   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
793   // appropriate.
794 
795   NumCompletelyUnrolled += CompletelyUnroll;
796   ++NumUnrolled;
797 
798   Loop *OuterL = L->getParentLoop();
799   // Update LoopInfo if the loop is completely removed.
800   if (CompletelyUnroll)
801     LI->markAsRemoved(L);
802 
803   // After complete unrolling most of the blocks should be contained in OuterL.
804   // However, some of them might happen to be out of OuterL (e.g. if they
805   // precede a loop exit). In this case we might need to insert PHI nodes in
806   // order to preserve LCSSA form.
807   // We don't need to check this if we already know that we need to fix LCSSA
808   // form.
809   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
810   // it should be possible to fix it in-place.
811   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
812     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
813 
814   // If we have a pass and a DominatorTree we should re-simplify impacted loops
815   // to ensure subsequent analyses can rely on this form. We want to simplify
816   // at least one layer outside of the loop that was unrolled so that any
817   // changes to the parent loop exposed by the unrolling are considered.
818   if (DT) {
819     if (OuterL) {
820       // OuterL includes all loops for which we can break loop-simplify, so
821       // it's sufficient to simplify only it (it'll recursively simplify inner
822       // loops too).
823       if (NeedToFixLCSSA) {
824         // LCSSA must be performed on the outermost affected loop. The unrolled
825         // loop's last loop latch is guaranteed to be in the outermost loop
826         // after LoopInfo's been updated by markAsRemoved.
827         Loop *LatchLoop = LI->getLoopFor(Latches.back());
828         Loop *FixLCSSALoop = OuterL;
829         if (!FixLCSSALoop->contains(LatchLoop))
830           while (FixLCSSALoop->getParentLoop() != LatchLoop)
831             FixLCSSALoop = FixLCSSALoop->getParentLoop();
832 
833         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
834       } else if (PreserveLCSSA) {
835         assert(OuterL->isLCSSAForm(*DT) &&
836                "Loops should be in LCSSA form after loop-unroll.");
837       }
838 
839       // TODO: That potentially might be compile-time expensive. We should try
840       // to fix the loop-simplified form incrementally.
841       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
842     } else {
843       // Simplify loops for which we might've broken loop-simplify form.
844       for (Loop *SubLoop : LoopsToSimplify)
845         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
846     }
847   }
848 
849   return true;
850 }
851 
852 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
853 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
854 /// such metadata node exists, then nullptr is returned.
855 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
856   // First operand should refer to the loop id itself.
857   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
858   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
859 
860   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
861     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
862     if (!MD)
863       continue;
864 
865     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
866     if (!S)
867       continue;
868 
869     if (Name.equals(S->getString()))
870       return MD;
871   }
872   return nullptr;
873 }
874