1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopIterator.h" 24 #include "llvm/Analysis/LoopPass.h" 25 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 #include "llvm/Transforms/Utils/UnrollLoop.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 // TODO: Should these be here or in LoopUnroll? 47 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 48 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 49 50 static cl::opt<bool> 51 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 52 cl::desc("Allow runtime unrolled loops to be unrolled " 53 "with epilog instead of prolog.")); 54 55 static cl::opt<bool> 56 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 57 cl::desc("Verify domtree after unrolling"), 58 #ifdef NDEBUG 59 cl::init(false) 60 #else 61 cl::init(true) 62 #endif 63 ); 64 65 /// Convert the instruction operands from referencing the current values into 66 /// those specified by VMap. 67 static inline void remapInstruction(Instruction *I, 68 ValueToValueMapTy &VMap) { 69 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 70 Value *Op = I->getOperand(op); 71 ValueToValueMapTy::iterator It = VMap.find(Op); 72 if (It != VMap.end()) 73 I->setOperand(op, It->second); 74 } 75 76 if (PHINode *PN = dyn_cast<PHINode>(I)) { 77 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 78 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 79 if (It != VMap.end()) 80 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 81 } 82 } 83 } 84 85 /// Folds a basic block into its predecessor if it only has one predecessor, and 86 /// that predecessor only has one successor. 87 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 88 /// successful references to the containing loop must be removed from 89 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 90 /// references to the eliminated BB. The argument ForgottenLoops contains a set 91 /// of loops that have already been forgotten to prevent redundant, expensive 92 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 93 static BasicBlock * 94 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 95 SmallPtrSetImpl<Loop *> &ForgottenLoops, 96 DominatorTree *DT) { 97 // Merge basic blocks into their predecessor if there is only one distinct 98 // pred, and if there is only one distinct successor of the predecessor, and 99 // if there are no PHI nodes. 100 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 101 if (!OnlyPred) return nullptr; 102 103 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 104 return nullptr; 105 106 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 107 108 // Resolve any PHI nodes at the start of the block. They are all 109 // guaranteed to have exactly one entry if they exist, unless there are 110 // multiple duplicate (but guaranteed to be equal) entries for the 111 // incoming edges. This occurs when there are multiple edges from 112 // OnlyPred to OnlySucc. 113 FoldSingleEntryPHINodes(BB); 114 115 // Delete the unconditional branch from the predecessor... 116 OnlyPred->getInstList().pop_back(); 117 118 // Make all PHI nodes that referred to BB now refer to Pred as their 119 // source... 120 BB->replaceAllUsesWith(OnlyPred); 121 122 // Move all definitions in the successor to the predecessor... 123 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 124 125 // OldName will be valid until erased. 126 StringRef OldName = BB->getName(); 127 128 // Erase the old block and update dominator info. 129 if (DT) 130 if (DomTreeNode *DTN = DT->getNode(BB)) { 131 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 132 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 133 for (auto *DI : Children) 134 DT->changeImmediateDominator(DI, PredDTN); 135 136 DT->eraseNode(BB); 137 } 138 139 // ScalarEvolution holds references to loop exit blocks. 140 if (SE) { 141 if (Loop *L = LI->getLoopFor(BB)) { 142 if (ForgottenLoops.insert(L).second) 143 SE->forgetLoop(L); 144 } 145 } 146 LI->removeBlock(BB); 147 148 // Inherit predecessor's name if it exists... 149 if (!OldName.empty() && !OnlyPred->hasName()) 150 OnlyPred->setName(OldName); 151 152 BB->eraseFromParent(); 153 154 return OnlyPred; 155 } 156 157 /// Check if unrolling created a situation where we need to insert phi nodes to 158 /// preserve LCSSA form. 159 /// \param Blocks is a vector of basic blocks representing unrolled loop. 160 /// \param L is the outer loop. 161 /// It's possible that some of the blocks are in L, and some are not. In this 162 /// case, if there is a use is outside L, and definition is inside L, we need to 163 /// insert a phi-node, otherwise LCSSA will be broken. 164 /// The function is just a helper function for llvm::UnrollLoop that returns 165 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 167 LoopInfo *LI) { 168 for (BasicBlock *BB : Blocks) { 169 if (LI->getLoopFor(BB) == L) 170 continue; 171 for (Instruction &I : *BB) { 172 for (Use &U : I.operands()) { 173 if (auto Def = dyn_cast<Instruction>(U)) { 174 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 175 if (!DefLoop) 176 continue; 177 if (DefLoop->contains(L)) 178 return true; 179 } 180 } 181 } 182 } 183 return false; 184 } 185 186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 187 /// and adds a mapping from the original loop to the new loop to NewLoops. 188 /// Returns nullptr if no new loop was created and a pointer to the 189 /// original loop OriginalBB was part of otherwise. 190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 191 BasicBlock *ClonedBB, LoopInfo *LI, 192 NewLoopsMap &NewLoops) { 193 // Figure out which loop New is in. 194 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 195 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 196 197 Loop *&NewLoop = NewLoops[OldLoop]; 198 if (!NewLoop) { 199 // Found a new sub-loop. 200 assert(OriginalBB == OldLoop->getHeader() && 201 "Header should be first in RPO"); 202 203 NewLoop = new Loop(); 204 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 205 206 if (NewLoopParent) 207 NewLoopParent->addChildLoop(NewLoop); 208 else 209 LI->addTopLevelLoop(NewLoop); 210 211 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 212 return OldLoop; 213 } else { 214 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 215 return nullptr; 216 } 217 } 218 219 /// The function chooses which type of unroll (epilog or prolog) is more 220 /// profitabale. 221 /// Epilog unroll is more profitable when there is PHI that starts from 222 /// constant. In this case epilog will leave PHI start from constant, 223 /// but prolog will convert it to non-constant. 224 /// 225 /// loop: 226 /// PN = PHI [I, Latch], [CI, PreHeader] 227 /// I = foo(PN) 228 /// ... 229 /// 230 /// Epilog unroll case. 231 /// loop: 232 /// PN = PHI [I2, Latch], [CI, PreHeader] 233 /// I1 = foo(PN) 234 /// I2 = foo(I1) 235 /// ... 236 /// Prolog unroll case. 237 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 238 /// loop: 239 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 240 /// I1 = foo(PN) 241 /// I2 = foo(I1) 242 /// ... 243 /// 244 static bool isEpilogProfitable(Loop *L) { 245 BasicBlock *PreHeader = L->getLoopPreheader(); 246 BasicBlock *Header = L->getHeader(); 247 assert(PreHeader && Header); 248 for (Instruction &BBI : *Header) { 249 PHINode *PN = dyn_cast<PHINode>(&BBI); 250 if (!PN) 251 break; 252 if (isa<ConstantInt>(PN->getIncomingValueForBlock(PreHeader))) 253 return true; 254 } 255 return false; 256 } 257 258 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 259 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 260 /// can only fail when the loop's latch block is not terminated by a conditional 261 /// branch instruction. However, if the trip count (and multiple) are not known, 262 /// loop unrolling will mostly produce more code that is no faster. 263 /// 264 /// TripCount is the upper bound of the iteration on which control exits 265 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 266 /// via an early branch in other loop block or via LatchBlock terminator. This 267 /// is relaxed from the general definition of trip count which is the number of 268 /// times the loop header executes. Note that UnrollLoop assumes that the loop 269 /// counter test is in LatchBlock in order to remove unnecesssary instances of 270 /// the test. If control can exit the loop from the LatchBlock's terminator 271 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 272 /// 273 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 274 /// needs to be preserved. It is needed when we use trip count upper bound to 275 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 276 /// conditional branch needs to be preserved. 277 /// 278 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 279 /// execute without exiting the loop. 280 /// 281 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 282 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 283 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 284 /// iterations before branching into the unrolled loop. UnrollLoop will not 285 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 286 /// AllowExpensiveTripCount is false. 287 /// 288 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 289 /// number of iterations we want to peel off. 290 /// 291 /// The LoopInfo Analysis that is passed will be kept consistent. 292 /// 293 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 294 /// DominatorTree if they are non-null. 295 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 296 bool AllowRuntime, bool AllowExpensiveTripCount, 297 bool PreserveCondBr, bool PreserveOnlyFirst, 298 unsigned TripMultiple, unsigned PeelCount, 299 bool UnrollRemainder, LoopInfo *LI, 300 ScalarEvolution *SE, DominatorTree *DT, 301 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, 302 bool PreserveLCSSA) { 303 304 BasicBlock *Preheader = L->getLoopPreheader(); 305 if (!Preheader) { 306 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 307 return false; 308 } 309 310 BasicBlock *LatchBlock = L->getLoopLatch(); 311 if (!LatchBlock) { 312 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 313 return false; 314 } 315 316 // Loops with indirectbr cannot be cloned. 317 if (!L->isSafeToClone()) { 318 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 319 return false; 320 } 321 322 // The current loop unroll pass can only unroll loops with a single latch 323 // that's a conditional branch exiting the loop. 324 // FIXME: The implementation can be extended to work with more complicated 325 // cases, e.g. loops with multiple latches. 326 BasicBlock *Header = L->getHeader(); 327 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 328 329 if (!BI || BI->isUnconditional()) { 330 // The loop-rotate pass can be helpful to avoid this in many cases. 331 DEBUG(dbgs() << 332 " Can't unroll; loop not terminated by a conditional branch.\n"); 333 return false; 334 } 335 336 auto CheckSuccessors = [&](unsigned S1, unsigned S2) { 337 return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2)); 338 }; 339 340 if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) { 341 DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch" 342 " exiting the loop can be unrolled\n"); 343 return false; 344 } 345 346 if (Header->hasAddressTaken()) { 347 // The loop-rotate pass can be helpful to avoid this in many cases. 348 DEBUG(dbgs() << 349 " Won't unroll loop: address of header block is taken.\n"); 350 return false; 351 } 352 353 if (TripCount != 0) 354 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 355 if (TripMultiple != 1) 356 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 357 358 // Effectively "DCE" unrolled iterations that are beyond the tripcount 359 // and will never be executed. 360 if (TripCount != 0 && Count > TripCount) 361 Count = TripCount; 362 363 // Don't enter the unroll code if there is nothing to do. 364 if (TripCount == 0 && Count < 2 && PeelCount == 0) { 365 DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 366 return false; 367 } 368 369 assert(Count > 0); 370 assert(TripMultiple > 0); 371 assert(TripCount == 0 || TripCount % TripMultiple == 0); 372 373 // Are we eliminating the loop control altogether? 374 bool CompletelyUnroll = Count == TripCount; 375 SmallVector<BasicBlock *, 4> ExitBlocks; 376 L->getExitBlocks(ExitBlocks); 377 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 378 379 // Go through all exits of L and see if there are any phi-nodes there. We just 380 // conservatively assume that they're inserted to preserve LCSSA form, which 381 // means that complete unrolling might break this form. We need to either fix 382 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 383 // now we just recompute LCSSA for the outer loop, but it should be possible 384 // to fix it in-place. 385 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 386 any_of(ExitBlocks, [](const BasicBlock *BB) { 387 return isa<PHINode>(BB->begin()); 388 }); 389 390 // We assume a run-time trip count if the compiler cannot 391 // figure out the loop trip count and the unroll-runtime 392 // flag is specified. 393 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 394 395 assert((!RuntimeTripCount || !PeelCount) && 396 "Did not expect runtime trip-count unrolling " 397 "and peeling for the same loop"); 398 399 if (PeelCount) 400 peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA); 401 402 // Loops containing convergent instructions must have a count that divides 403 // their TripMultiple. 404 DEBUG( 405 { 406 bool HasConvergent = false; 407 for (auto &BB : L->blocks()) 408 for (auto &I : *BB) 409 if (auto CS = CallSite(&I)) 410 HasConvergent |= CS.isConvergent(); 411 assert((!HasConvergent || TripMultiple % Count == 0) && 412 "Unroll count must divide trip multiple if loop contains a " 413 "convergent operation."); 414 }); 415 416 bool EpilogProfitability = 417 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 418 : isEpilogProfitable(L); 419 420 if (RuntimeTripCount && TripMultiple % Count != 0 && 421 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 422 EpilogProfitability, UnrollRemainder, 423 LI, SE, DT, AC, ORE, 424 PreserveLCSSA)) { 425 if (Force) 426 RuntimeTripCount = false; 427 else { 428 DEBUG( 429 dbgs() << "Wont unroll; remainder loop could not be generated" 430 "when assuming runtime trip count\n"); 431 return false; 432 } 433 } 434 435 // Notify ScalarEvolution that the loop will be substantially changed, 436 // if not outright eliminated. 437 if (SE) 438 SE->forgetLoop(L); 439 440 // If we know the trip count, we know the multiple... 441 unsigned BreakoutTrip = 0; 442 if (TripCount != 0) { 443 BreakoutTrip = TripCount % Count; 444 TripMultiple = 0; 445 } else { 446 // Figure out what multiple to use. 447 BreakoutTrip = TripMultiple = 448 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 449 } 450 451 using namespace ore; 452 // Report the unrolling decision. 453 if (CompletelyUnroll) { 454 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 455 << " with trip count " << TripCount << "!\n"); 456 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 457 L->getHeader()) 458 << "completely unrolled loop with " 459 << NV("UnrollCount", TripCount) << " iterations"); 460 } else if (PeelCount) { 461 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 462 << " with iteration count " << PeelCount << "!\n"); 463 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 464 L->getHeader()) 465 << " peeled loop by " << NV("PeelCount", PeelCount) 466 << " iterations"); 467 } else { 468 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 469 L->getHeader()); 470 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 471 472 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 473 << " by " << Count); 474 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 475 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 476 ORE->emit(Diag << " with a breakout at trip " 477 << NV("BreakoutTrip", BreakoutTrip)); 478 } else if (TripMultiple != 1) { 479 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 480 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 481 << " trips per branch"); 482 } else if (RuntimeTripCount) { 483 DEBUG(dbgs() << " with run-time trip count"); 484 ORE->emit(Diag << " with run-time trip count"); 485 } 486 DEBUG(dbgs() << "!\n"); 487 } 488 489 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 490 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 491 492 // For the first iteration of the loop, we should use the precloned values for 493 // PHI nodes. Insert associations now. 494 ValueToValueMapTy LastValueMap; 495 std::vector<PHINode*> OrigPHINode; 496 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 497 OrigPHINode.push_back(cast<PHINode>(I)); 498 } 499 500 std::vector<BasicBlock*> Headers; 501 std::vector<BasicBlock*> Latches; 502 Headers.push_back(Header); 503 Latches.push_back(LatchBlock); 504 505 // The current on-the-fly SSA update requires blocks to be processed in 506 // reverse postorder so that LastValueMap contains the correct value at each 507 // exit. 508 LoopBlocksDFS DFS(L); 509 DFS.perform(LI); 510 511 // Stash the DFS iterators before adding blocks to the loop. 512 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 513 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 514 515 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 516 517 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 518 // might break loop-simplified form for these loops (as they, e.g., would 519 // share the same exit blocks). We'll keep track of loops for which we can 520 // break this so that later we can re-simplify them. 521 SmallSetVector<Loop *, 4> LoopsToSimplify; 522 for (Loop *SubLoop : *L) 523 LoopsToSimplify.insert(SubLoop); 524 525 if (Header->getParent()->isDebugInfoForProfiling()) 526 for (BasicBlock *BB : L->getBlocks()) 527 for (Instruction &I : *BB) 528 if (const DILocation *DIL = I.getDebugLoc()) 529 I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count)); 530 531 for (unsigned It = 1; It != Count; ++It) { 532 std::vector<BasicBlock*> NewBlocks; 533 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 534 NewLoops[L] = L; 535 536 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 537 ValueToValueMapTy VMap; 538 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 539 Header->getParent()->getBasicBlockList().push_back(New); 540 541 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 542 "Header should not be in a sub-loop"); 543 // Tell LI about New. 544 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 545 if (OldLoop) { 546 LoopsToSimplify.insert(NewLoops[OldLoop]); 547 548 // Forget the old loop, since its inputs may have changed. 549 if (SE) 550 SE->forgetLoop(OldLoop); 551 } 552 553 if (*BB == Header) 554 // Loop over all of the PHI nodes in the block, changing them to use 555 // the incoming values from the previous block. 556 for (PHINode *OrigPHI : OrigPHINode) { 557 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 558 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 559 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 560 if (It > 1 && L->contains(InValI)) 561 InVal = LastValueMap[InValI]; 562 VMap[OrigPHI] = InVal; 563 New->getInstList().erase(NewPHI); 564 } 565 566 // Update our running map of newest clones 567 LastValueMap[*BB] = New; 568 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 569 VI != VE; ++VI) 570 LastValueMap[VI->first] = VI->second; 571 572 // Add phi entries for newly created values to all exit blocks. 573 for (BasicBlock *Succ : successors(*BB)) { 574 if (L->contains(Succ)) 575 continue; 576 for (BasicBlock::iterator BBI = Succ->begin(); 577 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 578 Value *Incoming = phi->getIncomingValueForBlock(*BB); 579 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 580 if (It != LastValueMap.end()) 581 Incoming = It->second; 582 phi->addIncoming(Incoming, New); 583 } 584 } 585 // Keep track of new headers and latches as we create them, so that 586 // we can insert the proper branches later. 587 if (*BB == Header) 588 Headers.push_back(New); 589 if (*BB == LatchBlock) 590 Latches.push_back(New); 591 592 NewBlocks.push_back(New); 593 UnrolledLoopBlocks.push_back(New); 594 595 // Update DomTree: since we just copy the loop body, and each copy has a 596 // dedicated entry block (copy of the header block), this header's copy 597 // dominates all copied blocks. That means, dominance relations in the 598 // copied body are the same as in the original body. 599 if (DT) { 600 if (*BB == Header) 601 DT->addNewBlock(New, Latches[It - 1]); 602 else { 603 auto BBDomNode = DT->getNode(*BB); 604 auto BBIDom = BBDomNode->getIDom(); 605 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 606 DT->addNewBlock( 607 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 608 } 609 } 610 } 611 612 // Remap all instructions in the most recent iteration 613 for (BasicBlock *NewBlock : NewBlocks) { 614 for (Instruction &I : *NewBlock) { 615 ::remapInstruction(&I, LastValueMap); 616 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 617 if (II->getIntrinsicID() == Intrinsic::assume) 618 AC->registerAssumption(II); 619 } 620 } 621 } 622 623 // Loop over the PHI nodes in the original block, setting incoming values. 624 for (PHINode *PN : OrigPHINode) { 625 if (CompletelyUnroll) { 626 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 627 Header->getInstList().erase(PN); 628 } 629 else if (Count > 1) { 630 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 631 // If this value was defined in the loop, take the value defined by the 632 // last iteration of the loop. 633 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 634 if (L->contains(InValI)) 635 InVal = LastValueMap[InVal]; 636 } 637 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 638 PN->addIncoming(InVal, Latches.back()); 639 } 640 } 641 642 // Now that all the basic blocks for the unrolled iterations are in place, 643 // set up the branches to connect them. 644 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 645 // The original branch was replicated in each unrolled iteration. 646 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 647 648 // The branch destination. 649 unsigned j = (i + 1) % e; 650 BasicBlock *Dest = Headers[j]; 651 bool NeedConditional = true; 652 653 if (RuntimeTripCount && j != 0) { 654 NeedConditional = false; 655 } 656 657 // For a complete unroll, make the last iteration end with a branch 658 // to the exit block. 659 if (CompletelyUnroll) { 660 if (j == 0) 661 Dest = LoopExit; 662 // If using trip count upper bound to completely unroll, we need to keep 663 // the conditional branch except the last one because the loop may exit 664 // after any iteration. 665 assert(NeedConditional && 666 "NeedCondition cannot be modified by both complete " 667 "unrolling and runtime unrolling"); 668 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 669 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 670 // If we know the trip count or a multiple of it, we can safely use an 671 // unconditional branch for some iterations. 672 NeedConditional = false; 673 } 674 675 if (NeedConditional) { 676 // Update the conditional branch's successor for the following 677 // iteration. 678 Term->setSuccessor(!ContinueOnTrue, Dest); 679 } else { 680 // Remove phi operands at this loop exit 681 if (Dest != LoopExit) { 682 BasicBlock *BB = Latches[i]; 683 for (BasicBlock *Succ: successors(BB)) { 684 if (Succ == Headers[i]) 685 continue; 686 for (BasicBlock::iterator BBI = Succ->begin(); 687 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 688 Phi->removeIncomingValue(BB, false); 689 } 690 } 691 } 692 // Replace the conditional branch with an unconditional one. 693 BranchInst::Create(Dest, Term); 694 Term->eraseFromParent(); 695 } 696 } 697 698 // Update dominators of blocks we might reach through exits. 699 // Immediate dominator of such block might change, because we add more 700 // routes which can lead to the exit: we can now reach it from the copied 701 // iterations too. 702 if (DT && Count > 1) { 703 for (auto *BB : OriginalLoopBlocks) { 704 auto *BBDomNode = DT->getNode(BB); 705 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 706 for (auto *ChildDomNode : BBDomNode->getChildren()) { 707 auto *ChildBB = ChildDomNode->getBlock(); 708 if (!L->contains(ChildBB)) 709 ChildrenToUpdate.push_back(ChildBB); 710 } 711 BasicBlock *NewIDom; 712 if (BB == LatchBlock) { 713 // The latch is special because we emit unconditional branches in 714 // some cases where the original loop contained a conditional branch. 715 // Since the latch is always at the bottom of the loop, if the latch 716 // dominated an exit before unrolling, the new dominator of that exit 717 // must also be a latch. Specifically, the dominator is the first 718 // latch which ends in a conditional branch, or the last latch if 719 // there is no such latch. 720 NewIDom = Latches.back(); 721 for (BasicBlock *IterLatch : Latches) { 722 TerminatorInst *Term = IterLatch->getTerminator(); 723 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 724 NewIDom = IterLatch; 725 break; 726 } 727 } 728 } else { 729 // The new idom of the block will be the nearest common dominator 730 // of all copies of the previous idom. This is equivalent to the 731 // nearest common dominator of the previous idom and the first latch, 732 // which dominates all copies of the previous idom. 733 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 734 } 735 for (auto *ChildBB : ChildrenToUpdate) 736 DT->changeImmediateDominator(ChildBB, NewIDom); 737 } 738 } 739 740 if (DT && UnrollVerifyDomtree) 741 DT->verifyDomTree(); 742 743 // Merge adjacent basic blocks, if possible. 744 SmallPtrSet<Loop *, 4> ForgottenLoops; 745 for (BasicBlock *Latch : Latches) { 746 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 747 if (Term->isUnconditional()) { 748 BasicBlock *Dest = Term->getSuccessor(0); 749 if (BasicBlock *Fold = 750 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 751 // Dest has been folded into Fold. Update our worklists accordingly. 752 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 753 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 754 UnrolledLoopBlocks.end(), Dest), 755 UnrolledLoopBlocks.end()); 756 } 757 } 758 } 759 760 // Simplify any new induction variables in the partially unrolled loop. 761 if (SE && !CompletelyUnroll && Count > 1) { 762 SmallVector<WeakTrackingVH, 16> DeadInsts; 763 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 764 765 // Aggressively clean up dead instructions that simplifyLoopIVs already 766 // identified. Any remaining should be cleaned up below. 767 while (!DeadInsts.empty()) 768 if (Instruction *Inst = 769 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 770 RecursivelyDeleteTriviallyDeadInstructions(Inst); 771 } 772 773 // At this point, the code is well formed. We now do a quick sweep over the 774 // inserted code, doing constant propagation and dead code elimination as we 775 // go. 776 const DataLayout &DL = Header->getModule()->getDataLayout(); 777 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 778 for (BasicBlock *BB : NewLoopBlocks) { 779 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 780 Instruction *Inst = &*I++; 781 782 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 783 if (LI->replacementPreservesLCSSAForm(Inst, V)) 784 Inst->replaceAllUsesWith(V); 785 if (isInstructionTriviallyDead(Inst)) 786 BB->getInstList().erase(Inst); 787 } 788 } 789 790 // TODO: after peeling or unrolling, previously loop variant conditions are 791 // likely to fold to constants, eagerly propagating those here will require 792 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 793 // appropriate. 794 795 NumCompletelyUnrolled += CompletelyUnroll; 796 ++NumUnrolled; 797 798 Loop *OuterL = L->getParentLoop(); 799 // Update LoopInfo if the loop is completely removed. 800 if (CompletelyUnroll) 801 LI->markAsRemoved(L); 802 803 // After complete unrolling most of the blocks should be contained in OuterL. 804 // However, some of them might happen to be out of OuterL (e.g. if they 805 // precede a loop exit). In this case we might need to insert PHI nodes in 806 // order to preserve LCSSA form. 807 // We don't need to check this if we already know that we need to fix LCSSA 808 // form. 809 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 810 // it should be possible to fix it in-place. 811 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 812 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 813 814 // If we have a pass and a DominatorTree we should re-simplify impacted loops 815 // to ensure subsequent analyses can rely on this form. We want to simplify 816 // at least one layer outside of the loop that was unrolled so that any 817 // changes to the parent loop exposed by the unrolling are considered. 818 if (DT) { 819 if (OuterL) { 820 // OuterL includes all loops for which we can break loop-simplify, so 821 // it's sufficient to simplify only it (it'll recursively simplify inner 822 // loops too). 823 if (NeedToFixLCSSA) { 824 // LCSSA must be performed on the outermost affected loop. The unrolled 825 // loop's last loop latch is guaranteed to be in the outermost loop 826 // after LoopInfo's been updated by markAsRemoved. 827 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 828 Loop *FixLCSSALoop = OuterL; 829 if (!FixLCSSALoop->contains(LatchLoop)) 830 while (FixLCSSALoop->getParentLoop() != LatchLoop) 831 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 832 833 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 834 } else if (PreserveLCSSA) { 835 assert(OuterL->isLCSSAForm(*DT) && 836 "Loops should be in LCSSA form after loop-unroll."); 837 } 838 839 // TODO: That potentially might be compile-time expensive. We should try 840 // to fix the loop-simplified form incrementally. 841 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 842 } else { 843 // Simplify loops for which we might've broken loop-simplify form. 844 for (Loop *SubLoop : LoopsToSimplify) 845 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 846 } 847 } 848 849 return true; 850 } 851 852 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 853 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 854 /// such metadata node exists, then nullptr is returned. 855 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 856 // First operand should refer to the loop id itself. 857 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 858 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 859 860 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 861 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 862 if (!MD) 863 continue; 864 865 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 866 if (!S) 867 continue; 868 869 if (Name.equals(S->getString())) 870 return MD; 871 } 872 return nullptr; 873 } 874