1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
65 #include "llvm/Transforms/Utils/UnrollLoop.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <assert.h>
69 #include <type_traits>
70 #include <vector>
71 
72 namespace llvm {
73 class DataLayout;
74 class Value;
75 } // namespace llvm
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-unroll"
80 
81 // TODO: Should these be here or in LoopUnroll?
82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85                                "latch (completely or otherwise)");
86 
87 static cl::opt<bool>
88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89                     cl::desc("Allow runtime unrolled loops to be unrolled "
90                              "with epilog instead of prolog."));
91 
92 static cl::opt<bool>
93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94                     cl::desc("Verify domtree after unrolling"),
95 #ifdef EXPENSIVE_CHECKS
96     cl::init(true)
97 #else
98     cl::init(false)
99 #endif
100                     );
101 
102 /// Check if unrolling created a situation where we need to insert phi nodes to
103 /// preserve LCSSA form.
104 /// \param Blocks is a vector of basic blocks representing unrolled loop.
105 /// \param L is the outer loop.
106 /// It's possible that some of the blocks are in L, and some are not. In this
107 /// case, if there is a use is outside L, and definition is inside L, we need to
108 /// insert a phi-node, otherwise LCSSA will be broken.
109 /// The function is just a helper function for llvm::UnrollLoop that returns
110 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
111 static bool needToInsertPhisForLCSSA(Loop *L,
112                                      const std::vector<BasicBlock *> &Blocks,
113                                      LoopInfo *LI) {
114   for (BasicBlock *BB : Blocks) {
115     if (LI->getLoopFor(BB) == L)
116       continue;
117     for (Instruction &I : *BB) {
118       for (Use &U : I.operands()) {
119         if (const auto *Def = dyn_cast<Instruction>(U)) {
120           Loop *DefLoop = LI->getLoopFor(Def->getParent());
121           if (!DefLoop)
122             continue;
123           if (DefLoop->contains(L))
124             return true;
125         }
126       }
127     }
128   }
129   return false;
130 }
131 
132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
133 /// and adds a mapping from the original loop to the new loop to NewLoops.
134 /// Returns nullptr if no new loop was created and a pointer to the
135 /// original loop OriginalBB was part of otherwise.
136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
137                                            BasicBlock *ClonedBB, LoopInfo *LI,
138                                            NewLoopsMap &NewLoops) {
139   // Figure out which loop New is in.
140   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
141   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
142 
143   Loop *&NewLoop = NewLoops[OldLoop];
144   if (!NewLoop) {
145     // Found a new sub-loop.
146     assert(OriginalBB == OldLoop->getHeader() &&
147            "Header should be first in RPO");
148 
149     NewLoop = LI->AllocateLoop();
150     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
151 
152     if (NewLoopParent)
153       NewLoopParent->addChildLoop(NewLoop);
154     else
155       LI->addTopLevelLoop(NewLoop);
156 
157     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
158     return OldLoop;
159   } else {
160     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
161     return nullptr;
162   }
163 }
164 
165 /// The function chooses which type of unroll (epilog or prolog) is more
166 /// profitabale.
167 /// Epilog unroll is more profitable when there is PHI that starts from
168 /// constant.  In this case epilog will leave PHI start from constant,
169 /// but prolog will convert it to non-constant.
170 ///
171 /// loop:
172 ///   PN = PHI [I, Latch], [CI, PreHeader]
173 ///   I = foo(PN)
174 ///   ...
175 ///
176 /// Epilog unroll case.
177 /// loop:
178 ///   PN = PHI [I2, Latch], [CI, PreHeader]
179 ///   I1 = foo(PN)
180 ///   I2 = foo(I1)
181 ///   ...
182 /// Prolog unroll case.
183 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
184 /// loop:
185 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
186 ///   I1 = foo(PN)
187 ///   I2 = foo(I1)
188 ///   ...
189 ///
190 static bool isEpilogProfitable(Loop *L) {
191   BasicBlock *PreHeader = L->getLoopPreheader();
192   BasicBlock *Header = L->getHeader();
193   assert(PreHeader && Header);
194   for (const PHINode &PN : Header->phis()) {
195     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
196       return true;
197   }
198   return false;
199 }
200 
201 /// Perform some cleanup and simplifications on loops after unrolling. It is
202 /// useful to simplify the IV's in the new loop, as well as do a quick
203 /// simplify/dce pass of the instructions.
204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
205                                    ScalarEvolution *SE, DominatorTree *DT,
206                                    AssumptionCache *AC,
207                                    const TargetTransformInfo *TTI) {
208   // Simplify any new induction variables in the partially unrolled loop.
209   if (SE && SimplifyIVs) {
210     SmallVector<WeakTrackingVH, 16> DeadInsts;
211     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
212 
213     // Aggressively clean up dead instructions that simplifyLoopIVs already
214     // identified. Any remaining should be cleaned up below.
215     while (!DeadInsts.empty()) {
216       Value *V = DeadInsts.pop_back_val();
217       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
218         RecursivelyDeleteTriviallyDeadInstructions(Inst);
219     }
220   }
221 
222   // At this point, the code is well formed.  Perform constprop, instsimplify,
223   // and dce.
224   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
225   SmallVector<WeakTrackingVH, 16> DeadInsts;
226   for (BasicBlock *BB : L->getBlocks()) {
227     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
228       if (Value *V = SimplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
229         if (LI->replacementPreservesLCSSAForm(&Inst, V))
230           Inst.replaceAllUsesWith(V);
231       if (isInstructionTriviallyDead(&Inst))
232         DeadInsts.emplace_back(&Inst);
233     }
234     // We can't do recursive deletion until we're done iterating, as we might
235     // have a phi which (potentially indirectly) uses instructions later in
236     // the block we're iterating through.
237     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
238   }
239 }
240 
241 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
242 /// can only fail when the loop's latch block is not terminated by a conditional
243 /// branch instruction. However, if the trip count (and multiple) are not known,
244 /// loop unrolling will mostly produce more code that is no faster.
245 ///
246 /// If Runtime is true then UnrollLoop will try to insert a prologue or
247 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
248 /// will not runtime-unroll the loop if computing the run-time trip count will
249 /// be expensive and AllowExpensiveTripCount is false.
250 ///
251 /// The LoopInfo Analysis that is passed will be kept consistent.
252 ///
253 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
254 /// DominatorTree if they are non-null.
255 ///
256 /// If RemainderLoop is non-null, it will receive the remainder loop (if
257 /// required and not fully unrolled).
258 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
259                                   ScalarEvolution *SE, DominatorTree *DT,
260                                   AssumptionCache *AC,
261                                   const TargetTransformInfo *TTI,
262                                   OptimizationRemarkEmitter *ORE,
263                                   bool PreserveLCSSA, Loop **RemainderLoop) {
264   assert(DT && "DomTree is required");
265 
266   if (!L->getLoopPreheader()) {
267     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
268     return LoopUnrollResult::Unmodified;
269   }
270 
271   if (!L->getLoopLatch()) {
272     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
273     return LoopUnrollResult::Unmodified;
274   }
275 
276   // Loops with indirectbr cannot be cloned.
277   if (!L->isSafeToClone()) {
278     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
279     return LoopUnrollResult::Unmodified;
280   }
281 
282   if (L->getHeader()->hasAddressTaken()) {
283     // The loop-rotate pass can be helpful to avoid this in many cases.
284     LLVM_DEBUG(
285         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
286     return LoopUnrollResult::Unmodified;
287   }
288 
289   assert(ULO.Count > 0);
290 
291   // All these values should be taken only after peeling because they might have
292   // changed.
293   BasicBlock *Preheader = L->getLoopPreheader();
294   BasicBlock *Header = L->getHeader();
295   BasicBlock *LatchBlock = L->getLoopLatch();
296   SmallVector<BasicBlock *, 4> ExitBlocks;
297   L->getExitBlocks(ExitBlocks);
298   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
299 
300   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
301   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
302 
303   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
304   // and will never be executed.
305   if (MaxTripCount && ULO.Count > MaxTripCount)
306     ULO.Count = MaxTripCount;
307 
308   struct ExitInfo {
309     unsigned TripCount;
310     unsigned TripMultiple;
311     unsigned BreakoutTrip;
312     bool ExitOnTrue;
313     SmallVector<BasicBlock *> ExitingBlocks;
314   };
315   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
316   SmallVector<BasicBlock *, 4> ExitingBlocks;
317   L->getExitingBlocks(ExitingBlocks);
318   for (auto *ExitingBlock : ExitingBlocks) {
319     // The folding code is not prepared to deal with non-branch instructions
320     // right now.
321     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
322     if (!BI)
323       continue;
324 
325     ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
326     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
327     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
328     if (Info.TripCount != 0) {
329       Info.BreakoutTrip = Info.TripCount % ULO.Count;
330       Info.TripMultiple = 0;
331     } else {
332       Info.BreakoutTrip = Info.TripMultiple =
333           (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple);
334     }
335     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
336     Info.ExitingBlocks.push_back(ExitingBlock);
337     LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
338                       << ": TripCount=" << Info.TripCount
339                       << ", TripMultiple=" << Info.TripMultiple
340                       << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
341   }
342 
343   // Are we eliminating the loop control altogether?  Note that we can know
344   // we're eliminating the backedge without knowing exactly which iteration
345   // of the unrolled body exits.
346   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
347 
348   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
349 
350   // There's no point in performing runtime unrolling if this unroll count
351   // results in a full unroll.
352   if (CompletelyUnroll)
353     ULO.Runtime = false;
354 
355   // Go through all exits of L and see if there are any phi-nodes there. We just
356   // conservatively assume that they're inserted to preserve LCSSA form, which
357   // means that complete unrolling might break this form. We need to either fix
358   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
359   // now we just recompute LCSSA for the outer loop, but it should be possible
360   // to fix it in-place.
361   bool NeedToFixLCSSA =
362       PreserveLCSSA && CompletelyUnroll &&
363       any_of(ExitBlocks,
364              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
365 
366   // The current loop unroll pass can unroll loops that have
367   // (1) single latch; and
368   // (2a) latch is unconditional; or
369   // (2b) latch is conditional and is an exiting block
370   // FIXME: The implementation can be extended to work with more complicated
371   // cases, e.g. loops with multiple latches.
372   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
373 
374   // A conditional branch which exits the loop, which can be optimized to an
375   // unconditional branch in the unrolled loop in some cases.
376   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
377   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
378     LLVM_DEBUG(
379         dbgs() << "Can't unroll; a conditional latch must exit the loop");
380     return LoopUnrollResult::Unmodified;
381   }
382 
383   // Loops containing convergent instructions cannot use runtime unrolling,
384   // as the prologue/epilogue may add additional control-dependencies to
385   // convergent operations.
386   LLVM_DEBUG(
387       {
388         bool HasConvergent = false;
389         for (auto &BB : L->blocks())
390           for (auto &I : *BB)
391             if (auto *CB = dyn_cast<CallBase>(&I))
392               HasConvergent |= CB->isConvergent();
393         assert((!HasConvergent || !ULO.Runtime) &&
394                "Can't runtime unroll if loop contains a convergent operation.");
395       });
396 
397   bool EpilogProfitability =
398       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
399                                               : isEpilogProfitable(L);
400 
401   if (ULO.Runtime &&
402       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
403                                   EpilogProfitability, ULO.UnrollRemainder,
404                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
405                                   PreserveLCSSA, RemainderLoop)) {
406     if (ULO.Force)
407       ULO.Runtime = false;
408     else {
409       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
410                            "generated when assuming runtime trip count\n");
411       return LoopUnrollResult::Unmodified;
412     }
413   }
414 
415   using namespace ore;
416   // Report the unrolling decision.
417   if (CompletelyUnroll) {
418     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
419                       << " with trip count " << ULO.Count << "!\n");
420     if (ORE)
421       ORE->emit([&]() {
422         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
423                                   L->getHeader())
424                << "completely unrolled loop with "
425                << NV("UnrollCount", ULO.Count) << " iterations";
426       });
427   } else {
428     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
429                       << ULO.Count);
430     if (ULO.Runtime)
431       LLVM_DEBUG(dbgs() << " with run-time trip count");
432     LLVM_DEBUG(dbgs() << "!\n");
433 
434     if (ORE)
435       ORE->emit([&]() {
436         OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
437                                 L->getHeader());
438         Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
439         if (ULO.Runtime)
440           Diag << " with run-time trip count";
441         return Diag;
442       });
443   }
444 
445   // We are going to make changes to this loop. SCEV may be keeping cached info
446   // about it, in particular about backedge taken count. The changes we make
447   // are guaranteed to invalidate this information for our loop. It is tempting
448   // to only invalidate the loop being unrolled, but it is incorrect as long as
449   // all exiting branches from all inner loops have impact on the outer loops,
450   // and if something changes inside them then any of outer loops may also
451   // change. When we forget outermost loop, we also forget all contained loops
452   // and this is what we need here.
453   if (SE) {
454     if (ULO.ForgetAllSCEV)
455       SE->forgetAllLoops();
456     else
457       SE->forgetTopmostLoop(L);
458   }
459 
460   if (!LatchIsExiting)
461     ++NumUnrolledNotLatch;
462 
463   // For the first iteration of the loop, we should use the precloned values for
464   // PHI nodes.  Insert associations now.
465   ValueToValueMapTy LastValueMap;
466   std::vector<PHINode*> OrigPHINode;
467   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
468     OrigPHINode.push_back(cast<PHINode>(I));
469   }
470 
471   std::vector<BasicBlock *> Headers;
472   std::vector<BasicBlock *> Latches;
473   Headers.push_back(Header);
474   Latches.push_back(LatchBlock);
475 
476   // The current on-the-fly SSA update requires blocks to be processed in
477   // reverse postorder so that LastValueMap contains the correct value at each
478   // exit.
479   LoopBlocksDFS DFS(L);
480   DFS.perform(LI);
481 
482   // Stash the DFS iterators before adding blocks to the loop.
483   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
484   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
485 
486   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
487 
488   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
489   // might break loop-simplified form for these loops (as they, e.g., would
490   // share the same exit blocks). We'll keep track of loops for which we can
491   // break this so that later we can re-simplify them.
492   SmallSetVector<Loop *, 4> LoopsToSimplify;
493   for (Loop *SubLoop : *L)
494     LoopsToSimplify.insert(SubLoop);
495 
496   // When a FSDiscriminator is enabled, we don't need to add the multiply
497   // factors to the discriminators.
498   if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
499     for (BasicBlock *BB : L->getBlocks())
500       for (Instruction &I : *BB)
501         if (!isa<DbgInfoIntrinsic>(&I))
502           if (const DILocation *DIL = I.getDebugLoc()) {
503             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
504             if (NewDIL)
505               I.setDebugLoc(NewDIL.getValue());
506             else
507               LLVM_DEBUG(dbgs()
508                          << "Failed to create new discriminator: "
509                          << DIL->getFilename() << " Line: " << DIL->getLine());
510           }
511 
512   // Identify what noalias metadata is inside the loop: if it is inside the
513   // loop, the associated metadata must be cloned for each iteration.
514   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
515   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
516 
517   for (unsigned It = 1; It != ULO.Count; ++It) {
518     SmallVector<BasicBlock *, 8> NewBlocks;
519     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
520     NewLoops[L] = L;
521 
522     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
523       ValueToValueMapTy VMap;
524       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
525       Header->getParent()->getBasicBlockList().push_back(New);
526 
527       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
528              "Header should not be in a sub-loop");
529       // Tell LI about New.
530       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
531       if (OldLoop)
532         LoopsToSimplify.insert(NewLoops[OldLoop]);
533 
534       if (*BB == Header)
535         // Loop over all of the PHI nodes in the block, changing them to use
536         // the incoming values from the previous block.
537         for (PHINode *OrigPHI : OrigPHINode) {
538           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
539           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
540           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
541             if (It > 1 && L->contains(InValI))
542               InVal = LastValueMap[InValI];
543           VMap[OrigPHI] = InVal;
544           New->getInstList().erase(NewPHI);
545         }
546 
547       // Update our running map of newest clones
548       LastValueMap[*BB] = New;
549       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
550            VI != VE; ++VI)
551         LastValueMap[VI->first] = VI->second;
552 
553       // Add phi entries for newly created values to all exit blocks.
554       for (BasicBlock *Succ : successors(*BB)) {
555         if (L->contains(Succ))
556           continue;
557         for (PHINode &PHI : Succ->phis()) {
558           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
559           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
560           if (It != LastValueMap.end())
561             Incoming = It->second;
562           PHI.addIncoming(Incoming, New);
563         }
564       }
565       // Keep track of new headers and latches as we create them, so that
566       // we can insert the proper branches later.
567       if (*BB == Header)
568         Headers.push_back(New);
569       if (*BB == LatchBlock)
570         Latches.push_back(New);
571 
572       // Keep track of the exiting block and its successor block contained in
573       // the loop for the current iteration.
574       auto ExitInfoIt = ExitInfos.find(*BB);
575       if (ExitInfoIt != ExitInfos.end())
576         ExitInfoIt->second.ExitingBlocks.push_back(New);
577 
578       NewBlocks.push_back(New);
579       UnrolledLoopBlocks.push_back(New);
580 
581       // Update DomTree: since we just copy the loop body, and each copy has a
582       // dedicated entry block (copy of the header block), this header's copy
583       // dominates all copied blocks. That means, dominance relations in the
584       // copied body are the same as in the original body.
585       if (*BB == Header)
586         DT->addNewBlock(New, Latches[It - 1]);
587       else {
588         auto BBDomNode = DT->getNode(*BB);
589         auto BBIDom = BBDomNode->getIDom();
590         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
591         DT->addNewBlock(
592             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
593       }
594     }
595 
596     // Remap all instructions in the most recent iteration
597     remapInstructionsInBlocks(NewBlocks, LastValueMap);
598     for (BasicBlock *NewBlock : NewBlocks)
599       for (Instruction &I : *NewBlock)
600         if (auto *II = dyn_cast<AssumeInst>(&I))
601           AC->registerAssumption(II);
602 
603     {
604       // Identify what other metadata depends on the cloned version. After
605       // cloning, replace the metadata with the corrected version for both
606       // memory instructions and noalias intrinsics.
607       std::string ext = (Twine("It") + Twine(It)).str();
608       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
609                                  Header->getContext(), ext);
610     }
611   }
612 
613   // Loop over the PHI nodes in the original block, setting incoming values.
614   for (PHINode *PN : OrigPHINode) {
615     if (CompletelyUnroll) {
616       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
617       Header->getInstList().erase(PN);
618     } else if (ULO.Count > 1) {
619       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
620       // If this value was defined in the loop, take the value defined by the
621       // last iteration of the loop.
622       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
623         if (L->contains(InValI))
624           InVal = LastValueMap[InVal];
625       }
626       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
627       PN->addIncoming(InVal, Latches.back());
628     }
629   }
630 
631   // Connect latches of the unrolled iterations to the headers of the next
632   // iteration. Currently they point to the header of the same iteration.
633   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
634     unsigned j = (i + 1) % e;
635     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
636   }
637 
638   // Update dominators of blocks we might reach through exits.
639   // Immediate dominator of such block might change, because we add more
640   // routes which can lead to the exit: we can now reach it from the copied
641   // iterations too.
642   if (ULO.Count > 1) {
643     for (auto *BB : OriginalLoopBlocks) {
644       auto *BBDomNode = DT->getNode(BB);
645       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
646       for (auto *ChildDomNode : BBDomNode->children()) {
647         auto *ChildBB = ChildDomNode->getBlock();
648         if (!L->contains(ChildBB))
649           ChildrenToUpdate.push_back(ChildBB);
650       }
651       // The new idom of the block will be the nearest common dominator
652       // of all copies of the previous idom. This is equivalent to the
653       // nearest common dominator of the previous idom and the first latch,
654       // which dominates all copies of the previous idom.
655       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
656       for (auto *ChildBB : ChildrenToUpdate)
657         DT->changeImmediateDominator(ChildBB, NewIDom);
658     }
659   }
660 
661   assert(!UnrollVerifyDomtree ||
662          DT->verify(DominatorTree::VerificationLevel::Fast));
663 
664   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
665 
666   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
667     auto *Term = cast<BranchInst>(Src->getTerminator());
668     const unsigned Idx = ExitOnTrue ^ WillExit;
669     BasicBlock *Dest = Term->getSuccessor(Idx);
670     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
671 
672     // Remove predecessors from all non-Dest successors.
673     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
674 
675     // Replace the conditional branch with an unconditional one.
676     BranchInst::Create(Dest, Term);
677     Term->eraseFromParent();
678 
679     DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
680   };
681 
682   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
683                       bool IsLatch) -> Optional<bool> {
684     if (CompletelyUnroll) {
685       if (PreserveOnlyFirst) {
686         if (i == 0)
687           return None;
688         return j == 0;
689       }
690       // Complete (but possibly inexact) unrolling
691       if (j == 0)
692         return true;
693       if (Info.TripCount && j != Info.TripCount)
694         return false;
695       return None;
696     }
697 
698     if (ULO.Runtime) {
699       // If runtime unrolling inserts a prologue, information about non-latch
700       // exits may be stale.
701       if (IsLatch && j != 0)
702         return false;
703       return None;
704     }
705 
706     if (j != Info.BreakoutTrip &&
707         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
708       // If we know the trip count or a multiple of it, we can safely use an
709       // unconditional branch for some iterations.
710       return false;
711     }
712     return None;
713   };
714 
715   // Fold branches for iterations where we know that they will exit or not
716   // exit.
717   for (const auto &Pair : ExitInfos) {
718     const ExitInfo &Info = Pair.second;
719     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
720       // The branch destination.
721       unsigned j = (i + 1) % e;
722       bool IsLatch = Pair.first == LatchBlock;
723       Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
724       if (!KnownWillExit)
725         continue;
726 
727       // We don't fold known-exiting branches for non-latch exits here,
728       // because this ensures that both all loop blocks and all exit blocks
729       // remain reachable in the CFG.
730       // TODO: We could fold these branches, but it would require much more
731       // sophisticated updates to LoopInfo.
732       if (*KnownWillExit && !IsLatch)
733         continue;
734 
735       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
736     }
737   }
738 
739   // When completely unrolling, the last latch becomes unreachable.
740   if (!LatchIsExiting && CompletelyUnroll)
741     changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA, &DTU);
742 
743   // Merge adjacent basic blocks, if possible.
744   for (BasicBlock *Latch : Latches) {
745     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
746     assert((Term ||
747             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
748            "Need a branch as terminator, except when fully unrolling with "
749            "unconditional latch");
750     if (Term && Term->isUnconditional()) {
751       BasicBlock *Dest = Term->getSuccessor(0);
752       BasicBlock *Fold = Dest->getUniquePredecessor();
753       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
754         // Dest has been folded into Fold. Update our worklists accordingly.
755         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
756         llvm::erase_value(UnrolledLoopBlocks, Dest);
757       }
758     }
759   }
760   // Apply updates to the DomTree.
761   DT = &DTU.getDomTree();
762 
763   // At this point, the code is well formed.  We now simplify the unrolled loop,
764   // doing constant propagation and dead code elimination as we go.
765   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
766                           TTI);
767 
768   NumCompletelyUnrolled += CompletelyUnroll;
769   ++NumUnrolled;
770 
771   Loop *OuterL = L->getParentLoop();
772   // Update LoopInfo if the loop is completely removed.
773   if (CompletelyUnroll)
774     LI->erase(L);
775 
776   // After complete unrolling most of the blocks should be contained in OuterL.
777   // However, some of them might happen to be out of OuterL (e.g. if they
778   // precede a loop exit). In this case we might need to insert PHI nodes in
779   // order to preserve LCSSA form.
780   // We don't need to check this if we already know that we need to fix LCSSA
781   // form.
782   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
783   // it should be possible to fix it in-place.
784   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
785     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
786 
787   // Make sure that loop-simplify form is preserved. We want to simplify
788   // at least one layer outside of the loop that was unrolled so that any
789   // changes to the parent loop exposed by the unrolling are considered.
790   if (OuterL) {
791     // OuterL includes all loops for which we can break loop-simplify, so
792     // it's sufficient to simplify only it (it'll recursively simplify inner
793     // loops too).
794     if (NeedToFixLCSSA) {
795       // LCSSA must be performed on the outermost affected loop. The unrolled
796       // loop's last loop latch is guaranteed to be in the outermost loop
797       // after LoopInfo's been updated by LoopInfo::erase.
798       Loop *LatchLoop = LI->getLoopFor(Latches.back());
799       Loop *FixLCSSALoop = OuterL;
800       if (!FixLCSSALoop->contains(LatchLoop))
801         while (FixLCSSALoop->getParentLoop() != LatchLoop)
802           FixLCSSALoop = FixLCSSALoop->getParentLoop();
803 
804       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
805     } else if (PreserveLCSSA) {
806       assert(OuterL->isLCSSAForm(*DT) &&
807              "Loops should be in LCSSA form after loop-unroll.");
808     }
809 
810     // TODO: That potentially might be compile-time expensive. We should try
811     // to fix the loop-simplified form incrementally.
812     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
813   } else {
814     // Simplify loops for which we might've broken loop-simplify form.
815     for (Loop *SubLoop : LoopsToSimplify)
816       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
817   }
818 
819   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
820                           : LoopUnrollResult::PartiallyUnrolled;
821 }
822 
823 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
824 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
825 /// such metadata node exists, then nullptr is returned.
826 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
827   // First operand should refer to the loop id itself.
828   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
829   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
830 
831   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
832     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
833     if (!MD)
834       continue;
835 
836     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
837     if (!S)
838       continue;
839 
840     if (Name.equals(S->getString()))
841       return MD;
842   }
843   return nullptr;
844 }
845