1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopPeel.h"
63 #include "llvm/Transforms/Utils/LoopSimplify.h"
64 #include "llvm/Transforms/Utils/LoopUtils.h"
65 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
66 #include "llvm/Transforms/Utils/UnrollLoop.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <assert.h>
70 #include <type_traits>
71 #include <vector>
72 
73 namespace llvm {
74 class DataLayout;
75 class Value;
76 } // namespace llvm
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "loop-unroll"
81 
82 // TODO: Should these be here or in LoopUnroll?
83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
86                                "latch (completely or otherwise)");
87 
88 static cl::opt<bool>
89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
90                     cl::desc("Allow runtime unrolled loops to be unrolled "
91                              "with epilog instead of prolog."));
92 
93 static cl::opt<bool>
94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
95                     cl::desc("Verify domtree after unrolling"),
96 #ifdef EXPENSIVE_CHECKS
97     cl::init(true)
98 #else
99     cl::init(false)
100 #endif
101                     );
102 
103 /// Check if unrolling created a situation where we need to insert phi nodes to
104 /// preserve LCSSA form.
105 /// \param Blocks is a vector of basic blocks representing unrolled loop.
106 /// \param L is the outer loop.
107 /// It's possible that some of the blocks are in L, and some are not. In this
108 /// case, if there is a use is outside L, and definition is inside L, we need to
109 /// insert a phi-node, otherwise LCSSA will be broken.
110 /// The function is just a helper function for llvm::UnrollLoop that returns
111 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
112 static bool needToInsertPhisForLCSSA(Loop *L,
113                                      const std::vector<BasicBlock *> &Blocks,
114                                      LoopInfo *LI) {
115   for (BasicBlock *BB : Blocks) {
116     if (LI->getLoopFor(BB) == L)
117       continue;
118     for (Instruction &I : *BB) {
119       for (Use &U : I.operands()) {
120         if (const auto *Def = dyn_cast<Instruction>(U)) {
121           Loop *DefLoop = LI->getLoopFor(Def->getParent());
122           if (!DefLoop)
123             continue;
124           if (DefLoop->contains(L))
125             return true;
126         }
127       }
128     }
129   }
130   return false;
131 }
132 
133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
134 /// and adds a mapping from the original loop to the new loop to NewLoops.
135 /// Returns nullptr if no new loop was created and a pointer to the
136 /// original loop OriginalBB was part of otherwise.
137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
138                                            BasicBlock *ClonedBB, LoopInfo *LI,
139                                            NewLoopsMap &NewLoops) {
140   // Figure out which loop New is in.
141   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
142   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
143 
144   Loop *&NewLoop = NewLoops[OldLoop];
145   if (!NewLoop) {
146     // Found a new sub-loop.
147     assert(OriginalBB == OldLoop->getHeader() &&
148            "Header should be first in RPO");
149 
150     NewLoop = LI->AllocateLoop();
151     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
152 
153     if (NewLoopParent)
154       NewLoopParent->addChildLoop(NewLoop);
155     else
156       LI->addTopLevelLoop(NewLoop);
157 
158     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
159     return OldLoop;
160   } else {
161     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
162     return nullptr;
163   }
164 }
165 
166 /// The function chooses which type of unroll (epilog or prolog) is more
167 /// profitabale.
168 /// Epilog unroll is more profitable when there is PHI that starts from
169 /// constant.  In this case epilog will leave PHI start from constant,
170 /// but prolog will convert it to non-constant.
171 ///
172 /// loop:
173 ///   PN = PHI [I, Latch], [CI, PreHeader]
174 ///   I = foo(PN)
175 ///   ...
176 ///
177 /// Epilog unroll case.
178 /// loop:
179 ///   PN = PHI [I2, Latch], [CI, PreHeader]
180 ///   I1 = foo(PN)
181 ///   I2 = foo(I1)
182 ///   ...
183 /// Prolog unroll case.
184 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
185 /// loop:
186 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
187 ///   I1 = foo(PN)
188 ///   I2 = foo(I1)
189 ///   ...
190 ///
191 static bool isEpilogProfitable(Loop *L) {
192   BasicBlock *PreHeader = L->getLoopPreheader();
193   BasicBlock *Header = L->getHeader();
194   assert(PreHeader && Header);
195   for (const PHINode &PN : Header->phis()) {
196     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
197       return true;
198   }
199   return false;
200 }
201 
202 /// Perform some cleanup and simplifications on loops after unrolling. It is
203 /// useful to simplify the IV's in the new loop, as well as do a quick
204 /// simplify/dce pass of the instructions.
205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
206                                    ScalarEvolution *SE, DominatorTree *DT,
207                                    AssumptionCache *AC,
208                                    const TargetTransformInfo *TTI) {
209   // Simplify any new induction variables in the partially unrolled loop.
210   if (SE && SimplifyIVs) {
211     SmallVector<WeakTrackingVH, 16> DeadInsts;
212     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
213 
214     // Aggressively clean up dead instructions that simplifyLoopIVs already
215     // identified. Any remaining should be cleaned up below.
216     while (!DeadInsts.empty()) {
217       Value *V = DeadInsts.pop_back_val();
218       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
219         RecursivelyDeleteTriviallyDeadInstructions(Inst);
220     }
221   }
222 
223   // At this point, the code is well formed.  Perform constprop, instsimplify,
224   // and dce.
225   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
226   SmallVector<WeakTrackingVH, 16> DeadInsts;
227   for (BasicBlock *BB : L->getBlocks()) {
228     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
229       Instruction *Inst = &*I++;
230       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
231         if (LI->replacementPreservesLCSSAForm(Inst, V))
232           Inst->replaceAllUsesWith(V);
233       if (isInstructionTriviallyDead(Inst))
234         DeadInsts.emplace_back(Inst);
235     }
236     // We can't do recursive deletion until we're done iterating, as we might
237     // have a phi which (potentially indirectly) uses instructions later in
238     // the block we're iterating through.
239     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
240   }
241 }
242 
243 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
244 /// can only fail when the loop's latch block is not terminated by a conditional
245 /// branch instruction. However, if the trip count (and multiple) are not known,
246 /// loop unrolling will mostly produce more code that is no faster.
247 ///
248 /// TripCount is the upper bound of the iteration on which control exits
249 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
250 /// via an early branch in other loop block or via LatchBlock terminator. This
251 /// is relaxed from the general definition of trip count which is the number of
252 /// times the loop header executes. Note that UnrollLoop assumes that the loop
253 /// counter test is in LatchBlock in order to remove unnecesssary instances of
254 /// the test.  If control can exit the loop from the LatchBlock's terminator
255 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
256 ///
257 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
258 /// needs to be preserved.  It is needed when we use trip count upper bound to
259 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
260 /// conditional branch needs to be preserved.
261 ///
262 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
263 /// execute without exiting the loop.
264 ///
265 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
266 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
267 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
268 /// iterations before branching into the unrolled loop.  UnrollLoop will not
269 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
270 /// AllowExpensiveTripCount is false.
271 ///
272 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
273 /// number of iterations we want to peel off.
274 ///
275 /// The LoopInfo Analysis that is passed will be kept consistent.
276 ///
277 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
278 /// DominatorTree if they are non-null.
279 ///
280 /// If RemainderLoop is non-null, it will receive the remainder loop (if
281 /// required and not fully unrolled).
282 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
283                                   ScalarEvolution *SE, DominatorTree *DT,
284                                   AssumptionCache *AC,
285                                   const TargetTransformInfo *TTI,
286                                   OptimizationRemarkEmitter *ORE,
287                                   bool PreserveLCSSA, Loop **RemainderLoop) {
288   assert(DT && "DomTree is required");
289 
290   if (!L->getLoopPreheader()) {
291     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
292     return LoopUnrollResult::Unmodified;
293   }
294 
295   if (!L->getLoopLatch()) {
296     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
297     return LoopUnrollResult::Unmodified;
298   }
299 
300   // Loops with indirectbr cannot be cloned.
301   if (!L->isSafeToClone()) {
302     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
303     return LoopUnrollResult::Unmodified;
304   }
305 
306   if (L->getHeader()->hasAddressTaken()) {
307     // The loop-rotate pass can be helpful to avoid this in many cases.
308     LLVM_DEBUG(
309         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
310     return LoopUnrollResult::Unmodified;
311   }
312 
313   if (ULO.TripCount != 0)
314     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
315   if (ULO.TripMultiple != 1)
316     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
317 
318   // Effectively "DCE" unrolled iterations that are beyond the tripcount
319   // and will never be executed.
320   if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
321     ULO.Count = ULO.TripCount;
322 
323   // Don't enter the unroll code if there is nothing to do.
324   if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
325     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
326     return LoopUnrollResult::Unmodified;
327   }
328 
329   assert(ULO.Count > 0);
330   assert(ULO.TripMultiple > 0);
331   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
332 
333   // Are we eliminating the loop control altogether?
334   bool CompletelyUnroll = ULO.Count == ULO.TripCount;
335 
336   // We assume a run-time trip count if the compiler cannot
337   // figure out the loop trip count and the unroll-runtime
338   // flag is specified.
339   bool RuntimeTripCount =
340       (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
341 
342   assert((!RuntimeTripCount || !ULO.PeelCount) &&
343          "Did not expect runtime trip-count unrolling "
344          "and peeling for the same loop");
345 
346   bool Peeled = false;
347   if (ULO.PeelCount) {
348     Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
349 
350     // Successful peeling may result in a change in the loop preheader/trip
351     // counts. If we later unroll the loop, we want these to be updated.
352     if (Peeled) {
353       // According to our guards and profitability checks the only
354       // meaningful exit should be latch block. Other exits go to deopt,
355       // so we do not worry about them.
356       BasicBlock *ExitingBlock = L->getLoopLatch();
357       assert(ExitingBlock && "Loop without exiting block?");
358       assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
359       ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
360       ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
361     }
362   }
363 
364   // All these values should be taken only after peeling because they might have
365   // changed.
366   BasicBlock *Preheader = L->getLoopPreheader();
367   BasicBlock *Header = L->getHeader();
368   BasicBlock *LatchBlock = L->getLoopLatch();
369   SmallVector<BasicBlock *, 4> ExitBlocks;
370   L->getExitBlocks(ExitBlocks);
371   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
372 
373   // Go through all exits of L and see if there are any phi-nodes there. We just
374   // conservatively assume that they're inserted to preserve LCSSA form, which
375   // means that complete unrolling might break this form. We need to either fix
376   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
377   // now we just recompute LCSSA for the outer loop, but it should be possible
378   // to fix it in-place.
379   bool NeedToFixLCSSA =
380       PreserveLCSSA && CompletelyUnroll &&
381       any_of(ExitBlocks,
382              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
383 
384   // The current loop unroll pass can unroll loops that have
385   // (1) single latch; and
386   // (2a) latch is unconditional; or
387   // (2b) latch is conditional and is an exiting block
388   // FIXME: The implementation can be extended to work with more complicated
389   // cases, e.g. loops with multiple latches.
390   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
391 
392   // A conditional branch which exits the loop, which can be optimized to an
393   // unconditional branch in the unrolled loop in some cases.
394   BranchInst *ExitingBI = nullptr;
395   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
396   if (LatchIsExiting)
397     ExitingBI = LatchBI;
398   else if (BasicBlock *ExitingBlock = L->getExitingBlock())
399     ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
400   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
401     // If the peeling guard is changed this assert may be relaxed or even
402     // deleted.
403     assert(!Peeled && "Peeling guard changed!");
404     LLVM_DEBUG(
405         dbgs() << "Can't unroll; a conditional latch must exit the loop");
406     return LoopUnrollResult::Unmodified;
407   }
408   LLVM_DEBUG({
409     if (ExitingBI)
410       dbgs() << "  Exiting Block = " << ExitingBI->getParent()->getName()
411              << "\n";
412     else
413       dbgs() << "  No single exiting block\n";
414   });
415 
416   // Loops containing convergent instructions must have a count that divides
417   // their TripMultiple.
418   LLVM_DEBUG(
419       {
420         bool HasConvergent = false;
421         for (auto &BB : L->blocks())
422           for (auto &I : *BB)
423             if (auto *CB = dyn_cast<CallBase>(&I))
424               HasConvergent |= CB->isConvergent();
425         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
426                "Unroll count must divide trip multiple if loop contains a "
427                "convergent operation.");
428       });
429 
430   bool EpilogProfitability =
431       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
432                                               : isEpilogProfitable(L);
433 
434   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
435       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
436                                   EpilogProfitability, ULO.UnrollRemainder,
437                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
438                                   PreserveLCSSA, RemainderLoop)) {
439     if (ULO.Force)
440       RuntimeTripCount = false;
441     else {
442       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
443                            "generated when assuming runtime trip count\n");
444       return LoopUnrollResult::Unmodified;
445     }
446   }
447 
448   // If we know the trip count, we know the multiple...
449   unsigned BreakoutTrip = 0;
450   if (ULO.TripCount != 0) {
451     BreakoutTrip = ULO.TripCount % ULO.Count;
452     ULO.TripMultiple = 0;
453   } else {
454     // Figure out what multiple to use.
455     BreakoutTrip = ULO.TripMultiple =
456         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
457   }
458 
459   using namespace ore;
460   // Report the unrolling decision.
461   if (CompletelyUnroll) {
462     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
463                       << " with trip count " << ULO.TripCount << "!\n");
464     if (ORE)
465       ORE->emit([&]() {
466         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
467                                   L->getHeader())
468                << "completely unrolled loop with "
469                << NV("UnrollCount", ULO.TripCount) << " iterations";
470       });
471   } else if (ULO.PeelCount) {
472     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
473                       << " with iteration count " << ULO.PeelCount << "!\n");
474     if (ORE)
475       ORE->emit([&]() {
476         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
477                                   L->getHeader())
478                << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
479                << " iterations";
480       });
481   } else {
482     auto DiagBuilder = [&]() {
483       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
484                               L->getHeader());
485       return Diag << "unrolled loop by a factor of "
486                   << NV("UnrollCount", ULO.Count);
487     };
488 
489     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
490                       << ULO.Count);
491     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
492       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
493       if (ORE)
494         ORE->emit([&]() {
495           return DiagBuilder() << " with a breakout at trip "
496                                << NV("BreakoutTrip", BreakoutTrip);
497         });
498     } else if (ULO.TripMultiple != 1) {
499       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
500       if (ORE)
501         ORE->emit([&]() {
502           return DiagBuilder()
503                  << " with " << NV("TripMultiple", ULO.TripMultiple)
504                  << " trips per branch";
505         });
506     } else if (RuntimeTripCount) {
507       LLVM_DEBUG(dbgs() << " with run-time trip count");
508       if (ORE)
509         ORE->emit(
510             [&]() { return DiagBuilder() << " with run-time trip count"; });
511     }
512     LLVM_DEBUG(dbgs() << "!\n");
513   }
514 
515   // We are going to make changes to this loop. SCEV may be keeping cached info
516   // about it, in particular about backedge taken count. The changes we make
517   // are guaranteed to invalidate this information for our loop. It is tempting
518   // to only invalidate the loop being unrolled, but it is incorrect as long as
519   // all exiting branches from all inner loops have impact on the outer loops,
520   // and if something changes inside them then any of outer loops may also
521   // change. When we forget outermost loop, we also forget all contained loops
522   // and this is what we need here.
523   if (SE) {
524     if (ULO.ForgetAllSCEV)
525       SE->forgetAllLoops();
526     else
527       SE->forgetTopmostLoop(L);
528   }
529 
530   if (!LatchIsExiting)
531     ++NumUnrolledNotLatch;
532 
533   // For the first iteration of the loop, we should use the precloned values for
534   // PHI nodes.  Insert associations now.
535   ValueToValueMapTy LastValueMap;
536   std::vector<PHINode*> OrigPHINode;
537   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
538     OrigPHINode.push_back(cast<PHINode>(I));
539   }
540 
541   std::vector<BasicBlock *> Headers;
542   std::vector<BasicBlock *> ExitingBlocks;
543   std::vector<BasicBlock *> Latches;
544   Headers.push_back(Header);
545   Latches.push_back(LatchBlock);
546   if (ExitingBI)
547     ExitingBlocks.push_back(ExitingBI->getParent());
548 
549   // The current on-the-fly SSA update requires blocks to be processed in
550   // reverse postorder so that LastValueMap contains the correct value at each
551   // exit.
552   LoopBlocksDFS DFS(L);
553   DFS.perform(LI);
554 
555   // Stash the DFS iterators before adding blocks to the loop.
556   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
557   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
558 
559   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
560 
561   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
562   // might break loop-simplified form for these loops (as they, e.g., would
563   // share the same exit blocks). We'll keep track of loops for which we can
564   // break this so that later we can re-simplify them.
565   SmallSetVector<Loop *, 4> LoopsToSimplify;
566   for (Loop *SubLoop : *L)
567     LoopsToSimplify.insert(SubLoop);
568 
569   // When a FSDiscriminator is enabled, we don't need to add the multiply
570   // factors to the discriminators.
571   if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
572     for (BasicBlock *BB : L->getBlocks())
573       for (Instruction &I : *BB)
574         if (!isa<DbgInfoIntrinsic>(&I))
575           if (const DILocation *DIL = I.getDebugLoc()) {
576             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
577             if (NewDIL)
578               I.setDebugLoc(NewDIL.getValue());
579             else
580               LLVM_DEBUG(dbgs()
581                          << "Failed to create new discriminator: "
582                          << DIL->getFilename() << " Line: " << DIL->getLine());
583           }
584 
585   // Identify what noalias metadata is inside the loop: if it is inside the
586   // loop, the associated metadata must be cloned for each iteration.
587   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
588   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
589 
590   for (unsigned It = 1; It != ULO.Count; ++It) {
591     SmallVector<BasicBlock *, 8> NewBlocks;
592     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
593     NewLoops[L] = L;
594 
595     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
596       ValueToValueMapTy VMap;
597       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
598       Header->getParent()->getBasicBlockList().push_back(New);
599 
600       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
601              "Header should not be in a sub-loop");
602       // Tell LI about New.
603       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
604       if (OldLoop)
605         LoopsToSimplify.insert(NewLoops[OldLoop]);
606 
607       if (*BB == Header)
608         // Loop over all of the PHI nodes in the block, changing them to use
609         // the incoming values from the previous block.
610         for (PHINode *OrigPHI : OrigPHINode) {
611           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
612           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
613           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
614             if (It > 1 && L->contains(InValI))
615               InVal = LastValueMap[InValI];
616           VMap[OrigPHI] = InVal;
617           New->getInstList().erase(NewPHI);
618         }
619 
620       // Update our running map of newest clones
621       LastValueMap[*BB] = New;
622       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
623            VI != VE; ++VI)
624         LastValueMap[VI->first] = VI->second;
625 
626       // Add phi entries for newly created values to all exit blocks.
627       for (BasicBlock *Succ : successors(*BB)) {
628         if (L->contains(Succ))
629           continue;
630         for (PHINode &PHI : Succ->phis()) {
631           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
632           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
633           if (It != LastValueMap.end())
634             Incoming = It->second;
635           PHI.addIncoming(Incoming, New);
636         }
637       }
638       // Keep track of new headers and latches as we create them, so that
639       // we can insert the proper branches later.
640       if (*BB == Header)
641         Headers.push_back(New);
642       if (*BB == LatchBlock)
643         Latches.push_back(New);
644 
645       // Keep track of the exiting block and its successor block contained in
646       // the loop for the current iteration.
647       if (ExitingBI)
648         if (*BB == ExitingBlocks[0])
649           ExitingBlocks.push_back(New);
650 
651       NewBlocks.push_back(New);
652       UnrolledLoopBlocks.push_back(New);
653 
654       // Update DomTree: since we just copy the loop body, and each copy has a
655       // dedicated entry block (copy of the header block), this header's copy
656       // dominates all copied blocks. That means, dominance relations in the
657       // copied body are the same as in the original body.
658       if (*BB == Header)
659         DT->addNewBlock(New, Latches[It - 1]);
660       else {
661         auto BBDomNode = DT->getNode(*BB);
662         auto BBIDom = BBDomNode->getIDom();
663         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
664         DT->addNewBlock(
665             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
666       }
667     }
668 
669     // Remap all instructions in the most recent iteration
670     remapInstructionsInBlocks(NewBlocks, LastValueMap);
671     for (BasicBlock *NewBlock : NewBlocks)
672       for (Instruction &I : *NewBlock)
673         if (auto *II = dyn_cast<AssumeInst>(&I))
674           AC->registerAssumption(II);
675 
676     {
677       // Identify what other metadata depends on the cloned version. After
678       // cloning, replace the metadata with the corrected version for both
679       // memory instructions and noalias intrinsics.
680       std::string ext = (Twine("It") + Twine(It)).str();
681       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
682                                  Header->getContext(), ext);
683     }
684   }
685 
686   // Loop over the PHI nodes in the original block, setting incoming values.
687   for (PHINode *PN : OrigPHINode) {
688     if (CompletelyUnroll) {
689       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
690       Header->getInstList().erase(PN);
691     } else if (ULO.Count > 1) {
692       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
693       // If this value was defined in the loop, take the value defined by the
694       // last iteration of the loop.
695       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
696         if (L->contains(InValI))
697           InVal = LastValueMap[InVal];
698       }
699       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
700       PN->addIncoming(InVal, Latches.back());
701     }
702   }
703 
704   // Connect latches of the unrolled iterations to the headers of the next
705   // iteration. Currently they point to the header of the same iteration.
706   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
707     unsigned j = (i + 1) % e;
708     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
709   }
710 
711   // Update dominators of blocks we might reach through exits.
712   // Immediate dominator of such block might change, because we add more
713   // routes which can lead to the exit: we can now reach it from the copied
714   // iterations too.
715   if (ULO.Count > 1) {
716     for (auto *BB : OriginalLoopBlocks) {
717       auto *BBDomNode = DT->getNode(BB);
718       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
719       for (auto *ChildDomNode : BBDomNode->children()) {
720         auto *ChildBB = ChildDomNode->getBlock();
721         if (!L->contains(ChildBB))
722           ChildrenToUpdate.push_back(ChildBB);
723       }
724       // The new idom of the block will be the nearest common dominator
725       // of all copies of the previous idom. This is equivalent to the
726       // nearest common dominator of the previous idom and the first latch,
727       // which dominates all copies of the previous idom.
728       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
729       for (auto *ChildBB : ChildrenToUpdate)
730         DT->changeImmediateDominator(ChildBB, NewIDom);
731     }
732   }
733 
734   assert(!UnrollVerifyDomtree ||
735          DT->verify(DominatorTree::VerificationLevel::Fast));
736 
737   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
738 
739   if (ExitingBI) {
740     auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
741       auto *Term = cast<BranchInst>(Src->getTerminator());
742       const unsigned Idx = ExitOnTrue ^ WillExit;
743       BasicBlock *Dest = Term->getSuccessor(Idx);
744       BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
745 
746       // Remove predecessors from all non-Dest successors.
747       DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
748 
749       // Replace the conditional branch with an unconditional one.
750       BranchInst::Create(Dest, Term);
751       Term->eraseFromParent();
752 
753       DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
754     };
755 
756     auto WillExit = [&](unsigned i, unsigned j) -> Optional<bool> {
757       if (CompletelyUnroll) {
758         if (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0))
759           return None;
760         return j == 0;
761       }
762 
763       if (RuntimeTripCount && j != 0)
764         return false;
765 
766       if (j != BreakoutTrip &&
767           (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
768         // If we know the trip count or a multiple of it, we can safely use an
769         // unconditional branch for some iterations.
770         return false;
771       }
772       return None;
773     };
774 
775     // Fold branches for iterations where we know that they will exit or not
776     // exit.
777     bool ExitOnTrue = !L->contains(ExitingBI->getSuccessor(0));
778     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
779       // The branch destination.
780       unsigned j = (i + 1) % e;
781       Optional<bool> KnownWillExit = WillExit(i, j);
782       if (!KnownWillExit)
783         continue;
784 
785       // TODO: Also fold known-exiting branches for non-latch exits.
786       if (*KnownWillExit && !LatchIsExiting)
787         continue;
788 
789       SetDest(ExitingBlocks[i], *KnownWillExit, ExitOnTrue);
790     }
791   }
792 
793 
794   // When completely unrolling, the last latch becomes unreachable.
795   if (!LatchIsExiting && CompletelyUnroll)
796     changeToUnreachable(Latches.back()->getTerminator(), /* UseTrap */ false,
797                         PreserveLCSSA, &DTU);
798 
799   // Merge adjacent basic blocks, if possible.
800   for (BasicBlock *Latch : Latches) {
801     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
802     assert((Term ||
803             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
804            "Need a branch as terminator, except when fully unrolling with "
805            "unconditional latch");
806     if (Term && Term->isUnconditional()) {
807       BasicBlock *Dest = Term->getSuccessor(0);
808       BasicBlock *Fold = Dest->getUniquePredecessor();
809       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
810         // Dest has been folded into Fold. Update our worklists accordingly.
811         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
812         llvm::erase_value(UnrolledLoopBlocks, Dest);
813       }
814     }
815   }
816   // Apply updates to the DomTree.
817   DT = &DTU.getDomTree();
818 
819   // At this point, the code is well formed.  We now simplify the unrolled loop,
820   // doing constant propagation and dead code elimination as we go.
821   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
822                           SE, DT, AC, TTI);
823 
824   NumCompletelyUnrolled += CompletelyUnroll;
825   ++NumUnrolled;
826 
827   Loop *OuterL = L->getParentLoop();
828   // Update LoopInfo if the loop is completely removed.
829   if (CompletelyUnroll)
830     LI->erase(L);
831 
832   // After complete unrolling most of the blocks should be contained in OuterL.
833   // However, some of them might happen to be out of OuterL (e.g. if they
834   // precede a loop exit). In this case we might need to insert PHI nodes in
835   // order to preserve LCSSA form.
836   // We don't need to check this if we already know that we need to fix LCSSA
837   // form.
838   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
839   // it should be possible to fix it in-place.
840   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
841     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
842 
843   // Make sure that loop-simplify form is preserved. We want to simplify
844   // at least one layer outside of the loop that was unrolled so that any
845   // changes to the parent loop exposed by the unrolling are considered.
846   if (OuterL) {
847     // OuterL includes all loops for which we can break loop-simplify, so
848     // it's sufficient to simplify only it (it'll recursively simplify inner
849     // loops too).
850     if (NeedToFixLCSSA) {
851       // LCSSA must be performed on the outermost affected loop. The unrolled
852       // loop's last loop latch is guaranteed to be in the outermost loop
853       // after LoopInfo's been updated by LoopInfo::erase.
854       Loop *LatchLoop = LI->getLoopFor(Latches.back());
855       Loop *FixLCSSALoop = OuterL;
856       if (!FixLCSSALoop->contains(LatchLoop))
857         while (FixLCSSALoop->getParentLoop() != LatchLoop)
858           FixLCSSALoop = FixLCSSALoop->getParentLoop();
859 
860       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
861     } else if (PreserveLCSSA) {
862       assert(OuterL->isLCSSAForm(*DT) &&
863              "Loops should be in LCSSA form after loop-unroll.");
864     }
865 
866     // TODO: That potentially might be compile-time expensive. We should try
867     // to fix the loop-simplified form incrementally.
868     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
869   } else {
870     // Simplify loops for which we might've broken loop-simplify form.
871     for (Loop *SubLoop : LoopsToSimplify)
872       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
873   }
874 
875   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
876                           : LoopUnrollResult::PartiallyUnrolled;
877 }
878 
879 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
880 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
881 /// such metadata node exists, then nullptr is returned.
882 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
883   // First operand should refer to the loop id itself.
884   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
885   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
886 
887   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
888     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
889     if (!MD)
890       continue;
891 
892     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
893     if (!S)
894       continue;
895 
896     if (Name.equals(S->getString()))
897       return MD;
898   }
899   return nullptr;
900 }
901