1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopPeel.h"
63 #include "llvm/Transforms/Utils/LoopSimplify.h"
64 #include "llvm/Transforms/Utils/LoopUtils.h"
65 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
66 #include "llvm/Transforms/Utils/UnrollLoop.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <assert.h>
70 #include <type_traits>
71 #include <vector>
72 
73 namespace llvm {
74 class DataLayout;
75 class Value;
76 } // namespace llvm
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "loop-unroll"
81 
82 // TODO: Should these be here or in LoopUnroll?
83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
86                                "latch (completely or otherwise)");
87 
88 static cl::opt<bool>
89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
90                     cl::desc("Allow runtime unrolled loops to be unrolled "
91                              "with epilog instead of prolog."));
92 
93 static cl::opt<bool>
94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
95                     cl::desc("Verify domtree after unrolling"),
96 #ifdef EXPENSIVE_CHECKS
97     cl::init(true)
98 #else
99     cl::init(false)
100 #endif
101                     );
102 
103 /// Check if unrolling created a situation where we need to insert phi nodes to
104 /// preserve LCSSA form.
105 /// \param Blocks is a vector of basic blocks representing unrolled loop.
106 /// \param L is the outer loop.
107 /// It's possible that some of the blocks are in L, and some are not. In this
108 /// case, if there is a use is outside L, and definition is inside L, we need to
109 /// insert a phi-node, otherwise LCSSA will be broken.
110 /// The function is just a helper function for llvm::UnrollLoop that returns
111 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
112 static bool needToInsertPhisForLCSSA(Loop *L,
113                                      const std::vector<BasicBlock *> &Blocks,
114                                      LoopInfo *LI) {
115   for (BasicBlock *BB : Blocks) {
116     if (LI->getLoopFor(BB) == L)
117       continue;
118     for (Instruction &I : *BB) {
119       for (Use &U : I.operands()) {
120         if (const auto *Def = dyn_cast<Instruction>(U)) {
121           Loop *DefLoop = LI->getLoopFor(Def->getParent());
122           if (!DefLoop)
123             continue;
124           if (DefLoop->contains(L))
125             return true;
126         }
127       }
128     }
129   }
130   return false;
131 }
132 
133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
134 /// and adds a mapping from the original loop to the new loop to NewLoops.
135 /// Returns nullptr if no new loop was created and a pointer to the
136 /// original loop OriginalBB was part of otherwise.
137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
138                                            BasicBlock *ClonedBB, LoopInfo *LI,
139                                            NewLoopsMap &NewLoops) {
140   // Figure out which loop New is in.
141   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
142   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
143 
144   Loop *&NewLoop = NewLoops[OldLoop];
145   if (!NewLoop) {
146     // Found a new sub-loop.
147     assert(OriginalBB == OldLoop->getHeader() &&
148            "Header should be first in RPO");
149 
150     NewLoop = LI->AllocateLoop();
151     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
152 
153     if (NewLoopParent)
154       NewLoopParent->addChildLoop(NewLoop);
155     else
156       LI->addTopLevelLoop(NewLoop);
157 
158     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
159     return OldLoop;
160   } else {
161     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
162     return nullptr;
163   }
164 }
165 
166 /// The function chooses which type of unroll (epilog or prolog) is more
167 /// profitabale.
168 /// Epilog unroll is more profitable when there is PHI that starts from
169 /// constant.  In this case epilog will leave PHI start from constant,
170 /// but prolog will convert it to non-constant.
171 ///
172 /// loop:
173 ///   PN = PHI [I, Latch], [CI, PreHeader]
174 ///   I = foo(PN)
175 ///   ...
176 ///
177 /// Epilog unroll case.
178 /// loop:
179 ///   PN = PHI [I2, Latch], [CI, PreHeader]
180 ///   I1 = foo(PN)
181 ///   I2 = foo(I1)
182 ///   ...
183 /// Prolog unroll case.
184 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
185 /// loop:
186 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
187 ///   I1 = foo(PN)
188 ///   I2 = foo(I1)
189 ///   ...
190 ///
191 static bool isEpilogProfitable(Loop *L) {
192   BasicBlock *PreHeader = L->getLoopPreheader();
193   BasicBlock *Header = L->getHeader();
194   assert(PreHeader && Header);
195   for (const PHINode &PN : Header->phis()) {
196     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
197       return true;
198   }
199   return false;
200 }
201 
202 /// Perform some cleanup and simplifications on loops after unrolling. It is
203 /// useful to simplify the IV's in the new loop, as well as do a quick
204 /// simplify/dce pass of the instructions.
205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
206                                    ScalarEvolution *SE, DominatorTree *DT,
207                                    AssumptionCache *AC,
208                                    const TargetTransformInfo *TTI) {
209   // Simplify any new induction variables in the partially unrolled loop.
210   if (SE && SimplifyIVs) {
211     SmallVector<WeakTrackingVH, 16> DeadInsts;
212     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
213 
214     // Aggressively clean up dead instructions that simplifyLoopIVs already
215     // identified. Any remaining should be cleaned up below.
216     while (!DeadInsts.empty()) {
217       Value *V = DeadInsts.pop_back_val();
218       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
219         RecursivelyDeleteTriviallyDeadInstructions(Inst);
220     }
221   }
222 
223   // At this point, the code is well formed.  We now do a quick sweep over the
224   // inserted code, doing constant propagation and dead code elimination as we
225   // go.
226   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
227   for (BasicBlock *BB : L->getBlocks()) {
228     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
229       Instruction *Inst = &*I++;
230 
231       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
232         if (LI->replacementPreservesLCSSAForm(Inst, V))
233           Inst->replaceAllUsesWith(V);
234       if (isInstructionTriviallyDead(Inst))
235         BB->getInstList().erase(Inst);
236     }
237   }
238 
239   // TODO: after peeling or unrolling, previously loop variant conditions are
240   // likely to fold to constants, eagerly propagating those here will require
241   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
242   // appropriate.
243 }
244 
245 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
246 /// can only fail when the loop's latch block is not terminated by a conditional
247 /// branch instruction. However, if the trip count (and multiple) are not known,
248 /// loop unrolling will mostly produce more code that is no faster.
249 ///
250 /// TripCount is the upper bound of the iteration on which control exits
251 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
252 /// via an early branch in other loop block or via LatchBlock terminator. This
253 /// is relaxed from the general definition of trip count which is the number of
254 /// times the loop header executes. Note that UnrollLoop assumes that the loop
255 /// counter test is in LatchBlock in order to remove unnecesssary instances of
256 /// the test.  If control can exit the loop from the LatchBlock's terminator
257 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
258 ///
259 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
260 /// needs to be preserved.  It is needed when we use trip count upper bound to
261 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
262 /// conditional branch needs to be preserved.
263 ///
264 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
265 /// execute without exiting the loop.
266 ///
267 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
268 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
269 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
270 /// iterations before branching into the unrolled loop.  UnrollLoop will not
271 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
272 /// AllowExpensiveTripCount is false.
273 ///
274 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
275 /// number of iterations we want to peel off.
276 ///
277 /// The LoopInfo Analysis that is passed will be kept consistent.
278 ///
279 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
280 /// DominatorTree if they are non-null.
281 ///
282 /// If RemainderLoop is non-null, it will receive the remainder loop (if
283 /// required and not fully unrolled).
284 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
285                                   ScalarEvolution *SE, DominatorTree *DT,
286                                   AssumptionCache *AC,
287                                   const TargetTransformInfo *TTI,
288                                   OptimizationRemarkEmitter *ORE,
289                                   bool PreserveLCSSA, Loop **RemainderLoop) {
290 
291   BasicBlock *Preheader = L->getLoopPreheader();
292   if (!Preheader) {
293     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
294     return LoopUnrollResult::Unmodified;
295   }
296 
297   BasicBlock *LatchBlock = L->getLoopLatch();
298   if (!LatchBlock) {
299     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
300     return LoopUnrollResult::Unmodified;
301   }
302 
303   // Loops with indirectbr cannot be cloned.
304   if (!L->isSafeToClone()) {
305     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
306     return LoopUnrollResult::Unmodified;
307   }
308 
309   // The current loop unroll pass can unroll loops that have
310   // (1) single latch; and
311   // (2a) latch is unconditional; or
312   // (2b) latch is conditional and is an exiting block
313   // FIXME: The implementation can be extended to work with more complicated
314   // cases, e.g. loops with multiple latches.
315   BasicBlock *Header = L->getHeader();
316   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
317 
318   // A conditional branch which exits the loop, which can be optimized to an
319   // unconditional branch in the unrolled loop in some cases.
320   BranchInst *ExitingBI = nullptr;
321   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
322   if (LatchIsExiting)
323     ExitingBI = LatchBI;
324   else if (BasicBlock *ExitingBlock = L->getExitingBlock())
325     ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
326   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
327     LLVM_DEBUG(
328         dbgs() << "Can't unroll; a conditional latch must exit the loop");
329     return LoopUnrollResult::Unmodified;
330   }
331   LLVM_DEBUG({
332     if (ExitingBI)
333       dbgs() << "  Exiting Block = " << ExitingBI->getParent()->getName()
334              << "\n";
335     else
336       dbgs() << "  No single exiting block\n";
337   });
338 
339   if (Header->hasAddressTaken()) {
340     // The loop-rotate pass can be helpful to avoid this in many cases.
341     LLVM_DEBUG(
342         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
343     return LoopUnrollResult::Unmodified;
344   }
345 
346   if (ULO.TripCount != 0)
347     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
348   if (ULO.TripMultiple != 1)
349     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
350 
351   // Effectively "DCE" unrolled iterations that are beyond the tripcount
352   // and will never be executed.
353   if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
354     ULO.Count = ULO.TripCount;
355 
356   // Don't enter the unroll code if there is nothing to do.
357   if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
358     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
359     return LoopUnrollResult::Unmodified;
360   }
361 
362   assert(ULO.Count > 0);
363   assert(ULO.TripMultiple > 0);
364   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
365 
366   // Are we eliminating the loop control altogether?
367   bool CompletelyUnroll = ULO.Count == ULO.TripCount;
368   SmallVector<BasicBlock *, 4> ExitBlocks;
369   L->getExitBlocks(ExitBlocks);
370   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
371 
372   // Go through all exits of L and see if there are any phi-nodes there. We just
373   // conservatively assume that they're inserted to preserve LCSSA form, which
374   // means that complete unrolling might break this form. We need to either fix
375   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
376   // now we just recompute LCSSA for the outer loop, but it should be possible
377   // to fix it in-place.
378   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
379                         any_of(ExitBlocks, [](const BasicBlock *BB) {
380                           return isa<PHINode>(BB->begin());
381                         });
382 
383   // We assume a run-time trip count if the compiler cannot
384   // figure out the loop trip count and the unroll-runtime
385   // flag is specified.
386   bool RuntimeTripCount =
387       (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
388 
389   assert((!RuntimeTripCount || !ULO.PeelCount) &&
390          "Did not expect runtime trip-count unrolling "
391          "and peeling for the same loop");
392 
393   bool Peeled = false;
394   if (ULO.PeelCount) {
395     Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
396 
397     // Successful peeling may result in a change in the loop preheader/trip
398     // counts. If we later unroll the loop, we want these to be updated.
399     if (Peeled) {
400       // According to our guards and profitability checks the only
401       // meaningful exit should be latch block. Other exits go to deopt,
402       // so we do not worry about them.
403       BasicBlock *ExitingBlock = L->getLoopLatch();
404       assert(ExitingBlock && "Loop without exiting block?");
405       assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
406       Preheader = L->getLoopPreheader();
407       ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
408       ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
409     }
410   }
411 
412   // Loops containing convergent instructions must have a count that divides
413   // their TripMultiple.
414   LLVM_DEBUG(
415       {
416         bool HasConvergent = false;
417         for (auto &BB : L->blocks())
418           for (auto &I : *BB)
419             if (auto *CB = dyn_cast<CallBase>(&I))
420               HasConvergent |= CB->isConvergent();
421         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
422                "Unroll count must divide trip multiple if loop contains a "
423                "convergent operation.");
424       });
425 
426   bool EpilogProfitability =
427       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
428                                               : isEpilogProfitable(L);
429 
430   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
431       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
432                                   EpilogProfitability, ULO.UnrollRemainder,
433                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
434                                   PreserveLCSSA, RemainderLoop)) {
435     if (ULO.Force)
436       RuntimeTripCount = false;
437     else {
438       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
439                            "generated when assuming runtime trip count\n");
440       return LoopUnrollResult::Unmodified;
441     }
442   }
443 
444   // If we know the trip count, we know the multiple...
445   unsigned BreakoutTrip = 0;
446   if (ULO.TripCount != 0) {
447     BreakoutTrip = ULO.TripCount % ULO.Count;
448     ULO.TripMultiple = 0;
449   } else {
450     // Figure out what multiple to use.
451     BreakoutTrip = ULO.TripMultiple =
452         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
453   }
454 
455   using namespace ore;
456   // Report the unrolling decision.
457   if (CompletelyUnroll) {
458     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
459                       << " with trip count " << ULO.TripCount << "!\n");
460     if (ORE)
461       ORE->emit([&]() {
462         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
463                                   L->getHeader())
464                << "completely unrolled loop with "
465                << NV("UnrollCount", ULO.TripCount) << " iterations";
466       });
467   } else if (ULO.PeelCount) {
468     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
469                       << " with iteration count " << ULO.PeelCount << "!\n");
470     if (ORE)
471       ORE->emit([&]() {
472         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
473                                   L->getHeader())
474                << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
475                << " iterations";
476       });
477   } else {
478     auto DiagBuilder = [&]() {
479       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
480                               L->getHeader());
481       return Diag << "unrolled loop by a factor of "
482                   << NV("UnrollCount", ULO.Count);
483     };
484 
485     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
486                       << ULO.Count);
487     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
488       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
489       if (ORE)
490         ORE->emit([&]() {
491           return DiagBuilder() << " with a breakout at trip "
492                                << NV("BreakoutTrip", BreakoutTrip);
493         });
494     } else if (ULO.TripMultiple != 1) {
495       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
496       if (ORE)
497         ORE->emit([&]() {
498           return DiagBuilder()
499                  << " with " << NV("TripMultiple", ULO.TripMultiple)
500                  << " trips per branch";
501         });
502     } else if (RuntimeTripCount) {
503       LLVM_DEBUG(dbgs() << " with run-time trip count");
504       if (ORE)
505         ORE->emit(
506             [&]() { return DiagBuilder() << " with run-time trip count"; });
507     }
508     LLVM_DEBUG(dbgs() << "!\n");
509   }
510 
511   // We are going to make changes to this loop. SCEV may be keeping cached info
512   // about it, in particular about backedge taken count. The changes we make
513   // are guaranteed to invalidate this information for our loop. It is tempting
514   // to only invalidate the loop being unrolled, but it is incorrect as long as
515   // all exiting branches from all inner loops have impact on the outer loops,
516   // and if something changes inside them then any of outer loops may also
517   // change. When we forget outermost loop, we also forget all contained loops
518   // and this is what we need here.
519   if (SE) {
520     if (ULO.ForgetAllSCEV)
521       SE->forgetAllLoops();
522     else
523       SE->forgetTopmostLoop(L);
524   }
525 
526   if (!LatchIsExiting)
527     ++NumUnrolledNotLatch;
528   Optional<bool> ContinueOnTrue = None;
529   BasicBlock *LoopExit = nullptr;
530   if (ExitingBI) {
531     ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0));
532     LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue);
533   }
534 
535   // For the first iteration of the loop, we should use the precloned values for
536   // PHI nodes.  Insert associations now.
537   ValueToValueMapTy LastValueMap;
538   std::vector<PHINode*> OrigPHINode;
539   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
540     OrigPHINode.push_back(cast<PHINode>(I));
541   }
542 
543   std::vector<BasicBlock *> Headers;
544   std::vector<BasicBlock *> ExitingBlocks;
545   std::vector<BasicBlock *> ExitingSucc;
546   std::vector<BasicBlock *> Latches;
547   Headers.push_back(Header);
548   Latches.push_back(LatchBlock);
549   if (ExitingBI) {
550     ExitingBlocks.push_back(ExitingBI->getParent());
551     ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue)));
552   }
553 
554   // The current on-the-fly SSA update requires blocks to be processed in
555   // reverse postorder so that LastValueMap contains the correct value at each
556   // exit.
557   LoopBlocksDFS DFS(L);
558   DFS.perform(LI);
559 
560   // Stash the DFS iterators before adding blocks to the loop.
561   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
562   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
563 
564   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
565 
566   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
567   // might break loop-simplified form for these loops (as they, e.g., would
568   // share the same exit blocks). We'll keep track of loops for which we can
569   // break this so that later we can re-simplify them.
570   SmallSetVector<Loop *, 4> LoopsToSimplify;
571   for (Loop *SubLoop : *L)
572     LoopsToSimplify.insert(SubLoop);
573 
574   if (Header->getParent()->isDebugInfoForProfiling())
575     for (BasicBlock *BB : L->getBlocks())
576       for (Instruction &I : *BB)
577         if (!isa<DbgInfoIntrinsic>(&I))
578           if (const DILocation *DIL = I.getDebugLoc()) {
579             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
580             if (NewDIL)
581               I.setDebugLoc(NewDIL.getValue());
582             else
583               LLVM_DEBUG(dbgs()
584                          << "Failed to create new discriminator: "
585                          << DIL->getFilename() << " Line: " << DIL->getLine());
586           }
587 
588   for (unsigned It = 1; It != ULO.Count; ++It) {
589     SmallVector<BasicBlock *, 8> NewBlocks;
590     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
591     NewLoops[L] = L;
592 
593     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
594       ValueToValueMapTy VMap;
595       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
596       Header->getParent()->getBasicBlockList().push_back(New);
597 
598       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
599              "Header should not be in a sub-loop");
600       // Tell LI about New.
601       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
602       if (OldLoop)
603         LoopsToSimplify.insert(NewLoops[OldLoop]);
604 
605       if (*BB == Header)
606         // Loop over all of the PHI nodes in the block, changing them to use
607         // the incoming values from the previous block.
608         for (PHINode *OrigPHI : OrigPHINode) {
609           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
610           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
611           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
612             if (It > 1 && L->contains(InValI))
613               InVal = LastValueMap[InValI];
614           VMap[OrigPHI] = InVal;
615           New->getInstList().erase(NewPHI);
616         }
617 
618       // Update our running map of newest clones
619       LastValueMap[*BB] = New;
620       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
621            VI != VE; ++VI)
622         LastValueMap[VI->first] = VI->second;
623 
624       // Add phi entries for newly created values to all exit blocks.
625       for (BasicBlock *Succ : successors(*BB)) {
626         if (L->contains(Succ))
627           continue;
628         for (PHINode &PHI : Succ->phis()) {
629           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
630           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
631           if (It != LastValueMap.end())
632             Incoming = It->second;
633           PHI.addIncoming(Incoming, New);
634         }
635       }
636       // Keep track of new headers and latches as we create them, so that
637       // we can insert the proper branches later.
638       if (*BB == Header)
639         Headers.push_back(New);
640       if (*BB == LatchBlock)
641         Latches.push_back(New);
642 
643       // Keep track of the exiting block and its successor block contained in
644       // the loop for the current iteration.
645       if (ExitingBI) {
646         if (*BB == ExitingBlocks[0])
647           ExitingBlocks.push_back(New);
648         if (*BB == ExitingSucc[0])
649           ExitingSucc.push_back(New);
650       }
651 
652       NewBlocks.push_back(New);
653       UnrolledLoopBlocks.push_back(New);
654 
655       // Update DomTree: since we just copy the loop body, and each copy has a
656       // dedicated entry block (copy of the header block), this header's copy
657       // dominates all copied blocks. That means, dominance relations in the
658       // copied body are the same as in the original body.
659       if (DT) {
660         if (*BB == Header)
661           DT->addNewBlock(New, Latches[It - 1]);
662         else {
663           auto BBDomNode = DT->getNode(*BB);
664           auto BBIDom = BBDomNode->getIDom();
665           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
666           DT->addNewBlock(
667               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
668         }
669       }
670     }
671 
672     // Remap all instructions in the most recent iteration
673     remapInstructionsInBlocks(NewBlocks, LastValueMap);
674     for (BasicBlock *NewBlock : NewBlocks) {
675       for (Instruction &I : *NewBlock) {
676         if (auto *II = dyn_cast<IntrinsicInst>(&I))
677           if (II->getIntrinsicID() == Intrinsic::assume)
678             AC->registerAssumption(II);
679       }
680     }
681   }
682 
683   // Loop over the PHI nodes in the original block, setting incoming values.
684   for (PHINode *PN : OrigPHINode) {
685     if (CompletelyUnroll) {
686       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
687       Header->getInstList().erase(PN);
688     } else if (ULO.Count > 1) {
689       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
690       // If this value was defined in the loop, take the value defined by the
691       // last iteration of the loop.
692       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
693         if (L->contains(InValI))
694           InVal = LastValueMap[InVal];
695       }
696       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
697       PN->addIncoming(InVal, Latches.back());
698     }
699   }
700 
701   auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop,
702                     bool NeedConditional, Optional<bool> ContinueOnTrue,
703                     bool IsDestLoopExit) {
704     auto *Term = cast<BranchInst>(Src->getTerminator());
705     if (NeedConditional) {
706       // Update the conditional branch's successor for the following
707       // iteration.
708       assert(ContinueOnTrue.hasValue() &&
709              "Expecting valid ContinueOnTrue when NeedConditional is true");
710       Term->setSuccessor(!(*ContinueOnTrue), Dest);
711     } else {
712       // Remove phi operands at this loop exit
713       if (!IsDestLoopExit) {
714         BasicBlock *BB = Src;
715         for (BasicBlock *Succ : successors(BB)) {
716           // Preserve the incoming value from BB if we are jumping to the block
717           // in the current loop.
718           if (Succ == BlockInLoop)
719             continue;
720           for (PHINode &Phi : Succ->phis())
721             Phi.removeIncomingValue(BB, false);
722         }
723       }
724       // Replace the conditional branch with an unconditional one.
725       BranchInst::Create(Dest, Term);
726       Term->eraseFromParent();
727     }
728   };
729 
730   // Connect latches of the unrolled iterations to the headers of the next
731   // iteration. If the latch is also the exiting block, the conditional branch
732   // may have to be preserved.
733   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
734     // The branch destination.
735     unsigned j = (i + 1) % e;
736     BasicBlock *Dest = Headers[j];
737     bool NeedConditional = LatchIsExiting;
738 
739     if (LatchIsExiting) {
740       if (RuntimeTripCount && j != 0)
741         NeedConditional = false;
742 
743       // For a complete unroll, make the last iteration end with a branch
744       // to the exit block.
745       if (CompletelyUnroll) {
746         if (j == 0)
747           Dest = LoopExit;
748         // If using trip count upper bound to completely unroll, we need to
749         // keep the conditional branch except the last one because the loop
750         // may exit after any iteration.
751         assert(NeedConditional &&
752                "NeedCondition cannot be modified by both complete "
753                "unrolling and runtime unrolling");
754         NeedConditional =
755             (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
756       } else if (j != BreakoutTrip &&
757                  (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
758         // If we know the trip count or a multiple of it, we can safely use an
759         // unconditional branch for some iterations.
760         NeedConditional = false;
761       }
762     }
763 
764     setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue,
765             Dest == LoopExit);
766   }
767 
768   if (!LatchIsExiting) {
769     // If the latch is not exiting, we may be able to simplify the conditional
770     // branches in the unrolled exiting blocks.
771     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
772       // The branch destination.
773       unsigned j = (i + 1) % e;
774       bool NeedConditional = true;
775 
776       if (RuntimeTripCount && j != 0)
777         NeedConditional = false;
778 
779       if (CompletelyUnroll)
780         // We cannot drop the conditional branch for the last condition, as we
781         // may have to execute the loop body depending on the condition.
782         NeedConditional = j == 0 || ULO.PreserveCondBr;
783       else if (j != BreakoutTrip &&
784                (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
785         // If we know the trip count or a multiple of it, we can safely use an
786         // unconditional branch for some iterations.
787         NeedConditional = false;
788 
789       // Conditional branches from non-latch exiting block have successors
790       // either in the same loop iteration or outside the loop. The branches are
791       // already correct.
792       if (NeedConditional)
793         continue;
794       setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional,
795               None, false);
796     }
797 
798     // When completely unrolling, the last latch becomes unreachable.
799     if (CompletelyUnroll) {
800       BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator());
801       new UnreachableInst(Term->getContext(), Term);
802       Term->eraseFromParent();
803     }
804   }
805 
806   // Update dominators of blocks we might reach through exits.
807   // Immediate dominator of such block might change, because we add more
808   // routes which can lead to the exit: we can now reach it from the copied
809   // iterations too.
810   if (DT && ULO.Count > 1) {
811     for (auto *BB : OriginalLoopBlocks) {
812       auto *BBDomNode = DT->getNode(BB);
813       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
814       for (auto *ChildDomNode : BBDomNode->children()) {
815         auto *ChildBB = ChildDomNode->getBlock();
816         if (!L->contains(ChildBB))
817           ChildrenToUpdate.push_back(ChildBB);
818       }
819       BasicBlock *NewIDom;
820       if (ExitingBI && BB == ExitingBlocks[0]) {
821         // The latch is special because we emit unconditional branches in
822         // some cases where the original loop contained a conditional branch.
823         // Since the latch is always at the bottom of the loop, if the latch
824         // dominated an exit before unrolling, the new dominator of that exit
825         // must also be a latch.  Specifically, the dominator is the first
826         // latch which ends in a conditional branch, or the last latch if
827         // there is no such latch.
828         // For loops exiting from non latch exiting block, we limit the
829         // branch simplification to single exiting block loops.
830         NewIDom = ExitingBlocks.back();
831         for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
832           Instruction *Term = ExitingBlocks[i]->getTerminator();
833           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
834             NewIDom =
835                 DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]);
836             break;
837           }
838         }
839       } else {
840         // The new idom of the block will be the nearest common dominator
841         // of all copies of the previous idom. This is equivalent to the
842         // nearest common dominator of the previous idom and the first latch,
843         // which dominates all copies of the previous idom.
844         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
845       }
846       for (auto *ChildBB : ChildrenToUpdate)
847         DT->changeImmediateDominator(ChildBB, NewIDom);
848     }
849   }
850 
851   assert(!DT || !UnrollVerifyDomtree ||
852          DT->verify(DominatorTree::VerificationLevel::Fast));
853 
854   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
855   // Merge adjacent basic blocks, if possible.
856   for (BasicBlock *Latch : Latches) {
857     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
858     assert((Term ||
859             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
860            "Need a branch as terminator, except when fully unrolling with "
861            "unconditional latch");
862     if (Term && Term->isUnconditional()) {
863       BasicBlock *Dest = Term->getSuccessor(0);
864       BasicBlock *Fold = Dest->getUniquePredecessor();
865       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
866         // Dest has been folded into Fold. Update our worklists accordingly.
867         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
868         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
869                                              UnrolledLoopBlocks.end(), Dest),
870                                  UnrolledLoopBlocks.end());
871       }
872     }
873   }
874   // Apply updates to the DomTree.
875   DT = &DTU.getDomTree();
876 
877   // At this point, the code is well formed.  We now simplify the unrolled loop,
878   // doing constant propagation and dead code elimination as we go.
879   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
880                           SE, DT, AC, TTI);
881 
882   NumCompletelyUnrolled += CompletelyUnroll;
883   ++NumUnrolled;
884 
885   Loop *OuterL = L->getParentLoop();
886   // Update LoopInfo if the loop is completely removed.
887   if (CompletelyUnroll)
888     LI->erase(L);
889 
890   // After complete unrolling most of the blocks should be contained in OuterL.
891   // However, some of them might happen to be out of OuterL (e.g. if they
892   // precede a loop exit). In this case we might need to insert PHI nodes in
893   // order to preserve LCSSA form.
894   // We don't need to check this if we already know that we need to fix LCSSA
895   // form.
896   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
897   // it should be possible to fix it in-place.
898   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
899     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
900 
901   // If we have a pass and a DominatorTree we should re-simplify impacted loops
902   // to ensure subsequent analyses can rely on this form. We want to simplify
903   // at least one layer outside of the loop that was unrolled so that any
904   // changes to the parent loop exposed by the unrolling are considered.
905   if (DT) {
906     if (OuterL) {
907       // OuterL includes all loops for which we can break loop-simplify, so
908       // it's sufficient to simplify only it (it'll recursively simplify inner
909       // loops too).
910       if (NeedToFixLCSSA) {
911         // LCSSA must be performed on the outermost affected loop. The unrolled
912         // loop's last loop latch is guaranteed to be in the outermost loop
913         // after LoopInfo's been updated by LoopInfo::erase.
914         Loop *LatchLoop = LI->getLoopFor(Latches.back());
915         Loop *FixLCSSALoop = OuterL;
916         if (!FixLCSSALoop->contains(LatchLoop))
917           while (FixLCSSALoop->getParentLoop() != LatchLoop)
918             FixLCSSALoop = FixLCSSALoop->getParentLoop();
919 
920         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
921       } else if (PreserveLCSSA) {
922         assert(OuterL->isLCSSAForm(*DT) &&
923                "Loops should be in LCSSA form after loop-unroll.");
924       }
925 
926       // TODO: That potentially might be compile-time expensive. We should try
927       // to fix the loop-simplified form incrementally.
928       simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
929     } else {
930       // Simplify loops for which we might've broken loop-simplify form.
931       for (Loop *SubLoop : LoopsToSimplify)
932         simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
933     }
934   }
935 
936   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
937                           : LoopUnrollResult::PartiallyUnrolled;
938 }
939 
940 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
941 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
942 /// such metadata node exists, then nullptr is returned.
943 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
944   // First operand should refer to the loop id itself.
945   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
946   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
947 
948   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
949     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
950     if (!MD)
951       continue;
952 
953     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
954     if (!S)
955       continue;
956 
957     if (Name.equals(S->getString()))
958       return MD;
959   }
960   return nullptr;
961 }
962