1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopPeel.h" 63 #include "llvm/Transforms/Utils/LoopSimplify.h" 64 #include "llvm/Transforms/Utils/LoopUtils.h" 65 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 66 #include "llvm/Transforms/Utils/UnrollLoop.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <assert.h> 70 #include <type_traits> 71 #include <vector> 72 73 namespace llvm { 74 class DataLayout; 75 class Value; 76 } // namespace llvm 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-unroll" 81 82 // TODO: Should these be here or in LoopUnroll? 83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 86 "latch (completely or otherwise)"); 87 88 static cl::opt<bool> 89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 90 cl::desc("Allow runtime unrolled loops to be unrolled " 91 "with epilog instead of prolog.")); 92 93 static cl::opt<bool> 94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 95 cl::desc("Verify domtree after unrolling"), 96 #ifdef EXPENSIVE_CHECKS 97 cl::init(true) 98 #else 99 cl::init(false) 100 #endif 101 ); 102 103 /// Check if unrolling created a situation where we need to insert phi nodes to 104 /// preserve LCSSA form. 105 /// \param Blocks is a vector of basic blocks representing unrolled loop. 106 /// \param L is the outer loop. 107 /// It's possible that some of the blocks are in L, and some are not. In this 108 /// case, if there is a use is outside L, and definition is inside L, we need to 109 /// insert a phi-node, otherwise LCSSA will be broken. 110 /// The function is just a helper function for llvm::UnrollLoop that returns 111 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 112 static bool needToInsertPhisForLCSSA(Loop *L, 113 const std::vector<BasicBlock *> &Blocks, 114 LoopInfo *LI) { 115 for (BasicBlock *BB : Blocks) { 116 if (LI->getLoopFor(BB) == L) 117 continue; 118 for (Instruction &I : *BB) { 119 for (Use &U : I.operands()) { 120 if (const auto *Def = dyn_cast<Instruction>(U)) { 121 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 122 if (!DefLoop) 123 continue; 124 if (DefLoop->contains(L)) 125 return true; 126 } 127 } 128 } 129 } 130 return false; 131 } 132 133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 134 /// and adds a mapping from the original loop to the new loop to NewLoops. 135 /// Returns nullptr if no new loop was created and a pointer to the 136 /// original loop OriginalBB was part of otherwise. 137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 138 BasicBlock *ClonedBB, LoopInfo *LI, 139 NewLoopsMap &NewLoops) { 140 // Figure out which loop New is in. 141 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 142 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 143 144 Loop *&NewLoop = NewLoops[OldLoop]; 145 if (!NewLoop) { 146 // Found a new sub-loop. 147 assert(OriginalBB == OldLoop->getHeader() && 148 "Header should be first in RPO"); 149 150 NewLoop = LI->AllocateLoop(); 151 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 152 153 if (NewLoopParent) 154 NewLoopParent->addChildLoop(NewLoop); 155 else 156 LI->addTopLevelLoop(NewLoop); 157 158 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 159 return OldLoop; 160 } else { 161 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 162 return nullptr; 163 } 164 } 165 166 /// The function chooses which type of unroll (epilog or prolog) is more 167 /// profitabale. 168 /// Epilog unroll is more profitable when there is PHI that starts from 169 /// constant. In this case epilog will leave PHI start from constant, 170 /// but prolog will convert it to non-constant. 171 /// 172 /// loop: 173 /// PN = PHI [I, Latch], [CI, PreHeader] 174 /// I = foo(PN) 175 /// ... 176 /// 177 /// Epilog unroll case. 178 /// loop: 179 /// PN = PHI [I2, Latch], [CI, PreHeader] 180 /// I1 = foo(PN) 181 /// I2 = foo(I1) 182 /// ... 183 /// Prolog unroll case. 184 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 185 /// loop: 186 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 187 /// I1 = foo(PN) 188 /// I2 = foo(I1) 189 /// ... 190 /// 191 static bool isEpilogProfitable(Loop *L) { 192 BasicBlock *PreHeader = L->getLoopPreheader(); 193 BasicBlock *Header = L->getHeader(); 194 assert(PreHeader && Header); 195 for (const PHINode &PN : Header->phis()) { 196 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 197 return true; 198 } 199 return false; 200 } 201 202 /// Perform some cleanup and simplifications on loops after unrolling. It is 203 /// useful to simplify the IV's in the new loop, as well as do a quick 204 /// simplify/dce pass of the instructions. 205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 206 ScalarEvolution *SE, DominatorTree *DT, 207 AssumptionCache *AC, 208 const TargetTransformInfo *TTI) { 209 // Simplify any new induction variables in the partially unrolled loop. 210 if (SE && SimplifyIVs) { 211 SmallVector<WeakTrackingVH, 16> DeadInsts; 212 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 213 214 // Aggressively clean up dead instructions that simplifyLoopIVs already 215 // identified. Any remaining should be cleaned up below. 216 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 217 } 218 219 // At this point, the code is well formed. Perform constprop, instsimplify, 220 // and dce. 221 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 222 SmallVector<WeakTrackingVH, 16> DeadInsts; 223 for (BasicBlock *BB : L->getBlocks()) { 224 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 225 Instruction *Inst = &*I++; 226 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 227 if (LI->replacementPreservesLCSSAForm(Inst, V)) 228 Inst->replaceAllUsesWith(V); 229 if (isInstructionTriviallyDead(Inst)) 230 DeadInsts.emplace_back(Inst); 231 } 232 // We can't do recursive deletion until we're done iterating, as we might 233 // have a phi which (potentially indirectly) uses instructions later in 234 // the block we're iterating through. 235 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 236 } 237 } 238 239 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 240 /// can only fail when the loop's latch block is not terminated by a conditional 241 /// branch instruction. However, if the trip count (and multiple) are not known, 242 /// loop unrolling will mostly produce more code that is no faster. 243 /// 244 /// TripCount is the upper bound of the iteration on which control exits 245 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 246 /// via an early branch in other loop block or via LatchBlock terminator. This 247 /// is relaxed from the general definition of trip count which is the number of 248 /// times the loop header executes. Note that UnrollLoop assumes that the loop 249 /// counter test is in LatchBlock in order to remove unnecesssary instances of 250 /// the test. If control can exit the loop from the LatchBlock's terminator 251 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 252 /// 253 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 254 /// needs to be preserved. It is needed when we use trip count upper bound to 255 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 256 /// conditional branch needs to be preserved. 257 /// 258 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 259 /// execute without exiting the loop. 260 /// 261 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 262 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 263 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 264 /// iterations before branching into the unrolled loop. UnrollLoop will not 265 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 266 /// AllowExpensiveTripCount is false. 267 /// 268 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 269 /// number of iterations we want to peel off. 270 /// 271 /// The LoopInfo Analysis that is passed will be kept consistent. 272 /// 273 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 274 /// DominatorTree if they are non-null. 275 /// 276 /// If RemainderLoop is non-null, it will receive the remainder loop (if 277 /// required and not fully unrolled). 278 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 279 ScalarEvolution *SE, DominatorTree *DT, 280 AssumptionCache *AC, 281 const TargetTransformInfo *TTI, 282 OptimizationRemarkEmitter *ORE, 283 bool PreserveLCSSA, Loop **RemainderLoop) { 284 285 if (!L->getLoopPreheader()) { 286 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 287 return LoopUnrollResult::Unmodified; 288 } 289 290 if (!L->getLoopLatch()) { 291 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 292 return LoopUnrollResult::Unmodified; 293 } 294 295 // Loops with indirectbr cannot be cloned. 296 if (!L->isSafeToClone()) { 297 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 298 return LoopUnrollResult::Unmodified; 299 } 300 301 if (L->getHeader()->hasAddressTaken()) { 302 // The loop-rotate pass can be helpful to avoid this in many cases. 303 LLVM_DEBUG( 304 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 305 return LoopUnrollResult::Unmodified; 306 } 307 308 if (ULO.TripCount != 0) 309 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 310 if (ULO.TripMultiple != 1) 311 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 312 313 // Effectively "DCE" unrolled iterations that are beyond the tripcount 314 // and will never be executed. 315 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 316 ULO.Count = ULO.TripCount; 317 318 // Don't enter the unroll code if there is nothing to do. 319 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 320 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 321 return LoopUnrollResult::Unmodified; 322 } 323 324 assert(ULO.Count > 0); 325 assert(ULO.TripMultiple > 0); 326 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 327 328 // Are we eliminating the loop control altogether? 329 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 330 331 // We assume a run-time trip count if the compiler cannot 332 // figure out the loop trip count and the unroll-runtime 333 // flag is specified. 334 bool RuntimeTripCount = 335 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 336 337 assert((!RuntimeTripCount || !ULO.PeelCount) && 338 "Did not expect runtime trip-count unrolling " 339 "and peeling for the same loop"); 340 341 bool Peeled = false; 342 if (ULO.PeelCount) { 343 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 344 345 // Successful peeling may result in a change in the loop preheader/trip 346 // counts. If we later unroll the loop, we want these to be updated. 347 if (Peeled) { 348 // According to our guards and profitability checks the only 349 // meaningful exit should be latch block. Other exits go to deopt, 350 // so we do not worry about them. 351 BasicBlock *ExitingBlock = L->getLoopLatch(); 352 assert(ExitingBlock && "Loop without exiting block?"); 353 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 354 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 355 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 356 } 357 } 358 359 // All these values should be taken only after peeling because they might have 360 // changed. 361 BasicBlock *Preheader = L->getLoopPreheader(); 362 BasicBlock *Header = L->getHeader(); 363 BasicBlock *LatchBlock = L->getLoopLatch(); 364 SmallVector<BasicBlock *, 4> ExitBlocks; 365 L->getExitBlocks(ExitBlocks); 366 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 367 368 // Go through all exits of L and see if there are any phi-nodes there. We just 369 // conservatively assume that they're inserted to preserve LCSSA form, which 370 // means that complete unrolling might break this form. We need to either fix 371 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 372 // now we just recompute LCSSA for the outer loop, but it should be possible 373 // to fix it in-place. 374 bool NeedToFixLCSSA = 375 PreserveLCSSA && CompletelyUnroll && 376 any_of(ExitBlocks, 377 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 378 379 // The current loop unroll pass can unroll loops that have 380 // (1) single latch; and 381 // (2a) latch is unconditional; or 382 // (2b) latch is conditional and is an exiting block 383 // FIXME: The implementation can be extended to work with more complicated 384 // cases, e.g. loops with multiple latches. 385 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 386 387 // A conditional branch which exits the loop, which can be optimized to an 388 // unconditional branch in the unrolled loop in some cases. 389 BranchInst *ExitingBI = nullptr; 390 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 391 if (LatchIsExiting) 392 ExitingBI = LatchBI; 393 else if (BasicBlock *ExitingBlock = L->getExitingBlock()) 394 ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 395 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 396 // If the peeling guard is changed this assert may be relaxed or even 397 // deleted. 398 assert(!Peeled && "Peeling guard changed!"); 399 LLVM_DEBUG( 400 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 401 return LoopUnrollResult::Unmodified; 402 } 403 LLVM_DEBUG({ 404 if (ExitingBI) 405 dbgs() << " Exiting Block = " << ExitingBI->getParent()->getName() 406 << "\n"; 407 else 408 dbgs() << " No single exiting block\n"; 409 }); 410 411 // Loops containing convergent instructions must have a count that divides 412 // their TripMultiple. 413 LLVM_DEBUG( 414 { 415 bool HasConvergent = false; 416 for (auto &BB : L->blocks()) 417 for (auto &I : *BB) 418 if (auto *CB = dyn_cast<CallBase>(&I)) 419 HasConvergent |= CB->isConvergent(); 420 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 421 "Unroll count must divide trip multiple if loop contains a " 422 "convergent operation."); 423 }); 424 425 bool EpilogProfitability = 426 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 427 : isEpilogProfitable(L); 428 429 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 430 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 431 EpilogProfitability, ULO.UnrollRemainder, 432 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 433 PreserveLCSSA, RemainderLoop)) { 434 if (ULO.Force) 435 RuntimeTripCount = false; 436 else { 437 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 438 "generated when assuming runtime trip count\n"); 439 return LoopUnrollResult::Unmodified; 440 } 441 } 442 443 // If we know the trip count, we know the multiple... 444 unsigned BreakoutTrip = 0; 445 if (ULO.TripCount != 0) { 446 BreakoutTrip = ULO.TripCount % ULO.Count; 447 ULO.TripMultiple = 0; 448 } else { 449 // Figure out what multiple to use. 450 BreakoutTrip = ULO.TripMultiple = 451 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 452 } 453 454 using namespace ore; 455 // Report the unrolling decision. 456 if (CompletelyUnroll) { 457 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 458 << " with trip count " << ULO.TripCount << "!\n"); 459 if (ORE) 460 ORE->emit([&]() { 461 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 462 L->getHeader()) 463 << "completely unrolled loop with " 464 << NV("UnrollCount", ULO.TripCount) << " iterations"; 465 }); 466 } else if (ULO.PeelCount) { 467 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 468 << " with iteration count " << ULO.PeelCount << "!\n"); 469 if (ORE) 470 ORE->emit([&]() { 471 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 472 L->getHeader()) 473 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 474 << " iterations"; 475 }); 476 } else { 477 auto DiagBuilder = [&]() { 478 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 479 L->getHeader()); 480 return Diag << "unrolled loop by a factor of " 481 << NV("UnrollCount", ULO.Count); 482 }; 483 484 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 485 << ULO.Count); 486 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 487 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 488 if (ORE) 489 ORE->emit([&]() { 490 return DiagBuilder() << " with a breakout at trip " 491 << NV("BreakoutTrip", BreakoutTrip); 492 }); 493 } else if (ULO.TripMultiple != 1) { 494 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 495 if (ORE) 496 ORE->emit([&]() { 497 return DiagBuilder() 498 << " with " << NV("TripMultiple", ULO.TripMultiple) 499 << " trips per branch"; 500 }); 501 } else if (RuntimeTripCount) { 502 LLVM_DEBUG(dbgs() << " with run-time trip count"); 503 if (ORE) 504 ORE->emit( 505 [&]() { return DiagBuilder() << " with run-time trip count"; }); 506 } 507 LLVM_DEBUG(dbgs() << "!\n"); 508 } 509 510 // We are going to make changes to this loop. SCEV may be keeping cached info 511 // about it, in particular about backedge taken count. The changes we make 512 // are guaranteed to invalidate this information for our loop. It is tempting 513 // to only invalidate the loop being unrolled, but it is incorrect as long as 514 // all exiting branches from all inner loops have impact on the outer loops, 515 // and if something changes inside them then any of outer loops may also 516 // change. When we forget outermost loop, we also forget all contained loops 517 // and this is what we need here. 518 if (SE) { 519 if (ULO.ForgetAllSCEV) 520 SE->forgetAllLoops(); 521 else 522 SE->forgetTopmostLoop(L); 523 } 524 525 if (!LatchIsExiting) 526 ++NumUnrolledNotLatch; 527 Optional<bool> ContinueOnTrue = None; 528 BasicBlock *LoopExit = nullptr; 529 if (ExitingBI) { 530 ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0)); 531 LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue); 532 } 533 534 // For the first iteration of the loop, we should use the precloned values for 535 // PHI nodes. Insert associations now. 536 ValueToValueMapTy LastValueMap; 537 std::vector<PHINode*> OrigPHINode; 538 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 539 OrigPHINode.push_back(cast<PHINode>(I)); 540 } 541 542 std::vector<BasicBlock *> Headers; 543 std::vector<BasicBlock *> ExitingBlocks; 544 std::vector<BasicBlock *> ExitingSucc; 545 std::vector<BasicBlock *> Latches; 546 Headers.push_back(Header); 547 Latches.push_back(LatchBlock); 548 if (ExitingBI) { 549 ExitingBlocks.push_back(ExitingBI->getParent()); 550 ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue))); 551 } 552 553 // The current on-the-fly SSA update requires blocks to be processed in 554 // reverse postorder so that LastValueMap contains the correct value at each 555 // exit. 556 LoopBlocksDFS DFS(L); 557 DFS.perform(LI); 558 559 // Stash the DFS iterators before adding blocks to the loop. 560 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 561 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 562 563 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 564 565 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 566 // might break loop-simplified form for these loops (as they, e.g., would 567 // share the same exit blocks). We'll keep track of loops for which we can 568 // break this so that later we can re-simplify them. 569 SmallSetVector<Loop *, 4> LoopsToSimplify; 570 for (Loop *SubLoop : *L) 571 LoopsToSimplify.insert(SubLoop); 572 573 if (Header->getParent()->isDebugInfoForProfiling()) 574 for (BasicBlock *BB : L->getBlocks()) 575 for (Instruction &I : *BB) 576 if (!isa<DbgInfoIntrinsic>(&I)) 577 if (const DILocation *DIL = I.getDebugLoc()) { 578 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 579 if (NewDIL) 580 I.setDebugLoc(NewDIL.getValue()); 581 else 582 LLVM_DEBUG(dbgs() 583 << "Failed to create new discriminator: " 584 << DIL->getFilename() << " Line: " << DIL->getLine()); 585 } 586 587 // Identify what noalias metadata is inside the loop: if it is inside the 588 // loop, the associated metadata must be cloned for each iteration. 589 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 590 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 591 592 for (unsigned It = 1; It != ULO.Count; ++It) { 593 SmallVector<BasicBlock *, 8> NewBlocks; 594 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 595 NewLoops[L] = L; 596 597 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 598 ValueToValueMapTy VMap; 599 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 600 Header->getParent()->getBasicBlockList().push_back(New); 601 602 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 603 "Header should not be in a sub-loop"); 604 // Tell LI about New. 605 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 606 if (OldLoop) 607 LoopsToSimplify.insert(NewLoops[OldLoop]); 608 609 if (*BB == Header) 610 // Loop over all of the PHI nodes in the block, changing them to use 611 // the incoming values from the previous block. 612 for (PHINode *OrigPHI : OrigPHINode) { 613 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 614 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 615 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 616 if (It > 1 && L->contains(InValI)) 617 InVal = LastValueMap[InValI]; 618 VMap[OrigPHI] = InVal; 619 New->getInstList().erase(NewPHI); 620 } 621 622 // Update our running map of newest clones 623 LastValueMap[*BB] = New; 624 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 625 VI != VE; ++VI) 626 LastValueMap[VI->first] = VI->second; 627 628 // Add phi entries for newly created values to all exit blocks. 629 for (BasicBlock *Succ : successors(*BB)) { 630 if (L->contains(Succ)) 631 continue; 632 for (PHINode &PHI : Succ->phis()) { 633 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 634 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 635 if (It != LastValueMap.end()) 636 Incoming = It->second; 637 PHI.addIncoming(Incoming, New); 638 } 639 } 640 // Keep track of new headers and latches as we create them, so that 641 // we can insert the proper branches later. 642 if (*BB == Header) 643 Headers.push_back(New); 644 if (*BB == LatchBlock) 645 Latches.push_back(New); 646 647 // Keep track of the exiting block and its successor block contained in 648 // the loop for the current iteration. 649 if (ExitingBI) { 650 if (*BB == ExitingBlocks[0]) 651 ExitingBlocks.push_back(New); 652 if (*BB == ExitingSucc[0]) 653 ExitingSucc.push_back(New); 654 } 655 656 NewBlocks.push_back(New); 657 UnrolledLoopBlocks.push_back(New); 658 659 // Update DomTree: since we just copy the loop body, and each copy has a 660 // dedicated entry block (copy of the header block), this header's copy 661 // dominates all copied blocks. That means, dominance relations in the 662 // copied body are the same as in the original body. 663 if (DT) { 664 if (*BB == Header) 665 DT->addNewBlock(New, Latches[It - 1]); 666 else { 667 auto BBDomNode = DT->getNode(*BB); 668 auto BBIDom = BBDomNode->getIDom(); 669 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 670 DT->addNewBlock( 671 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 672 } 673 } 674 } 675 676 // Remap all instructions in the most recent iteration 677 remapInstructionsInBlocks(NewBlocks, LastValueMap); 678 for (BasicBlock *NewBlock : NewBlocks) 679 for (Instruction &I : *NewBlock) 680 if (auto *II = dyn_cast<AssumeInst>(&I)) 681 AC->registerAssumption(II); 682 683 { 684 // Identify what other metadata depends on the cloned version. After 685 // cloning, replace the metadata with the corrected version for both 686 // memory instructions and noalias intrinsics. 687 std::string ext = (Twine("It") + Twine(It)).str(); 688 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 689 Header->getContext(), ext); 690 } 691 } 692 693 // Loop over the PHI nodes in the original block, setting incoming values. 694 for (PHINode *PN : OrigPHINode) { 695 if (CompletelyUnroll) { 696 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 697 Header->getInstList().erase(PN); 698 } else if (ULO.Count > 1) { 699 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 700 // If this value was defined in the loop, take the value defined by the 701 // last iteration of the loop. 702 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 703 if (L->contains(InValI)) 704 InVal = LastValueMap[InVal]; 705 } 706 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 707 PN->addIncoming(InVal, Latches.back()); 708 } 709 } 710 711 auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop, 712 bool NeedConditional, Optional<bool> ContinueOnTrue, 713 bool IsDestLoopExit) { 714 auto *Term = cast<BranchInst>(Src->getTerminator()); 715 if (NeedConditional) { 716 // Update the conditional branch's successor for the following 717 // iteration. 718 assert(ContinueOnTrue.hasValue() && 719 "Expecting valid ContinueOnTrue when NeedConditional is true"); 720 Term->setSuccessor(!(*ContinueOnTrue), Dest); 721 } else { 722 // Remove phi operands at this loop exit 723 if (!IsDestLoopExit) { 724 BasicBlock *BB = Src; 725 for (BasicBlock *Succ : successors(BB)) { 726 // Preserve the incoming value from BB if we are jumping to the block 727 // in the current loop. 728 if (Succ == BlockInLoop) 729 continue; 730 for (PHINode &Phi : Succ->phis()) 731 Phi.removeIncomingValue(BB, false); 732 } 733 } 734 // Replace the conditional branch with an unconditional one. 735 BranchInst::Create(Dest, Term); 736 Term->eraseFromParent(); 737 } 738 }; 739 740 // Connect latches of the unrolled iterations to the headers of the next 741 // iteration. If the latch is also the exiting block, the conditional branch 742 // may have to be preserved. 743 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 744 // The branch destination. 745 unsigned j = (i + 1) % e; 746 BasicBlock *Dest = Headers[j]; 747 bool NeedConditional = LatchIsExiting; 748 749 if (LatchIsExiting) { 750 if (RuntimeTripCount && j != 0) 751 NeedConditional = false; 752 753 // For a complete unroll, make the last iteration end with a branch 754 // to the exit block. 755 if (CompletelyUnroll) { 756 if (j == 0) 757 Dest = LoopExit; 758 // If using trip count upper bound to completely unroll, we need to 759 // keep the conditional branch except the last one because the loop 760 // may exit after any iteration. 761 assert(NeedConditional && 762 "NeedCondition cannot be modified by both complete " 763 "unrolling and runtime unrolling"); 764 NeedConditional = 765 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 766 } else if (j != BreakoutTrip && 767 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 768 // If we know the trip count or a multiple of it, we can safely use an 769 // unconditional branch for some iterations. 770 NeedConditional = false; 771 } 772 } 773 774 setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue, 775 Dest == LoopExit); 776 } 777 778 if (!LatchIsExiting) { 779 // If the latch is not exiting, we may be able to simplify the conditional 780 // branches in the unrolled exiting blocks. 781 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 782 // The branch destination. 783 unsigned j = (i + 1) % e; 784 bool NeedConditional = true; 785 786 if (RuntimeTripCount && j != 0) 787 NeedConditional = false; 788 789 if (CompletelyUnroll) 790 // We cannot drop the conditional branch for the last condition, as we 791 // may have to execute the loop body depending on the condition. 792 NeedConditional = j == 0 || ULO.PreserveCondBr; 793 else if (j != BreakoutTrip && 794 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 795 // If we know the trip count or a multiple of it, we can safely use an 796 // unconditional branch for some iterations. 797 NeedConditional = false; 798 799 // Conditional branches from non-latch exiting block have successors 800 // either in the same loop iteration or outside the loop. The branches are 801 // already correct. 802 if (NeedConditional) 803 continue; 804 setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional, 805 None, false); 806 } 807 808 // When completely unrolling, the last latch becomes unreachable. 809 if (CompletelyUnroll) { 810 BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator()); 811 new UnreachableInst(Term->getContext(), Term); 812 Term->eraseFromParent(); 813 } 814 } 815 816 // Update dominators of blocks we might reach through exits. 817 // Immediate dominator of such block might change, because we add more 818 // routes which can lead to the exit: we can now reach it from the copied 819 // iterations too. 820 if (DT && ULO.Count > 1) { 821 for (auto *BB : OriginalLoopBlocks) { 822 auto *BBDomNode = DT->getNode(BB); 823 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 824 for (auto *ChildDomNode : BBDomNode->children()) { 825 auto *ChildBB = ChildDomNode->getBlock(); 826 if (!L->contains(ChildBB)) 827 ChildrenToUpdate.push_back(ChildBB); 828 } 829 BasicBlock *NewIDom; 830 if (ExitingBI && BB == ExitingBlocks[0]) { 831 // The latch is special because we emit unconditional branches in 832 // some cases where the original loop contained a conditional branch. 833 // Since the latch is always at the bottom of the loop, if the latch 834 // dominated an exit before unrolling, the new dominator of that exit 835 // must also be a latch. Specifically, the dominator is the first 836 // latch which ends in a conditional branch, or the last latch if 837 // there is no such latch. 838 // For loops exiting from non latch exiting block, we limit the 839 // branch simplification to single exiting block loops. 840 NewIDom = ExitingBlocks.back(); 841 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 842 Instruction *Term = ExitingBlocks[i]->getTerminator(); 843 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 844 NewIDom = 845 DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]); 846 break; 847 } 848 } 849 } else { 850 // The new idom of the block will be the nearest common dominator 851 // of all copies of the previous idom. This is equivalent to the 852 // nearest common dominator of the previous idom and the first latch, 853 // which dominates all copies of the previous idom. 854 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 855 } 856 for (auto *ChildBB : ChildrenToUpdate) 857 DT->changeImmediateDominator(ChildBB, NewIDom); 858 } 859 } 860 861 assert(!DT || !UnrollVerifyDomtree || 862 DT->verify(DominatorTree::VerificationLevel::Fast)); 863 864 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 865 // Merge adjacent basic blocks, if possible. 866 for (BasicBlock *Latch : Latches) { 867 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 868 assert((Term || 869 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 870 "Need a branch as terminator, except when fully unrolling with " 871 "unconditional latch"); 872 if (Term && Term->isUnconditional()) { 873 BasicBlock *Dest = Term->getSuccessor(0); 874 BasicBlock *Fold = Dest->getUniquePredecessor(); 875 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 876 // Dest has been folded into Fold. Update our worklists accordingly. 877 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 878 llvm::erase_value(UnrolledLoopBlocks, Dest); 879 } 880 } 881 } 882 // Apply updates to the DomTree. 883 DT = &DTU.getDomTree(); 884 885 // At this point, the code is well formed. We now simplify the unrolled loop, 886 // doing constant propagation and dead code elimination as we go. 887 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 888 SE, DT, AC, TTI); 889 890 NumCompletelyUnrolled += CompletelyUnroll; 891 ++NumUnrolled; 892 893 Loop *OuterL = L->getParentLoop(); 894 // Update LoopInfo if the loop is completely removed. 895 if (CompletelyUnroll) 896 LI->erase(L); 897 898 // After complete unrolling most of the blocks should be contained in OuterL. 899 // However, some of them might happen to be out of OuterL (e.g. if they 900 // precede a loop exit). In this case we might need to insert PHI nodes in 901 // order to preserve LCSSA form. 902 // We don't need to check this if we already know that we need to fix LCSSA 903 // form. 904 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 905 // it should be possible to fix it in-place. 906 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 907 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 908 909 // If we have a pass and a DominatorTree we should re-simplify impacted loops 910 // to ensure subsequent analyses can rely on this form. We want to simplify 911 // at least one layer outside of the loop that was unrolled so that any 912 // changes to the parent loop exposed by the unrolling are considered. 913 if (DT) { 914 if (OuterL) { 915 // OuterL includes all loops for which we can break loop-simplify, so 916 // it's sufficient to simplify only it (it'll recursively simplify inner 917 // loops too). 918 if (NeedToFixLCSSA) { 919 // LCSSA must be performed on the outermost affected loop. The unrolled 920 // loop's last loop latch is guaranteed to be in the outermost loop 921 // after LoopInfo's been updated by LoopInfo::erase. 922 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 923 Loop *FixLCSSALoop = OuterL; 924 if (!FixLCSSALoop->contains(LatchLoop)) 925 while (FixLCSSALoop->getParentLoop() != LatchLoop) 926 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 927 928 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 929 } else if (PreserveLCSSA) { 930 assert(OuterL->isLCSSAForm(*DT) && 931 "Loops should be in LCSSA form after loop-unroll."); 932 } 933 934 // TODO: That potentially might be compile-time expensive. We should try 935 // to fix the loop-simplified form incrementally. 936 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 937 } else { 938 // Simplify loops for which we might've broken loop-simplify form. 939 for (Loop *SubLoop : LoopsToSimplify) 940 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 941 } 942 } 943 944 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 945 : LoopUnrollResult::PartiallyUnrolled; 946 } 947 948 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 949 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 950 /// such metadata node exists, then nullptr is returned. 951 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 952 // First operand should refer to the loop id itself. 953 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 954 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 955 956 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 957 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 958 if (!MD) 959 continue; 960 961 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 962 if (!S) 963 continue; 964 965 if (Name.equals(S->getString())) 966 return MD; 967 } 968 return nullptr; 969 } 970