1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 // TODO: Should these be here or in LoopUnroll? 44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 46 47 /// RemapInstruction - Convert the instruction operands from referencing the 48 /// current values into those specified by VMap. 49 static inline void RemapInstruction(Instruction *I, 50 ValueToValueMapTy &VMap) { 51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 52 Value *Op = I->getOperand(op); 53 ValueToValueMapTy::iterator It = VMap.find(Op); 54 if (It != VMap.end()) 55 I->setOperand(op, It->second); 56 } 57 58 if (PHINode *PN = dyn_cast<PHINode>(I)) { 59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 61 if (It != VMap.end()) 62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 63 } 64 } 65 } 66 67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 68 /// only has one predecessor, and that predecessor only has one successor. 69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 70 /// successful references to the containing loop must be removed from 71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 72 /// references to the eliminated BB. The argument ForgottenLoops contains a set 73 /// of loops that have already been forgotten to prevent redundant, expensive 74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 75 static BasicBlock * 76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM, 77 SmallPtrSetImpl<Loop *> &ForgottenLoops) { 78 // Merge basic blocks into their predecessor if there is only one distinct 79 // pred, and if there is only one distinct successor of the predecessor, and 80 // if there are no PHI nodes. 81 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 82 if (!OnlyPred) return nullptr; 83 84 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 85 return nullptr; 86 87 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 88 89 // Resolve any PHI nodes at the start of the block. They are all 90 // guaranteed to have exactly one entry if they exist, unless there are 91 // multiple duplicate (but guaranteed to be equal) entries for the 92 // incoming edges. This occurs when there are multiple edges from 93 // OnlyPred to OnlySucc. 94 FoldSingleEntryPHINodes(BB); 95 96 // Delete the unconditional branch from the predecessor... 97 OnlyPred->getInstList().pop_back(); 98 99 // Make all PHI nodes that referred to BB now refer to Pred as their 100 // source... 101 BB->replaceAllUsesWith(OnlyPred); 102 103 // Move all definitions in the successor to the predecessor... 104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 105 106 // OldName will be valid until erased. 107 StringRef OldName = BB->getName(); 108 109 // Erase basic block from the function... 110 111 // ScalarEvolution holds references to loop exit blocks. 112 if (LPM) { 113 if (auto *SEWP = 114 LPM->getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) { 115 if (Loop *L = LI->getLoopFor(BB)) { 116 if (ForgottenLoops.insert(L).second) 117 SEWP->getSE().forgetLoop(L); 118 } 119 } 120 } 121 LI->removeBlock(BB); 122 123 // Inherit predecessor's name if it exists... 124 if (!OldName.empty() && !OnlyPred->hasName()) 125 OnlyPred->setName(OldName); 126 127 BB->eraseFromParent(); 128 129 return OnlyPred; 130 } 131 132 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 133 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 134 /// can only fail when the loop's latch block is not terminated by a conditional 135 /// branch instruction. However, if the trip count (and multiple) are not known, 136 /// loop unrolling will mostly produce more code that is no faster. 137 /// 138 /// TripCount is generally defined as the number of times the loop header 139 /// executes. UnrollLoop relaxes the definition to permit early exits: here 140 /// TripCount is the iteration on which control exits LatchBlock if no early 141 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 142 /// terminates LatchBlock in order to remove unnecesssary instances of the 143 /// test. In other words, control may exit the loop prior to TripCount 144 /// iterations via an early branch, but control may not exit the loop from the 145 /// LatchBlock's terminator prior to TripCount iterations. 146 /// 147 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 148 /// execute without exiting the loop. 149 /// 150 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 151 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 152 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 153 /// iterations before branching into the unrolled loop. UnrollLoop will not 154 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 155 /// AllowExpensiveTripCount is false. 156 /// 157 /// The LoopInfo Analysis that is passed will be kept consistent. 158 /// 159 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 160 /// removed from the LoopPassManager as well. LPM can also be NULL. 161 /// 162 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are 163 /// available from the Pass it must also preserve those analyses. 164 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 165 bool AllowRuntime, bool AllowExpensiveTripCount, 166 unsigned TripMultiple, LoopInfo *LI, Pass *PP, 167 LPPassManager *LPM, AssumptionCache *AC) { 168 BasicBlock *Preheader = L->getLoopPreheader(); 169 if (!Preheader) { 170 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 171 return false; 172 } 173 174 BasicBlock *LatchBlock = L->getLoopLatch(); 175 if (!LatchBlock) { 176 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 177 return false; 178 } 179 180 // Loops with indirectbr cannot be cloned. 181 if (!L->isSafeToClone()) { 182 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 183 return false; 184 } 185 186 BasicBlock *Header = L->getHeader(); 187 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 188 189 if (!BI || BI->isUnconditional()) { 190 // The loop-rotate pass can be helpful to avoid this in many cases. 191 DEBUG(dbgs() << 192 " Can't unroll; loop not terminated by a conditional branch.\n"); 193 return false; 194 } 195 196 if (Header->hasAddressTaken()) { 197 // The loop-rotate pass can be helpful to avoid this in many cases. 198 DEBUG(dbgs() << 199 " Won't unroll loop: address of header block is taken.\n"); 200 return false; 201 } 202 203 if (TripCount != 0) 204 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 205 if (TripMultiple != 1) 206 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 207 208 // Effectively "DCE" unrolled iterations that are beyond the tripcount 209 // and will never be executed. 210 if (TripCount != 0 && Count > TripCount) 211 Count = TripCount; 212 213 // Don't enter the unroll code if there is nothing to do. This way we don't 214 // need to support "partial unrolling by 1". 215 if (TripCount == 0 && Count < 2) 216 return false; 217 218 assert(Count > 0); 219 assert(TripMultiple > 0); 220 assert(TripCount == 0 || TripCount % TripMultiple == 0); 221 222 // Are we eliminating the loop control altogether? 223 bool CompletelyUnroll = Count == TripCount; 224 225 // We assume a run-time trip count if the compiler cannot 226 // figure out the loop trip count and the unroll-runtime 227 // flag is specified. 228 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 229 230 if (RuntimeTripCount && 231 !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, LPM)) 232 return false; 233 234 // Notify ScalarEvolution that the loop will be substantially changed, 235 // if not outright eliminated. 236 auto *SEWP = 237 PP ? PP->getAnalysisIfAvailable<ScalarEvolutionWrapperPass>() : nullptr; 238 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 239 if (SE) 240 SE->forgetLoop(L); 241 242 // If we know the trip count, we know the multiple... 243 unsigned BreakoutTrip = 0; 244 if (TripCount != 0) { 245 BreakoutTrip = TripCount % Count; 246 TripMultiple = 0; 247 } else { 248 // Figure out what multiple to use. 249 BreakoutTrip = TripMultiple = 250 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 251 } 252 253 // Report the unrolling decision. 254 DebugLoc LoopLoc = L->getStartLoc(); 255 Function *F = Header->getParent(); 256 LLVMContext &Ctx = F->getContext(); 257 258 if (CompletelyUnroll) { 259 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 260 << " with trip count " << TripCount << "!\n"); 261 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 262 Twine("completely unrolled loop with ") + 263 Twine(TripCount) + " iterations"); 264 } else { 265 auto EmitDiag = [&](const Twine &T) { 266 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 267 "unrolled loop by a factor of " + Twine(Count) + 268 T); 269 }; 270 271 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 272 << " by " << Count); 273 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 274 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 275 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 276 } else if (TripMultiple != 1) { 277 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 278 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 279 } else if (RuntimeTripCount) { 280 DEBUG(dbgs() << " with run-time trip count"); 281 EmitDiag(" with run-time trip count"); 282 } 283 DEBUG(dbgs() << "!\n"); 284 } 285 286 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 287 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 288 289 // For the first iteration of the loop, we should use the precloned values for 290 // PHI nodes. Insert associations now. 291 ValueToValueMapTy LastValueMap; 292 std::vector<PHINode*> OrigPHINode; 293 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 294 OrigPHINode.push_back(cast<PHINode>(I)); 295 } 296 297 std::vector<BasicBlock*> Headers; 298 std::vector<BasicBlock*> Latches; 299 Headers.push_back(Header); 300 Latches.push_back(LatchBlock); 301 302 // The current on-the-fly SSA update requires blocks to be processed in 303 // reverse postorder so that LastValueMap contains the correct value at each 304 // exit. 305 LoopBlocksDFS DFS(L); 306 DFS.perform(LI); 307 308 // Stash the DFS iterators before adding blocks to the loop. 309 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 310 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 311 312 for (unsigned It = 1; It != Count; ++It) { 313 std::vector<BasicBlock*> NewBlocks; 314 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 315 NewLoops[L] = L; 316 317 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 318 ValueToValueMapTy VMap; 319 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 320 Header->getParent()->getBasicBlockList().push_back(New); 321 322 // Tell LI about New. 323 if (*BB == Header) { 324 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 325 L->addBasicBlockToLoop(New, *LI); 326 } else { 327 // Figure out which loop New is in. 328 const Loop *OldLoop = LI->getLoopFor(*BB); 329 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 330 331 Loop *&NewLoop = NewLoops[OldLoop]; 332 if (!NewLoop) { 333 // Found a new sub-loop. 334 assert(*BB == OldLoop->getHeader() && 335 "Header should be first in RPO"); 336 337 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 338 assert(NewLoopParent && 339 "Expected parent loop before sub-loop in RPO"); 340 NewLoop = new Loop; 341 NewLoopParent->addChildLoop(NewLoop); 342 343 // Forget the old loop, since its inputs may have changed. 344 if (SE) 345 SE->forgetLoop(OldLoop); 346 } 347 NewLoop->addBasicBlockToLoop(New, *LI); 348 } 349 350 if (*BB == Header) 351 // Loop over all of the PHI nodes in the block, changing them to use 352 // the incoming values from the previous block. 353 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 354 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 355 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 356 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 357 if (It > 1 && L->contains(InValI)) 358 InVal = LastValueMap[InValI]; 359 VMap[OrigPHINode[i]] = InVal; 360 New->getInstList().erase(NewPHI); 361 } 362 363 // Update our running map of newest clones 364 LastValueMap[*BB] = New; 365 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 366 VI != VE; ++VI) 367 LastValueMap[VI->first] = VI->second; 368 369 // Add phi entries for newly created values to all exit blocks. 370 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 371 SI != SE; ++SI) { 372 if (L->contains(*SI)) 373 continue; 374 for (BasicBlock::iterator BBI = (*SI)->begin(); 375 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 376 Value *Incoming = phi->getIncomingValueForBlock(*BB); 377 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 378 if (It != LastValueMap.end()) 379 Incoming = It->second; 380 phi->addIncoming(Incoming, New); 381 } 382 } 383 // Keep track of new headers and latches as we create them, so that 384 // we can insert the proper branches later. 385 if (*BB == Header) 386 Headers.push_back(New); 387 if (*BB == LatchBlock) 388 Latches.push_back(New); 389 390 NewBlocks.push_back(New); 391 } 392 393 // Remap all instructions in the most recent iteration 394 for (unsigned i = 0; i < NewBlocks.size(); ++i) 395 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 396 E = NewBlocks[i]->end(); I != E; ++I) 397 ::RemapInstruction(I, LastValueMap); 398 } 399 400 // Loop over the PHI nodes in the original block, setting incoming values. 401 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 402 PHINode *PN = OrigPHINode[i]; 403 if (CompletelyUnroll) { 404 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 405 Header->getInstList().erase(PN); 406 } 407 else if (Count > 1) { 408 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 409 // If this value was defined in the loop, take the value defined by the 410 // last iteration of the loop. 411 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 412 if (L->contains(InValI)) 413 InVal = LastValueMap[InVal]; 414 } 415 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 416 PN->addIncoming(InVal, Latches.back()); 417 } 418 } 419 420 // Now that all the basic blocks for the unrolled iterations are in place, 421 // set up the branches to connect them. 422 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 423 // The original branch was replicated in each unrolled iteration. 424 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 425 426 // The branch destination. 427 unsigned j = (i + 1) % e; 428 BasicBlock *Dest = Headers[j]; 429 bool NeedConditional = true; 430 431 if (RuntimeTripCount && j != 0) { 432 NeedConditional = false; 433 } 434 435 // For a complete unroll, make the last iteration end with a branch 436 // to the exit block. 437 if (CompletelyUnroll) { 438 if (j == 0) 439 Dest = LoopExit; 440 NeedConditional = false; 441 } 442 443 // If we know the trip count or a multiple of it, we can safely use an 444 // unconditional branch for some iterations. 445 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 446 NeedConditional = false; 447 } 448 449 if (NeedConditional) { 450 // Update the conditional branch's successor for the following 451 // iteration. 452 Term->setSuccessor(!ContinueOnTrue, Dest); 453 } else { 454 // Remove phi operands at this loop exit 455 if (Dest != LoopExit) { 456 BasicBlock *BB = Latches[i]; 457 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 458 SI != SE; ++SI) { 459 if (*SI == Headers[i]) 460 continue; 461 for (BasicBlock::iterator BBI = (*SI)->begin(); 462 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 463 Phi->removeIncomingValue(BB, false); 464 } 465 } 466 } 467 // Replace the conditional branch with an unconditional one. 468 BranchInst::Create(Dest, Term); 469 Term->eraseFromParent(); 470 } 471 } 472 473 // Merge adjacent basic blocks, if possible. 474 SmallPtrSet<Loop *, 4> ForgottenLoops; 475 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 476 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 477 if (Term->isUnconditional()) { 478 BasicBlock *Dest = Term->getSuccessor(0); 479 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM, 480 ForgottenLoops)) 481 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 482 } 483 } 484 485 // FIXME: We could register any cloned assumptions instead of clearing the 486 // whole function's cache. 487 AC->clear(); 488 489 DominatorTree *DT = nullptr; 490 if (PP) { 491 // FIXME: Reconstruct dom info, because it is not preserved properly. 492 // Incrementally updating domtree after loop unrolling would be easy. 493 if (DominatorTreeWrapperPass *DTWP = 494 PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 495 DT = &DTWP->getDomTree(); 496 DT->recalculate(*L->getHeader()->getParent()); 497 } 498 499 // Simplify any new induction variables in the partially unrolled loop. 500 if (SE && !CompletelyUnroll) { 501 SmallVector<WeakVH, 16> DeadInsts; 502 simplifyLoopIVs(L, SE, LPM, DeadInsts); 503 504 // Aggressively clean up dead instructions that simplifyLoopIVs already 505 // identified. Any remaining should be cleaned up below. 506 while (!DeadInsts.empty()) 507 if (Instruction *Inst = 508 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 509 RecursivelyDeleteTriviallyDeadInstructions(Inst); 510 } 511 } 512 // At this point, the code is well formed. We now do a quick sweep over the 513 // inserted code, doing constant propagation and dead code elimination as we 514 // go. 515 const DataLayout &DL = Header->getModule()->getDataLayout(); 516 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 517 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 518 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 519 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 520 Instruction *Inst = I++; 521 522 if (isInstructionTriviallyDead(Inst)) 523 (*BB)->getInstList().erase(Inst); 524 else if (Value *V = SimplifyInstruction(Inst, DL)) 525 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 526 Inst->replaceAllUsesWith(V); 527 (*BB)->getInstList().erase(Inst); 528 } 529 } 530 531 NumCompletelyUnrolled += CompletelyUnroll; 532 ++NumUnrolled; 533 534 Loop *OuterL = L->getParentLoop(); 535 // Remove the loop from the LoopPassManager if it's completely removed. 536 if (CompletelyUnroll && LPM != nullptr) 537 LPM->deleteLoopFromQueue(L); 538 539 // If we have a pass and a DominatorTree we should re-simplify impacted loops 540 // to ensure subsequent analyses can rely on this form. We want to simplify 541 // at least one layer outside of the loop that was unrolled so that any 542 // changes to the parent loop exposed by the unrolling are considered. 543 if (PP && DT) { 544 if (!OuterL && !CompletelyUnroll) 545 OuterL = L; 546 if (OuterL) { 547 simplifyLoop(OuterL, DT, LI, PP, SE, AC); 548 549 // LCSSA must be performed on the outermost affected loop. The unrolled 550 // loop's last loop latch is guaranteed to be in the outermost loop after 551 // deleteLoopFromQueue updates LoopInfo. 552 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 553 if (!OuterL->contains(LatchLoop)) 554 while (OuterL->getParentLoop() != LatchLoop) 555 OuterL = OuterL->getParentLoop(); 556 557 formLCSSARecursively(*OuterL, *DT, LI, SE); 558 } 559 } 560 561 return true; 562 } 563 564 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 565 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 566 /// such metadata node exists, then nullptr is returned. 567 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 568 // First operand should refer to the loop id itself. 569 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 570 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 571 572 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 573 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 574 if (!MD) 575 continue; 576 577 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 578 if (!S) 579 continue; 580 581 if (Name.equals(S->getString())) 582 return MD; 583 } 584 return nullptr; 585 } 586