1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopIterator.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopSimplify.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 static cl::opt<bool> 55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 56 cl::desc("Verify domtree after unrolling"), 57 #ifdef NDEBUG 58 cl::init(false) 59 #else 60 cl::init(true) 61 #endif 62 ); 63 64 /// Convert the instruction operands from referencing the current values into 65 /// those specified by VMap. 66 static inline void remapInstruction(Instruction *I, 67 ValueToValueMapTy &VMap) { 68 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 69 Value *Op = I->getOperand(op); 70 71 // Unwrap arguments of dbg.value intrinsics. 72 bool Wrapped = false; 73 if (auto *V = dyn_cast<MetadataAsValue>(Op)) 74 if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) { 75 Op = Unwrapped->getValue(); 76 Wrapped = true; 77 } 78 79 auto wrap = [&](Value *V) { 80 auto &C = I->getContext(); 81 return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V; 82 }; 83 84 ValueToValueMapTy::iterator It = VMap.find(Op); 85 if (It != VMap.end()) 86 I->setOperand(op, wrap(It->second)); 87 } 88 89 if (PHINode *PN = dyn_cast<PHINode>(I)) { 90 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 91 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 92 if (It != VMap.end()) 93 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 94 } 95 } 96 } 97 98 /// Folds a basic block into its predecessor if it only has one predecessor, and 99 /// that predecessor only has one successor. 100 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 101 /// successful references to the containing loop must be removed from 102 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 103 /// references to the eliminated BB. The argument ForgottenLoops contains a set 104 /// of loops that have already been forgotten to prevent redundant, expensive 105 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 106 static BasicBlock * 107 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 108 SmallPtrSetImpl<Loop *> &ForgottenLoops, 109 DominatorTree *DT) { 110 // Merge basic blocks into their predecessor if there is only one distinct 111 // pred, and if there is only one distinct successor of the predecessor, and 112 // if there are no PHI nodes. 113 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 114 if (!OnlyPred) return nullptr; 115 116 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 117 return nullptr; 118 119 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 120 121 // Resolve any PHI nodes at the start of the block. They are all 122 // guaranteed to have exactly one entry if they exist, unless there are 123 // multiple duplicate (but guaranteed to be equal) entries for the 124 // incoming edges. This occurs when there are multiple edges from 125 // OnlyPred to OnlySucc. 126 FoldSingleEntryPHINodes(BB); 127 128 // Delete the unconditional branch from the predecessor... 129 OnlyPred->getInstList().pop_back(); 130 131 // Make all PHI nodes that referred to BB now refer to Pred as their 132 // source... 133 BB->replaceAllUsesWith(OnlyPred); 134 135 // Move all definitions in the successor to the predecessor... 136 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 137 138 // OldName will be valid until erased. 139 StringRef OldName = BB->getName(); 140 141 // Erase the old block and update dominator info. 142 if (DT) 143 if (DomTreeNode *DTN = DT->getNode(BB)) { 144 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 145 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 146 for (auto *DI : Children) 147 DT->changeImmediateDominator(DI, PredDTN); 148 149 DT->eraseNode(BB); 150 } 151 152 // ScalarEvolution holds references to loop exit blocks. 153 if (SE) { 154 if (Loop *L = LI->getLoopFor(BB)) { 155 if (ForgottenLoops.insert(L).second) 156 SE->forgetLoop(L); 157 } 158 } 159 LI->removeBlock(BB); 160 161 // Inherit predecessor's name if it exists... 162 if (!OldName.empty() && !OnlyPred->hasName()) 163 OnlyPred->setName(OldName); 164 165 BB->eraseFromParent(); 166 167 return OnlyPred; 168 } 169 170 /// Check if unrolling created a situation where we need to insert phi nodes to 171 /// preserve LCSSA form. 172 /// \param Blocks is a vector of basic blocks representing unrolled loop. 173 /// \param L is the outer loop. 174 /// It's possible that some of the blocks are in L, and some are not. In this 175 /// case, if there is a use is outside L, and definition is inside L, we need to 176 /// insert a phi-node, otherwise LCSSA will be broken. 177 /// The function is just a helper function for llvm::UnrollLoop that returns 178 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 179 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 180 LoopInfo *LI) { 181 for (BasicBlock *BB : Blocks) { 182 if (LI->getLoopFor(BB) == L) 183 continue; 184 for (Instruction &I : *BB) { 185 for (Use &U : I.operands()) { 186 if (auto Def = dyn_cast<Instruction>(U)) { 187 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 188 if (!DefLoop) 189 continue; 190 if (DefLoop->contains(L)) 191 return true; 192 } 193 } 194 } 195 } 196 return false; 197 } 198 199 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 200 /// and adds a mapping from the original loop to the new loop to NewLoops. 201 /// Returns nullptr if no new loop was created and a pointer to the 202 /// original loop OriginalBB was part of otherwise. 203 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 204 BasicBlock *ClonedBB, LoopInfo *LI, 205 NewLoopsMap &NewLoops) { 206 // Figure out which loop New is in. 207 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 208 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 209 210 Loop *&NewLoop = NewLoops[OldLoop]; 211 if (!NewLoop) { 212 // Found a new sub-loop. 213 assert(OriginalBB == OldLoop->getHeader() && 214 "Header should be first in RPO"); 215 216 NewLoop = LI->AllocateLoop(); 217 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 218 219 if (NewLoopParent) 220 NewLoopParent->addChildLoop(NewLoop); 221 else 222 LI->addTopLevelLoop(NewLoop); 223 224 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 225 return OldLoop; 226 } else { 227 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 228 return nullptr; 229 } 230 } 231 232 /// The function chooses which type of unroll (epilog or prolog) is more 233 /// profitabale. 234 /// Epilog unroll is more profitable when there is PHI that starts from 235 /// constant. In this case epilog will leave PHI start from constant, 236 /// but prolog will convert it to non-constant. 237 /// 238 /// loop: 239 /// PN = PHI [I, Latch], [CI, PreHeader] 240 /// I = foo(PN) 241 /// ... 242 /// 243 /// Epilog unroll case. 244 /// loop: 245 /// PN = PHI [I2, Latch], [CI, PreHeader] 246 /// I1 = foo(PN) 247 /// I2 = foo(I1) 248 /// ... 249 /// Prolog unroll case. 250 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 251 /// loop: 252 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 253 /// I1 = foo(PN) 254 /// I2 = foo(I1) 255 /// ... 256 /// 257 static bool isEpilogProfitable(Loop *L) { 258 BasicBlock *PreHeader = L->getLoopPreheader(); 259 BasicBlock *Header = L->getHeader(); 260 assert(PreHeader && Header); 261 for (const PHINode &PN : Header->phis()) { 262 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 263 return true; 264 } 265 return false; 266 } 267 268 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 269 /// can only fail when the loop's latch block is not terminated by a conditional 270 /// branch instruction. However, if the trip count (and multiple) are not known, 271 /// loop unrolling will mostly produce more code that is no faster. 272 /// 273 /// TripCount is the upper bound of the iteration on which control exits 274 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 275 /// via an early branch in other loop block or via LatchBlock terminator. This 276 /// is relaxed from the general definition of trip count which is the number of 277 /// times the loop header executes. Note that UnrollLoop assumes that the loop 278 /// counter test is in LatchBlock in order to remove unnecesssary instances of 279 /// the test. If control can exit the loop from the LatchBlock's terminator 280 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 281 /// 282 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 283 /// needs to be preserved. It is needed when we use trip count upper bound to 284 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 285 /// conditional branch needs to be preserved. 286 /// 287 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 288 /// execute without exiting the loop. 289 /// 290 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 291 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 292 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 293 /// iterations before branching into the unrolled loop. UnrollLoop will not 294 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 295 /// AllowExpensiveTripCount is false. 296 /// 297 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 298 /// number of iterations we want to peel off. 299 /// 300 /// The LoopInfo Analysis that is passed will be kept consistent. 301 /// 302 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 303 /// DominatorTree if they are non-null. 304 LoopUnrollResult llvm::UnrollLoop( 305 Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime, 306 bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst, 307 unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder, 308 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 309 OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) { 310 311 BasicBlock *Preheader = L->getLoopPreheader(); 312 if (!Preheader) { 313 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 314 return LoopUnrollResult::Unmodified; 315 } 316 317 BasicBlock *LatchBlock = L->getLoopLatch(); 318 if (!LatchBlock) { 319 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 320 return LoopUnrollResult::Unmodified; 321 } 322 323 // Loops with indirectbr cannot be cloned. 324 if (!L->isSafeToClone()) { 325 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 326 return LoopUnrollResult::Unmodified; 327 } 328 329 // The current loop unroll pass can only unroll loops with a single latch 330 // that's a conditional branch exiting the loop. 331 // FIXME: The implementation can be extended to work with more complicated 332 // cases, e.g. loops with multiple latches. 333 BasicBlock *Header = L->getHeader(); 334 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 335 336 if (!BI || BI->isUnconditional()) { 337 // The loop-rotate pass can be helpful to avoid this in many cases. 338 DEBUG(dbgs() << 339 " Can't unroll; loop not terminated by a conditional branch.\n"); 340 return LoopUnrollResult::Unmodified; 341 } 342 343 auto CheckSuccessors = [&](unsigned S1, unsigned S2) { 344 return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2)); 345 }; 346 347 if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) { 348 DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch" 349 " exiting the loop can be unrolled\n"); 350 return LoopUnrollResult::Unmodified; 351 } 352 353 if (Header->hasAddressTaken()) { 354 // The loop-rotate pass can be helpful to avoid this in many cases. 355 DEBUG(dbgs() << 356 " Won't unroll loop: address of header block is taken.\n"); 357 return LoopUnrollResult::Unmodified; 358 } 359 360 if (TripCount != 0) 361 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 362 if (TripMultiple != 1) 363 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 364 365 // Effectively "DCE" unrolled iterations that are beyond the tripcount 366 // and will never be executed. 367 if (TripCount != 0 && Count > TripCount) 368 Count = TripCount; 369 370 // Don't enter the unroll code if there is nothing to do. 371 if (TripCount == 0 && Count < 2 && PeelCount == 0) { 372 DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 373 return LoopUnrollResult::Unmodified; 374 } 375 376 assert(Count > 0); 377 assert(TripMultiple > 0); 378 assert(TripCount == 0 || TripCount % TripMultiple == 0); 379 380 // Are we eliminating the loop control altogether? 381 bool CompletelyUnroll = Count == TripCount; 382 SmallVector<BasicBlock *, 4> ExitBlocks; 383 L->getExitBlocks(ExitBlocks); 384 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 385 386 // Go through all exits of L and see if there are any phi-nodes there. We just 387 // conservatively assume that they're inserted to preserve LCSSA form, which 388 // means that complete unrolling might break this form. We need to either fix 389 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 390 // now we just recompute LCSSA for the outer loop, but it should be possible 391 // to fix it in-place. 392 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 393 any_of(ExitBlocks, [](const BasicBlock *BB) { 394 return isa<PHINode>(BB->begin()); 395 }); 396 397 // We assume a run-time trip count if the compiler cannot 398 // figure out the loop trip count and the unroll-runtime 399 // flag is specified. 400 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 401 402 assert((!RuntimeTripCount || !PeelCount) && 403 "Did not expect runtime trip-count unrolling " 404 "and peeling for the same loop"); 405 406 if (PeelCount) { 407 bool Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA); 408 409 // Successful peeling may result in a change in the loop preheader/trip 410 // counts. If we later unroll the loop, we want these to be updated. 411 if (Peeled) { 412 BasicBlock *ExitingBlock = L->getExitingBlock(); 413 assert(ExitingBlock && "Loop without exiting block?"); 414 Preheader = L->getLoopPreheader(); 415 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 416 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 417 } 418 } 419 420 // Loops containing convergent instructions must have a count that divides 421 // their TripMultiple. 422 DEBUG( 423 { 424 bool HasConvergent = false; 425 for (auto &BB : L->blocks()) 426 for (auto &I : *BB) 427 if (auto CS = CallSite(&I)) 428 HasConvergent |= CS.isConvergent(); 429 assert((!HasConvergent || TripMultiple % Count == 0) && 430 "Unroll count must divide trip multiple if loop contains a " 431 "convergent operation."); 432 }); 433 434 bool EpilogProfitability = 435 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 436 : isEpilogProfitable(L); 437 438 if (RuntimeTripCount && TripMultiple % Count != 0 && 439 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 440 EpilogProfitability, UnrollRemainder, LI, SE, 441 DT, AC, PreserveLCSSA)) { 442 if (Force) 443 RuntimeTripCount = false; 444 else { 445 DEBUG( 446 dbgs() << "Wont unroll; remainder loop could not be generated" 447 "when assuming runtime trip count\n"); 448 return LoopUnrollResult::Unmodified; 449 } 450 } 451 452 // Notify ScalarEvolution that the loop will be substantially changed, 453 // if not outright eliminated. 454 if (SE) 455 SE->forgetLoop(L); 456 457 // If we know the trip count, we know the multiple... 458 unsigned BreakoutTrip = 0; 459 if (TripCount != 0) { 460 BreakoutTrip = TripCount % Count; 461 TripMultiple = 0; 462 } else { 463 // Figure out what multiple to use. 464 BreakoutTrip = TripMultiple = 465 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 466 } 467 468 using namespace ore; 469 // Report the unrolling decision. 470 if (CompletelyUnroll) { 471 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 472 << " with trip count " << TripCount << "!\n"); 473 if (ORE) 474 ORE->emit([&]() { 475 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 476 L->getHeader()) 477 << "completely unrolled loop with " 478 << NV("UnrollCount", TripCount) << " iterations"; 479 }); 480 } else if (PeelCount) { 481 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 482 << " with iteration count " << PeelCount << "!\n"); 483 if (ORE) 484 ORE->emit([&]() { 485 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 486 L->getHeader()) 487 << " peeled loop by " << NV("PeelCount", PeelCount) 488 << " iterations"; 489 }); 490 } else { 491 auto DiagBuilder = [&]() { 492 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 493 L->getHeader()); 494 return Diag << "unrolled loop by a factor of " 495 << NV("UnrollCount", Count); 496 }; 497 498 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 499 << " by " << Count); 500 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 501 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 502 if (ORE) 503 ORE->emit([&]() { 504 return DiagBuilder() << " with a breakout at trip " 505 << NV("BreakoutTrip", BreakoutTrip); 506 }); 507 } else if (TripMultiple != 1) { 508 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 509 if (ORE) 510 ORE->emit([&]() { 511 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) 512 << " trips per branch"; 513 }); 514 } else if (RuntimeTripCount) { 515 DEBUG(dbgs() << " with run-time trip count"); 516 if (ORE) 517 ORE->emit( 518 [&]() { return DiagBuilder() << " with run-time trip count"; }); 519 } 520 DEBUG(dbgs() << "!\n"); 521 } 522 523 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 524 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 525 526 // For the first iteration of the loop, we should use the precloned values for 527 // PHI nodes. Insert associations now. 528 ValueToValueMapTy LastValueMap; 529 std::vector<PHINode*> OrigPHINode; 530 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 531 OrigPHINode.push_back(cast<PHINode>(I)); 532 } 533 534 std::vector<BasicBlock*> Headers; 535 std::vector<BasicBlock*> Latches; 536 Headers.push_back(Header); 537 Latches.push_back(LatchBlock); 538 539 // The current on-the-fly SSA update requires blocks to be processed in 540 // reverse postorder so that LastValueMap contains the correct value at each 541 // exit. 542 LoopBlocksDFS DFS(L); 543 DFS.perform(LI); 544 545 // Stash the DFS iterators before adding blocks to the loop. 546 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 547 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 548 549 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 550 551 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 552 // might break loop-simplified form for these loops (as they, e.g., would 553 // share the same exit blocks). We'll keep track of loops for which we can 554 // break this so that later we can re-simplify them. 555 SmallSetVector<Loop *, 4> LoopsToSimplify; 556 for (Loop *SubLoop : *L) 557 LoopsToSimplify.insert(SubLoop); 558 559 if (Header->getParent()->isDebugInfoForProfiling()) 560 for (BasicBlock *BB : L->getBlocks()) 561 for (Instruction &I : *BB) 562 if (!isa<DbgInfoIntrinsic>(&I)) 563 if (const DILocation *DIL = I.getDebugLoc()) 564 I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count)); 565 566 for (unsigned It = 1; It != Count; ++It) { 567 std::vector<BasicBlock*> NewBlocks; 568 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 569 NewLoops[L] = L; 570 571 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 572 ValueToValueMapTy VMap; 573 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 574 Header->getParent()->getBasicBlockList().push_back(New); 575 576 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 577 "Header should not be in a sub-loop"); 578 // Tell LI about New. 579 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 580 if (OldLoop) { 581 LoopsToSimplify.insert(NewLoops[OldLoop]); 582 583 // Forget the old loop, since its inputs may have changed. 584 if (SE) 585 SE->forgetLoop(OldLoop); 586 } 587 588 if (*BB == Header) 589 // Loop over all of the PHI nodes in the block, changing them to use 590 // the incoming values from the previous block. 591 for (PHINode *OrigPHI : OrigPHINode) { 592 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 593 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 594 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 595 if (It > 1 && L->contains(InValI)) 596 InVal = LastValueMap[InValI]; 597 VMap[OrigPHI] = InVal; 598 New->getInstList().erase(NewPHI); 599 } 600 601 // Update our running map of newest clones 602 LastValueMap[*BB] = New; 603 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 604 VI != VE; ++VI) 605 LastValueMap[VI->first] = VI->second; 606 607 // Add phi entries for newly created values to all exit blocks. 608 for (BasicBlock *Succ : successors(*BB)) { 609 if (L->contains(Succ)) 610 continue; 611 for (PHINode &PHI : Succ->phis()) { 612 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 613 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 614 if (It != LastValueMap.end()) 615 Incoming = It->second; 616 PHI.addIncoming(Incoming, New); 617 } 618 } 619 // Keep track of new headers and latches as we create them, so that 620 // we can insert the proper branches later. 621 if (*BB == Header) 622 Headers.push_back(New); 623 if (*BB == LatchBlock) 624 Latches.push_back(New); 625 626 NewBlocks.push_back(New); 627 UnrolledLoopBlocks.push_back(New); 628 629 // Update DomTree: since we just copy the loop body, and each copy has a 630 // dedicated entry block (copy of the header block), this header's copy 631 // dominates all copied blocks. That means, dominance relations in the 632 // copied body are the same as in the original body. 633 if (DT) { 634 if (*BB == Header) 635 DT->addNewBlock(New, Latches[It - 1]); 636 else { 637 auto BBDomNode = DT->getNode(*BB); 638 auto BBIDom = BBDomNode->getIDom(); 639 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 640 DT->addNewBlock( 641 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 642 } 643 } 644 } 645 646 // Remap all instructions in the most recent iteration 647 for (BasicBlock *NewBlock : NewBlocks) { 648 for (Instruction &I : *NewBlock) { 649 ::remapInstruction(&I, LastValueMap); 650 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 651 if (II->getIntrinsicID() == Intrinsic::assume) 652 AC->registerAssumption(II); 653 } 654 } 655 } 656 657 // Loop over the PHI nodes in the original block, setting incoming values. 658 for (PHINode *PN : OrigPHINode) { 659 if (CompletelyUnroll) { 660 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 661 Header->getInstList().erase(PN); 662 } 663 else if (Count > 1) { 664 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 665 // If this value was defined in the loop, take the value defined by the 666 // last iteration of the loop. 667 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 668 if (L->contains(InValI)) 669 InVal = LastValueMap[InVal]; 670 } 671 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 672 PN->addIncoming(InVal, Latches.back()); 673 } 674 } 675 676 // Now that all the basic blocks for the unrolled iterations are in place, 677 // set up the branches to connect them. 678 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 679 // The original branch was replicated in each unrolled iteration. 680 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 681 682 // The branch destination. 683 unsigned j = (i + 1) % e; 684 BasicBlock *Dest = Headers[j]; 685 bool NeedConditional = true; 686 687 if (RuntimeTripCount && j != 0) { 688 NeedConditional = false; 689 } 690 691 // For a complete unroll, make the last iteration end with a branch 692 // to the exit block. 693 if (CompletelyUnroll) { 694 if (j == 0) 695 Dest = LoopExit; 696 // If using trip count upper bound to completely unroll, we need to keep 697 // the conditional branch except the last one because the loop may exit 698 // after any iteration. 699 assert(NeedConditional && 700 "NeedCondition cannot be modified by both complete " 701 "unrolling and runtime unrolling"); 702 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 703 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 704 // If we know the trip count or a multiple of it, we can safely use an 705 // unconditional branch for some iterations. 706 NeedConditional = false; 707 } 708 709 if (NeedConditional) { 710 // Update the conditional branch's successor for the following 711 // iteration. 712 Term->setSuccessor(!ContinueOnTrue, Dest); 713 } else { 714 // Remove phi operands at this loop exit 715 if (Dest != LoopExit) { 716 BasicBlock *BB = Latches[i]; 717 for (BasicBlock *Succ: successors(BB)) { 718 if (Succ == Headers[i]) 719 continue; 720 for (PHINode &Phi : Succ->phis()) 721 Phi.removeIncomingValue(BB, false); 722 } 723 } 724 // Replace the conditional branch with an unconditional one. 725 BranchInst::Create(Dest, Term); 726 Term->eraseFromParent(); 727 } 728 } 729 730 // Update dominators of blocks we might reach through exits. 731 // Immediate dominator of such block might change, because we add more 732 // routes which can lead to the exit: we can now reach it from the copied 733 // iterations too. 734 if (DT && Count > 1) { 735 for (auto *BB : OriginalLoopBlocks) { 736 auto *BBDomNode = DT->getNode(BB); 737 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 738 for (auto *ChildDomNode : BBDomNode->getChildren()) { 739 auto *ChildBB = ChildDomNode->getBlock(); 740 if (!L->contains(ChildBB)) 741 ChildrenToUpdate.push_back(ChildBB); 742 } 743 BasicBlock *NewIDom; 744 if (BB == LatchBlock) { 745 // The latch is special because we emit unconditional branches in 746 // some cases where the original loop contained a conditional branch. 747 // Since the latch is always at the bottom of the loop, if the latch 748 // dominated an exit before unrolling, the new dominator of that exit 749 // must also be a latch. Specifically, the dominator is the first 750 // latch which ends in a conditional branch, or the last latch if 751 // there is no such latch. 752 NewIDom = Latches.back(); 753 for (BasicBlock *IterLatch : Latches) { 754 TerminatorInst *Term = IterLatch->getTerminator(); 755 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 756 NewIDom = IterLatch; 757 break; 758 } 759 } 760 } else { 761 // The new idom of the block will be the nearest common dominator 762 // of all copies of the previous idom. This is equivalent to the 763 // nearest common dominator of the previous idom and the first latch, 764 // which dominates all copies of the previous idom. 765 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 766 } 767 for (auto *ChildBB : ChildrenToUpdate) 768 DT->changeImmediateDominator(ChildBB, NewIDom); 769 } 770 } 771 772 if (DT && UnrollVerifyDomtree) 773 DT->verifyDomTree(); 774 775 // Merge adjacent basic blocks, if possible. 776 SmallPtrSet<Loop *, 4> ForgottenLoops; 777 for (BasicBlock *Latch : Latches) { 778 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 779 if (Term->isUnconditional()) { 780 BasicBlock *Dest = Term->getSuccessor(0); 781 if (BasicBlock *Fold = 782 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 783 // Dest has been folded into Fold. Update our worklists accordingly. 784 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 785 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 786 UnrolledLoopBlocks.end(), Dest), 787 UnrolledLoopBlocks.end()); 788 } 789 } 790 } 791 792 // Simplify any new induction variables in the partially unrolled loop. 793 if (SE && !CompletelyUnroll && Count > 1) { 794 SmallVector<WeakTrackingVH, 16> DeadInsts; 795 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 796 797 // Aggressively clean up dead instructions that simplifyLoopIVs already 798 // identified. Any remaining should be cleaned up below. 799 while (!DeadInsts.empty()) 800 if (Instruction *Inst = 801 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 802 RecursivelyDeleteTriviallyDeadInstructions(Inst); 803 } 804 805 // At this point, the code is well formed. We now do a quick sweep over the 806 // inserted code, doing constant propagation and dead code elimination as we 807 // go. 808 const DataLayout &DL = Header->getModule()->getDataLayout(); 809 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 810 for (BasicBlock *BB : NewLoopBlocks) { 811 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 812 Instruction *Inst = &*I++; 813 814 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 815 if (LI->replacementPreservesLCSSAForm(Inst, V)) 816 Inst->replaceAllUsesWith(V); 817 if (isInstructionTriviallyDead(Inst)) 818 BB->getInstList().erase(Inst); 819 } 820 } 821 822 // TODO: after peeling or unrolling, previously loop variant conditions are 823 // likely to fold to constants, eagerly propagating those here will require 824 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 825 // appropriate. 826 827 NumCompletelyUnrolled += CompletelyUnroll; 828 ++NumUnrolled; 829 830 Loop *OuterL = L->getParentLoop(); 831 // Update LoopInfo if the loop is completely removed. 832 if (CompletelyUnroll) 833 LI->erase(L); 834 835 // After complete unrolling most of the blocks should be contained in OuterL. 836 // However, some of them might happen to be out of OuterL (e.g. if they 837 // precede a loop exit). In this case we might need to insert PHI nodes in 838 // order to preserve LCSSA form. 839 // We don't need to check this if we already know that we need to fix LCSSA 840 // form. 841 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 842 // it should be possible to fix it in-place. 843 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 844 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 845 846 // If we have a pass and a DominatorTree we should re-simplify impacted loops 847 // to ensure subsequent analyses can rely on this form. We want to simplify 848 // at least one layer outside of the loop that was unrolled so that any 849 // changes to the parent loop exposed by the unrolling are considered. 850 if (DT) { 851 if (OuterL) { 852 // OuterL includes all loops for which we can break loop-simplify, so 853 // it's sufficient to simplify only it (it'll recursively simplify inner 854 // loops too). 855 if (NeedToFixLCSSA) { 856 // LCSSA must be performed on the outermost affected loop. The unrolled 857 // loop's last loop latch is guaranteed to be in the outermost loop 858 // after LoopInfo's been updated by LoopInfo::erase. 859 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 860 Loop *FixLCSSALoop = OuterL; 861 if (!FixLCSSALoop->contains(LatchLoop)) 862 while (FixLCSSALoop->getParentLoop() != LatchLoop) 863 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 864 865 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 866 } else if (PreserveLCSSA) { 867 assert(OuterL->isLCSSAForm(*DT) && 868 "Loops should be in LCSSA form after loop-unroll."); 869 } 870 871 // TODO: That potentially might be compile-time expensive. We should try 872 // to fix the loop-simplified form incrementally. 873 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 874 } else { 875 // Simplify loops for which we might've broken loop-simplify form. 876 for (Loop *SubLoop : LoopsToSimplify) 877 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 878 } 879 } 880 881 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 882 : LoopUnrollResult::PartiallyUnrolled; 883 } 884 885 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 886 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 887 /// such metadata node exists, then nullptr is returned. 888 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 889 // First operand should refer to the loop id itself. 890 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 891 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 892 893 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 894 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 895 if (!MD) 896 continue; 897 898 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 899 if (!S) 900 continue; 901 902 if (Name.equals(S->getString())) 903 return MD; 904 } 905 return nullptr; 906 } 907