1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/CallSite.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/IR/ValueMap.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/GenericDomTree.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include "llvm/Transforms/Utils/LoopSimplify.h" 64 #include "llvm/Transforms/Utils/LoopUtils.h" 65 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 66 #include "llvm/Transforms/Utils/UnrollLoop.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <assert.h> 70 #include <type_traits> 71 #include <vector> 72 73 namespace llvm { 74 class DataLayout; 75 class Value; 76 } // namespace llvm 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-unroll" 81 82 // TODO: Should these be here or in LoopUnroll? 83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 85 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a " 86 "conditional latch (completely or otherwise)"); 87 88 static cl::opt<bool> 89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 90 cl::desc("Allow runtime unrolled loops to be unrolled " 91 "with epilog instead of prolog.")); 92 93 static cl::opt<bool> 94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 95 cl::desc("Verify domtree after unrolling"), 96 #ifdef EXPENSIVE_CHECKS 97 cl::init(true) 98 #else 99 cl::init(false) 100 #endif 101 ); 102 103 /// Check if unrolling created a situation where we need to insert phi nodes to 104 /// preserve LCSSA form. 105 /// \param Blocks is a vector of basic blocks representing unrolled loop. 106 /// \param L is the outer loop. 107 /// It's possible that some of the blocks are in L, and some are not. In this 108 /// case, if there is a use is outside L, and definition is inside L, we need to 109 /// insert a phi-node, otherwise LCSSA will be broken. 110 /// The function is just a helper function for llvm::UnrollLoop that returns 111 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 112 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 113 LoopInfo *LI) { 114 for (BasicBlock *BB : Blocks) { 115 if (LI->getLoopFor(BB) == L) 116 continue; 117 for (Instruction &I : *BB) { 118 for (Use &U : I.operands()) { 119 if (auto Def = dyn_cast<Instruction>(U)) { 120 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 121 if (!DefLoop) 122 continue; 123 if (DefLoop->contains(L)) 124 return true; 125 } 126 } 127 } 128 } 129 return false; 130 } 131 132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 133 /// and adds a mapping from the original loop to the new loop to NewLoops. 134 /// Returns nullptr if no new loop was created and a pointer to the 135 /// original loop OriginalBB was part of otherwise. 136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 137 BasicBlock *ClonedBB, LoopInfo *LI, 138 NewLoopsMap &NewLoops) { 139 // Figure out which loop New is in. 140 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 141 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 142 143 Loop *&NewLoop = NewLoops[OldLoop]; 144 if (!NewLoop) { 145 // Found a new sub-loop. 146 assert(OriginalBB == OldLoop->getHeader() && 147 "Header should be first in RPO"); 148 149 NewLoop = LI->AllocateLoop(); 150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 151 152 if (NewLoopParent) 153 NewLoopParent->addChildLoop(NewLoop); 154 else 155 LI->addTopLevelLoop(NewLoop); 156 157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 158 return OldLoop; 159 } else { 160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 161 return nullptr; 162 } 163 } 164 165 /// The function chooses which type of unroll (epilog or prolog) is more 166 /// profitabale. 167 /// Epilog unroll is more profitable when there is PHI that starts from 168 /// constant. In this case epilog will leave PHI start from constant, 169 /// but prolog will convert it to non-constant. 170 /// 171 /// loop: 172 /// PN = PHI [I, Latch], [CI, PreHeader] 173 /// I = foo(PN) 174 /// ... 175 /// 176 /// Epilog unroll case. 177 /// loop: 178 /// PN = PHI [I2, Latch], [CI, PreHeader] 179 /// I1 = foo(PN) 180 /// I2 = foo(I1) 181 /// ... 182 /// Prolog unroll case. 183 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 184 /// loop: 185 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 186 /// I1 = foo(PN) 187 /// I2 = foo(I1) 188 /// ... 189 /// 190 static bool isEpilogProfitable(Loop *L) { 191 BasicBlock *PreHeader = L->getLoopPreheader(); 192 BasicBlock *Header = L->getHeader(); 193 assert(PreHeader && Header); 194 for (const PHINode &PN : Header->phis()) { 195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 196 return true; 197 } 198 return false; 199 } 200 201 /// Perform some cleanup and simplifications on loops after unrolling. It is 202 /// useful to simplify the IV's in the new loop, as well as do a quick 203 /// simplify/dce pass of the instructions. 204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 205 ScalarEvolution *SE, DominatorTree *DT, 206 AssumptionCache *AC) { 207 // Simplify any new induction variables in the partially unrolled loop. 208 if (SE && SimplifyIVs) { 209 SmallVector<WeakTrackingVH, 16> DeadInsts; 210 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 211 212 // Aggressively clean up dead instructions that simplifyLoopIVs already 213 // identified. Any remaining should be cleaned up below. 214 while (!DeadInsts.empty()) { 215 Value *V = DeadInsts.pop_back_val(); 216 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 217 RecursivelyDeleteTriviallyDeadInstructions(Inst); 218 } 219 } 220 221 // At this point, the code is well formed. We now do a quick sweep over the 222 // inserted code, doing constant propagation and dead code elimination as we 223 // go. 224 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 225 for (BasicBlock *BB : L->getBlocks()) { 226 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 227 Instruction *Inst = &*I++; 228 229 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 230 if (LI->replacementPreservesLCSSAForm(Inst, V)) 231 Inst->replaceAllUsesWith(V); 232 if (isInstructionTriviallyDead(Inst)) 233 BB->getInstList().erase(Inst); 234 } 235 } 236 237 // TODO: after peeling or unrolling, previously loop variant conditions are 238 // likely to fold to constants, eagerly propagating those here will require 239 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 240 // appropriate. 241 } 242 243 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 244 /// can only fail when the loop's latch block is not terminated by a conditional 245 /// branch instruction. However, if the trip count (and multiple) are not known, 246 /// loop unrolling will mostly produce more code that is no faster. 247 /// 248 /// TripCount is the upper bound of the iteration on which control exits 249 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 250 /// via an early branch in other loop block or via LatchBlock terminator. This 251 /// is relaxed from the general definition of trip count which is the number of 252 /// times the loop header executes. Note that UnrollLoop assumes that the loop 253 /// counter test is in LatchBlock in order to remove unnecesssary instances of 254 /// the test. If control can exit the loop from the LatchBlock's terminator 255 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 256 /// 257 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 258 /// needs to be preserved. It is needed when we use trip count upper bound to 259 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 260 /// conditional branch needs to be preserved. 261 /// 262 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 263 /// execute without exiting the loop. 264 /// 265 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 266 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 267 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 268 /// iterations before branching into the unrolled loop. UnrollLoop will not 269 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 270 /// AllowExpensiveTripCount is false. 271 /// 272 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 273 /// number of iterations we want to peel off. 274 /// 275 /// The LoopInfo Analysis that is passed will be kept consistent. 276 /// 277 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 278 /// DominatorTree if they are non-null. 279 /// 280 /// If RemainderLoop is non-null, it will receive the remainder loop (if 281 /// required and not fully unrolled). 282 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 283 ScalarEvolution *SE, DominatorTree *DT, 284 AssumptionCache *AC, 285 OptimizationRemarkEmitter *ORE, 286 bool PreserveLCSSA, Loop **RemainderLoop) { 287 288 BasicBlock *Preheader = L->getLoopPreheader(); 289 if (!Preheader) { 290 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 291 return LoopUnrollResult::Unmodified; 292 } 293 294 BasicBlock *LatchBlock = L->getLoopLatch(); 295 if (!LatchBlock) { 296 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 297 return LoopUnrollResult::Unmodified; 298 } 299 300 // Loops with indirectbr cannot be cloned. 301 if (!L->isSafeToClone()) { 302 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 303 return LoopUnrollResult::Unmodified; 304 } 305 306 // The current loop unroll pass can unroll loops with a single latch or header 307 // that's a conditional branch exiting the loop. 308 // FIXME: The implementation can be extended to work with more complicated 309 // cases, e.g. loops with multiple latches. 310 BasicBlock *Header = L->getHeader(); 311 BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator()); 312 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 313 314 // FIXME: Support loops without conditional latch and multiple exiting blocks. 315 if (!BI || 316 (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() || 317 L->getExitingBlock() != Header))) { 318 LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional " 319 "branch in the latch or header.\n"); 320 return LoopUnrollResult::Unmodified; 321 } 322 323 auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) { 324 return BI->isConditional() && BI->getSuccessor(S1) == Header && 325 !L->contains(BI->getSuccessor(S2)); 326 }; 327 328 // If we have a conditional latch, it must exit the loop. 329 if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) && 330 !CheckLatchSuccessors(1, 0)) { 331 LLVM_DEBUG( 332 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 333 return LoopUnrollResult::Unmodified; 334 } 335 336 auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) { 337 return HeaderBI && HeaderBI->isConditional() && 338 L->contains(HeaderBI->getSuccessor(S1)) && 339 !L->contains(HeaderBI->getSuccessor(S2)); 340 }; 341 342 // If we do not have a conditional latch, the header must exit the loop. 343 if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() && 344 !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) { 345 LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop"); 346 return LoopUnrollResult::Unmodified; 347 } 348 349 if (Header->hasAddressTaken()) { 350 // The loop-rotate pass can be helpful to avoid this in many cases. 351 LLVM_DEBUG( 352 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 353 return LoopUnrollResult::Unmodified; 354 } 355 356 if (ULO.TripCount != 0) 357 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 358 if (ULO.TripMultiple != 1) 359 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 360 361 // Effectively "DCE" unrolled iterations that are beyond the tripcount 362 // and will never be executed. 363 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 364 ULO.Count = ULO.TripCount; 365 366 // Don't enter the unroll code if there is nothing to do. 367 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 368 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 369 return LoopUnrollResult::Unmodified; 370 } 371 372 assert(ULO.Count > 0); 373 assert(ULO.TripMultiple > 0); 374 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 375 376 // Are we eliminating the loop control altogether? 377 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 378 SmallVector<BasicBlock *, 4> ExitBlocks; 379 L->getExitBlocks(ExitBlocks); 380 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 381 382 // Go through all exits of L and see if there are any phi-nodes there. We just 383 // conservatively assume that they're inserted to preserve LCSSA form, which 384 // means that complete unrolling might break this form. We need to either fix 385 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 386 // now we just recompute LCSSA for the outer loop, but it should be possible 387 // to fix it in-place. 388 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 389 any_of(ExitBlocks, [](const BasicBlock *BB) { 390 return isa<PHINode>(BB->begin()); 391 }); 392 393 // We assume a run-time trip count if the compiler cannot 394 // figure out the loop trip count and the unroll-runtime 395 // flag is specified. 396 bool RuntimeTripCount = 397 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 398 399 assert((!RuntimeTripCount || !ULO.PeelCount) && 400 "Did not expect runtime trip-count unrolling " 401 "and peeling for the same loop"); 402 403 bool Peeled = false; 404 if (ULO.PeelCount) { 405 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 406 407 // Successful peeling may result in a change in the loop preheader/trip 408 // counts. If we later unroll the loop, we want these to be updated. 409 if (Peeled) { 410 // According to our guards and profitability checks the only 411 // meaningful exit should be latch block. Other exits go to deopt, 412 // so we do not worry about them. 413 BasicBlock *ExitingBlock = L->getLoopLatch(); 414 assert(ExitingBlock && "Loop without exiting block?"); 415 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 416 Preheader = L->getLoopPreheader(); 417 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 418 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 419 } 420 } 421 422 // Loops containing convergent instructions must have a count that divides 423 // their TripMultiple. 424 LLVM_DEBUG( 425 { 426 bool HasConvergent = false; 427 for (auto &BB : L->blocks()) 428 for (auto &I : *BB) 429 if (auto CS = CallSite(&I)) 430 HasConvergent |= CS.isConvergent(); 431 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 432 "Unroll count must divide trip multiple if loop contains a " 433 "convergent operation."); 434 }); 435 436 bool EpilogProfitability = 437 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 438 : isEpilogProfitable(L); 439 440 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 441 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 442 EpilogProfitability, ULO.UnrollRemainder, 443 ULO.ForgetAllSCEV, LI, SE, DT, AC, 444 PreserveLCSSA, RemainderLoop)) { 445 if (ULO.Force) 446 RuntimeTripCount = false; 447 else { 448 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 449 "generated when assuming runtime trip count\n"); 450 return LoopUnrollResult::Unmodified; 451 } 452 } 453 454 // If we know the trip count, we know the multiple... 455 unsigned BreakoutTrip = 0; 456 if (ULO.TripCount != 0) { 457 BreakoutTrip = ULO.TripCount % ULO.Count; 458 ULO.TripMultiple = 0; 459 } else { 460 // Figure out what multiple to use. 461 BreakoutTrip = ULO.TripMultiple = 462 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 463 } 464 465 using namespace ore; 466 // Report the unrolling decision. 467 if (CompletelyUnroll) { 468 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 469 << " with trip count " << ULO.TripCount << "!\n"); 470 if (ORE) 471 ORE->emit([&]() { 472 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 473 L->getHeader()) 474 << "completely unrolled loop with " 475 << NV("UnrollCount", ULO.TripCount) << " iterations"; 476 }); 477 } else if (ULO.PeelCount) { 478 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 479 << " with iteration count " << ULO.PeelCount << "!\n"); 480 if (ORE) 481 ORE->emit([&]() { 482 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 483 L->getHeader()) 484 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 485 << " iterations"; 486 }); 487 } else { 488 auto DiagBuilder = [&]() { 489 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 490 L->getHeader()); 491 return Diag << "unrolled loop by a factor of " 492 << NV("UnrollCount", ULO.Count); 493 }; 494 495 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 496 << ULO.Count); 497 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 498 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 499 if (ORE) 500 ORE->emit([&]() { 501 return DiagBuilder() << " with a breakout at trip " 502 << NV("BreakoutTrip", BreakoutTrip); 503 }); 504 } else if (ULO.TripMultiple != 1) { 505 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 506 if (ORE) 507 ORE->emit([&]() { 508 return DiagBuilder() 509 << " with " << NV("TripMultiple", ULO.TripMultiple) 510 << " trips per branch"; 511 }); 512 } else if (RuntimeTripCount) { 513 LLVM_DEBUG(dbgs() << " with run-time trip count"); 514 if (ORE) 515 ORE->emit( 516 [&]() { return DiagBuilder() << " with run-time trip count"; }); 517 } 518 LLVM_DEBUG(dbgs() << "!\n"); 519 } 520 521 // We are going to make changes to this loop. SCEV may be keeping cached info 522 // about it, in particular about backedge taken count. The changes we make 523 // are guaranteed to invalidate this information for our loop. It is tempting 524 // to only invalidate the loop being unrolled, but it is incorrect as long as 525 // all exiting branches from all inner loops have impact on the outer loops, 526 // and if something changes inside them then any of outer loops may also 527 // change. When we forget outermost loop, we also forget all contained loops 528 // and this is what we need here. 529 if (SE) { 530 if (ULO.ForgetAllSCEV) 531 SE->forgetAllLoops(); 532 else 533 SE->forgetTopmostLoop(L); 534 } 535 536 bool ContinueOnTrue; 537 bool LatchIsExiting = BI->isConditional(); 538 BasicBlock *LoopExit = nullptr; 539 if (LatchIsExiting) { 540 ContinueOnTrue = L->contains(BI->getSuccessor(0)); 541 LoopExit = BI->getSuccessor(ContinueOnTrue); 542 } else { 543 NumUnrolledWithHeader++; 544 ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0)); 545 LoopExit = HeaderBI->getSuccessor(ContinueOnTrue); 546 } 547 548 // For the first iteration of the loop, we should use the precloned values for 549 // PHI nodes. Insert associations now. 550 ValueToValueMapTy LastValueMap; 551 std::vector<PHINode*> OrigPHINode; 552 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 553 OrigPHINode.push_back(cast<PHINode>(I)); 554 } 555 556 std::vector<BasicBlock *> Headers; 557 std::vector<BasicBlock *> HeaderSucc; 558 std::vector<BasicBlock *> Latches; 559 Headers.push_back(Header); 560 Latches.push_back(LatchBlock); 561 562 if (!LatchIsExiting) { 563 auto *Term = cast<BranchInst>(Header->getTerminator()); 564 if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) { 565 assert(L->contains(Term->getSuccessor(0))); 566 HeaderSucc.push_back(Term->getSuccessor(0)); 567 } else { 568 assert(L->contains(Term->getSuccessor(1))); 569 HeaderSucc.push_back(Term->getSuccessor(1)); 570 } 571 } 572 573 // The current on-the-fly SSA update requires blocks to be processed in 574 // reverse postorder so that LastValueMap contains the correct value at each 575 // exit. 576 LoopBlocksDFS DFS(L); 577 DFS.perform(LI); 578 579 // Stash the DFS iterators before adding blocks to the loop. 580 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 581 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 582 583 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 584 585 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 586 // might break loop-simplified form for these loops (as they, e.g., would 587 // share the same exit blocks). We'll keep track of loops for which we can 588 // break this so that later we can re-simplify them. 589 SmallSetVector<Loop *, 4> LoopsToSimplify; 590 for (Loop *SubLoop : *L) 591 LoopsToSimplify.insert(SubLoop); 592 593 if (Header->getParent()->isDebugInfoForProfiling()) 594 for (BasicBlock *BB : L->getBlocks()) 595 for (Instruction &I : *BB) 596 if (!isa<DbgInfoIntrinsic>(&I)) 597 if (const DILocation *DIL = I.getDebugLoc()) { 598 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 599 if (NewDIL) 600 I.setDebugLoc(NewDIL.getValue()); 601 else 602 LLVM_DEBUG(dbgs() 603 << "Failed to create new discriminator: " 604 << DIL->getFilename() << " Line: " << DIL->getLine()); 605 } 606 607 for (unsigned It = 1; It != ULO.Count; ++It) { 608 SmallVector<BasicBlock *, 8> NewBlocks; 609 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 610 NewLoops[L] = L; 611 612 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 613 ValueToValueMapTy VMap; 614 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 615 Header->getParent()->getBasicBlockList().push_back(New); 616 617 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 618 "Header should not be in a sub-loop"); 619 // Tell LI about New. 620 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 621 if (OldLoop) 622 LoopsToSimplify.insert(NewLoops[OldLoop]); 623 624 if (*BB == Header) 625 // Loop over all of the PHI nodes in the block, changing them to use 626 // the incoming values from the previous block. 627 for (PHINode *OrigPHI : OrigPHINode) { 628 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 629 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 630 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 631 if (It > 1 && L->contains(InValI)) 632 InVal = LastValueMap[InValI]; 633 VMap[OrigPHI] = InVal; 634 New->getInstList().erase(NewPHI); 635 } 636 637 // Update our running map of newest clones 638 LastValueMap[*BB] = New; 639 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 640 VI != VE; ++VI) 641 LastValueMap[VI->first] = VI->second; 642 643 // Add phi entries for newly created values to all exit blocks. 644 for (BasicBlock *Succ : successors(*BB)) { 645 if (L->contains(Succ)) 646 continue; 647 for (PHINode &PHI : Succ->phis()) { 648 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 649 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 650 if (It != LastValueMap.end()) 651 Incoming = It->second; 652 PHI.addIncoming(Incoming, New); 653 } 654 } 655 // Keep track of new headers and latches as we create them, so that 656 // we can insert the proper branches later. 657 if (*BB == Header) 658 Headers.push_back(New); 659 if (*BB == LatchBlock) 660 Latches.push_back(New); 661 662 // Keep track of the successor of the new header in the current iteration. 663 for (auto *Pred : predecessors(*BB)) 664 if (Pred == Header) { 665 HeaderSucc.push_back(New); 666 break; 667 } 668 669 NewBlocks.push_back(New); 670 UnrolledLoopBlocks.push_back(New); 671 672 // Update DomTree: since we just copy the loop body, and each copy has a 673 // dedicated entry block (copy of the header block), this header's copy 674 // dominates all copied blocks. That means, dominance relations in the 675 // copied body are the same as in the original body. 676 if (DT) { 677 if (*BB == Header) 678 DT->addNewBlock(New, Latches[It - 1]); 679 else { 680 auto BBDomNode = DT->getNode(*BB); 681 auto BBIDom = BBDomNode->getIDom(); 682 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 683 DT->addNewBlock( 684 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 685 } 686 } 687 } 688 689 // Remap all instructions in the most recent iteration 690 remapInstructionsInBlocks(NewBlocks, LastValueMap); 691 for (BasicBlock *NewBlock : NewBlocks) { 692 for (Instruction &I : *NewBlock) { 693 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 694 if (II->getIntrinsicID() == Intrinsic::assume) 695 AC->registerAssumption(II); 696 } 697 } 698 } 699 700 // Loop over the PHI nodes in the original block, setting incoming values. 701 for (PHINode *PN : OrigPHINode) { 702 if (CompletelyUnroll) { 703 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 704 Header->getInstList().erase(PN); 705 } else if (ULO.Count > 1) { 706 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 707 // If this value was defined in the loop, take the value defined by the 708 // last iteration of the loop. 709 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 710 if (L->contains(InValI)) 711 InVal = LastValueMap[InVal]; 712 } 713 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 714 PN->addIncoming(InVal, Latches.back()); 715 } 716 } 717 718 auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest, 719 ArrayRef<BasicBlock *> NextBlocks, 720 BasicBlock *BlockInLoop, 721 bool NeedConditional) { 722 auto *Term = cast<BranchInst>(Src->getTerminator()); 723 if (NeedConditional) { 724 // Update the conditional branch's successor for the following 725 // iteration. 726 Term->setSuccessor(!ContinueOnTrue, Dest); 727 } else { 728 // Remove phi operands at this loop exit 729 if (Dest != LoopExit) { 730 BasicBlock *BB = Src; 731 for (BasicBlock *Succ : successors(BB)) { 732 // Preserve the incoming value from BB if we are jumping to the block 733 // in the current loop. 734 if (Succ == BlockInLoop) 735 continue; 736 for (PHINode &Phi : Succ->phis()) 737 Phi.removeIncomingValue(BB, false); 738 } 739 } 740 // Replace the conditional branch with an unconditional one. 741 BranchInst::Create(Dest, Term); 742 Term->eraseFromParent(); 743 } 744 }; 745 746 // Now that all the basic blocks for the unrolled iterations are in place, 747 // set up the branches to connect them. 748 if (LatchIsExiting) { 749 // Set up latches to branch to the new header in the unrolled iterations or 750 // the loop exit for the last latch in a fully unrolled loop. 751 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 752 // The branch destination. 753 unsigned j = (i + 1) % e; 754 BasicBlock *Dest = Headers[j]; 755 bool NeedConditional = true; 756 757 if (RuntimeTripCount && j != 0) { 758 NeedConditional = false; 759 } 760 761 // For a complete unroll, make the last iteration end with a branch 762 // to the exit block. 763 if (CompletelyUnroll) { 764 if (j == 0) 765 Dest = LoopExit; 766 // If using trip count upper bound to completely unroll, we need to keep 767 // the conditional branch except the last one because the loop may exit 768 // after any iteration. 769 assert(NeedConditional && 770 "NeedCondition cannot be modified by both complete " 771 "unrolling and runtime unrolling"); 772 NeedConditional = 773 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 774 } else if (j != BreakoutTrip && 775 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 776 // If we know the trip count or a multiple of it, we can safely use an 777 // unconditional branch for some iterations. 778 NeedConditional = false; 779 } 780 781 setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional); 782 } 783 } else { 784 // Setup headers to branch to their new successors in the unrolled 785 // iterations. 786 for (unsigned i = 0, e = Headers.size(); i != e; ++i) { 787 // The branch destination. 788 unsigned j = (i + 1) % e; 789 BasicBlock *Dest = HeaderSucc[i]; 790 bool NeedConditional = true; 791 792 if (RuntimeTripCount && j != 0) 793 NeedConditional = false; 794 795 if (CompletelyUnroll) 796 // We cannot drop the conditional branch for the last condition, as we 797 // may have to execute the loop body depending on the condition. 798 NeedConditional = j == 0 || ULO.PreserveCondBr; 799 else if (j != BreakoutTrip && 800 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 801 // If we know the trip count or a multiple of it, we can safely use an 802 // unconditional branch for some iterations. 803 NeedConditional = false; 804 805 setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional); 806 } 807 808 // Set up latches to branch to the new header in the unrolled iterations or 809 // the loop exit for the last latch in a fully unrolled loop. 810 811 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 812 // The original branch was replicated in each unrolled iteration. 813 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 814 815 // The branch destination. 816 unsigned j = (i + 1) % e; 817 BasicBlock *Dest = Headers[j]; 818 819 // When completely unrolling, the last latch becomes unreachable. 820 if (CompletelyUnroll && j == 0) 821 new UnreachableInst(Term->getContext(), Term); 822 else 823 // Replace the conditional branch with an unconditional one. 824 BranchInst::Create(Dest, Term); 825 826 Term->eraseFromParent(); 827 } 828 } 829 830 // Update dominators of blocks we might reach through exits. 831 // Immediate dominator of such block might change, because we add more 832 // routes which can lead to the exit: we can now reach it from the copied 833 // iterations too. 834 if (DT && ULO.Count > 1) { 835 for (auto *BB : OriginalLoopBlocks) { 836 auto *BBDomNode = DT->getNode(BB); 837 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 838 for (auto *ChildDomNode : BBDomNode->getChildren()) { 839 auto *ChildBB = ChildDomNode->getBlock(); 840 if (!L->contains(ChildBB)) 841 ChildrenToUpdate.push_back(ChildBB); 842 } 843 BasicBlock *NewIDom; 844 BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header; 845 auto &TermBlocks = LatchIsExiting ? Latches : Headers; 846 if (BB == TermBlock) { 847 // The latch is special because we emit unconditional branches in 848 // some cases where the original loop contained a conditional branch. 849 // Since the latch is always at the bottom of the loop, if the latch 850 // dominated an exit before unrolling, the new dominator of that exit 851 // must also be a latch. Specifically, the dominator is the first 852 // latch which ends in a conditional branch, or the last latch if 853 // there is no such latch. 854 // For loops exiting from the header, we limit the supported loops 855 // to have a single exiting block. 856 NewIDom = TermBlocks.back(); 857 for (BasicBlock *Iter : TermBlocks) { 858 Instruction *Term = Iter->getTerminator(); 859 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 860 NewIDom = Iter; 861 break; 862 } 863 } 864 } else { 865 // The new idom of the block will be the nearest common dominator 866 // of all copies of the previous idom. This is equivalent to the 867 // nearest common dominator of the previous idom and the first latch, 868 // which dominates all copies of the previous idom. 869 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 870 } 871 for (auto *ChildBB : ChildrenToUpdate) 872 DT->changeImmediateDominator(ChildBB, NewIDom); 873 } 874 } 875 876 assert(!DT || !UnrollVerifyDomtree || 877 DT->verify(DominatorTree::VerificationLevel::Fast)); 878 879 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 880 // Merge adjacent basic blocks, if possible. 881 for (BasicBlock *Latch : Latches) { 882 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 883 assert((Term || 884 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 885 "Need a branch as terminator, except when fully unrolling with " 886 "unconditional latch"); 887 if (Term && Term->isUnconditional()) { 888 BasicBlock *Dest = Term->getSuccessor(0); 889 BasicBlock *Fold = Dest->getUniquePredecessor(); 890 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 891 // Dest has been folded into Fold. Update our worklists accordingly. 892 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 893 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 894 UnrolledLoopBlocks.end(), Dest), 895 UnrolledLoopBlocks.end()); 896 } 897 } 898 } 899 // Apply updates to the DomTree. 900 DT = &DTU.getDomTree(); 901 902 // At this point, the code is well formed. We now simplify the unrolled loop, 903 // doing constant propagation and dead code elimination as we go. 904 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 905 SE, DT, AC); 906 907 NumCompletelyUnrolled += CompletelyUnroll; 908 ++NumUnrolled; 909 910 Loop *OuterL = L->getParentLoop(); 911 // Update LoopInfo if the loop is completely removed. 912 if (CompletelyUnroll) 913 LI->erase(L); 914 915 // After complete unrolling most of the blocks should be contained in OuterL. 916 // However, some of them might happen to be out of OuterL (e.g. if they 917 // precede a loop exit). In this case we might need to insert PHI nodes in 918 // order to preserve LCSSA form. 919 // We don't need to check this if we already know that we need to fix LCSSA 920 // form. 921 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 922 // it should be possible to fix it in-place. 923 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 924 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 925 926 // If we have a pass and a DominatorTree we should re-simplify impacted loops 927 // to ensure subsequent analyses can rely on this form. We want to simplify 928 // at least one layer outside of the loop that was unrolled so that any 929 // changes to the parent loop exposed by the unrolling are considered. 930 if (DT) { 931 if (OuterL) { 932 // OuterL includes all loops for which we can break loop-simplify, so 933 // it's sufficient to simplify only it (it'll recursively simplify inner 934 // loops too). 935 if (NeedToFixLCSSA) { 936 // LCSSA must be performed on the outermost affected loop. The unrolled 937 // loop's last loop latch is guaranteed to be in the outermost loop 938 // after LoopInfo's been updated by LoopInfo::erase. 939 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 940 Loop *FixLCSSALoop = OuterL; 941 if (!FixLCSSALoop->contains(LatchLoop)) 942 while (FixLCSSALoop->getParentLoop() != LatchLoop) 943 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 944 945 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 946 } else if (PreserveLCSSA) { 947 assert(OuterL->isLCSSAForm(*DT) && 948 "Loops should be in LCSSA form after loop-unroll."); 949 } 950 951 // TODO: That potentially might be compile-time expensive. We should try 952 // to fix the loop-simplified form incrementally. 953 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 954 } else { 955 // Simplify loops for which we might've broken loop-simplify form. 956 for (Loop *SubLoop : LoopsToSimplify) 957 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 958 } 959 } 960 961 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 962 : LoopUnrollResult::PartiallyUnrolled; 963 } 964 965 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 966 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 967 /// such metadata node exists, then nullptr is returned. 968 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 969 // First operand should refer to the loop id itself. 970 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 971 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 972 973 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 974 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 975 if (!MD) 976 continue; 977 978 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 979 if (!S) 980 continue; 981 982 if (Name.equals(S->getString())) 983 return MD; 984 } 985 return nullptr; 986 } 987