1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 /// Convert the instruction operands from referencing the current values into 55 /// those specified by VMap. 56 static inline void remapInstruction(Instruction *I, 57 ValueToValueMapTy &VMap) { 58 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 59 Value *Op = I->getOperand(op); 60 ValueToValueMapTy::iterator It = VMap.find(Op); 61 if (It != VMap.end()) 62 I->setOperand(op, It->second); 63 } 64 65 if (PHINode *PN = dyn_cast<PHINode>(I)) { 66 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 67 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 68 if (It != VMap.end()) 69 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 70 } 71 } 72 } 73 74 /// Folds a basic block into its predecessor if it only has one predecessor, and 75 /// that predecessor only has one successor. 76 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 77 /// successful references to the containing loop must be removed from 78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 79 /// references to the eliminated BB. The argument ForgottenLoops contains a set 80 /// of loops that have already been forgotten to prevent redundant, expensive 81 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 82 static BasicBlock * 83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 84 SmallPtrSetImpl<Loop *> &ForgottenLoops, 85 DominatorTree *DT) { 86 // Merge basic blocks into their predecessor if there is only one distinct 87 // pred, and if there is only one distinct successor of the predecessor, and 88 // if there are no PHI nodes. 89 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 90 if (!OnlyPred) return nullptr; 91 92 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 93 return nullptr; 94 95 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 96 97 // Resolve any PHI nodes at the start of the block. They are all 98 // guaranteed to have exactly one entry if they exist, unless there are 99 // multiple duplicate (but guaranteed to be equal) entries for the 100 // incoming edges. This occurs when there are multiple edges from 101 // OnlyPred to OnlySucc. 102 FoldSingleEntryPHINodes(BB); 103 104 // Delete the unconditional branch from the predecessor... 105 OnlyPred->getInstList().pop_back(); 106 107 // Make all PHI nodes that referred to BB now refer to Pred as their 108 // source... 109 BB->replaceAllUsesWith(OnlyPred); 110 111 // Move all definitions in the successor to the predecessor... 112 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 113 114 // OldName will be valid until erased. 115 StringRef OldName = BB->getName(); 116 117 // Erase the old block and update dominator info. 118 if (DT) 119 if (DomTreeNode *DTN = DT->getNode(BB)) { 120 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 121 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 122 for (auto *DI : Children) 123 DT->changeImmediateDominator(DI, PredDTN); 124 125 DT->eraseNode(BB); 126 } 127 128 // ScalarEvolution holds references to loop exit blocks. 129 if (SE) { 130 if (Loop *L = LI->getLoopFor(BB)) { 131 if (ForgottenLoops.insert(L).second) 132 SE->forgetLoop(L); 133 } 134 } 135 LI->removeBlock(BB); 136 137 // Inherit predecessor's name if it exists... 138 if (!OldName.empty() && !OnlyPred->hasName()) 139 OnlyPred->setName(OldName); 140 141 BB->eraseFromParent(); 142 143 return OnlyPred; 144 } 145 146 /// Check if unrolling created a situation where we need to insert phi nodes to 147 /// preserve LCSSA form. 148 /// \param Blocks is a vector of basic blocks representing unrolled loop. 149 /// \param L is the outer loop. 150 /// It's possible that some of the blocks are in L, and some are not. In this 151 /// case, if there is a use is outside L, and definition is inside L, we need to 152 /// insert a phi-node, otherwise LCSSA will be broken. 153 /// The function is just a helper function for llvm::UnrollLoop that returns 154 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 156 LoopInfo *LI) { 157 for (BasicBlock *BB : Blocks) { 158 if (LI->getLoopFor(BB) == L) 159 continue; 160 for (Instruction &I : *BB) { 161 for (Use &U : I.operands()) { 162 if (auto Def = dyn_cast<Instruction>(U)) { 163 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 164 if (!DefLoop) 165 continue; 166 if (DefLoop->contains(L)) 167 return true; 168 } 169 } 170 } 171 } 172 return false; 173 } 174 175 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 176 /// and adds a mapping from the original loop to the new loop to NewLoops. 177 /// Returns nullptr if no new loop was created and a pointer to the 178 /// original loop OriginalBB was part of otherwise. 179 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 180 BasicBlock *ClonedBB, LoopInfo *LI, 181 NewLoopsMap &NewLoops) { 182 // Figure out which loop New is in. 183 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 184 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 185 186 Loop *&NewLoop = NewLoops[OldLoop]; 187 if (!NewLoop) { 188 // Found a new sub-loop. 189 assert(OriginalBB == OldLoop->getHeader() && 190 "Header should be first in RPO"); 191 192 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 193 assert(NewLoopParent && 194 "Expected parent loop before sub-loop in RPO"); 195 NewLoop = new Loop; 196 NewLoopParent->addChildLoop(NewLoop); 197 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 198 return OldLoop; 199 } else { 200 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 201 return nullptr; 202 } 203 } 204 205 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 206 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 207 /// can only fail when the loop's latch block is not terminated by a conditional 208 /// branch instruction. However, if the trip count (and multiple) are not known, 209 /// loop unrolling will mostly produce more code that is no faster. 210 /// 211 /// TripCount is the upper bound of the iteration on which control exits 212 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 213 /// via an early branch in other loop block or via LatchBlock terminator. This 214 /// is relaxed from the general definition of trip count which is the number of 215 /// times the loop header executes. Note that UnrollLoop assumes that the loop 216 /// counter test is in LatchBlock in order to remove unnecesssary instances of 217 /// the test. If control can exit the loop from the LatchBlock's terminator 218 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 219 /// 220 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 221 /// needs to be preserved. It is needed when we use trip count upper bound to 222 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 223 /// conditional branch needs to be preserved. 224 /// 225 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 226 /// execute without exiting the loop. 227 /// 228 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 229 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 230 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 231 /// iterations before branching into the unrolled loop. UnrollLoop will not 232 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 233 /// AllowExpensiveTripCount is false. 234 /// 235 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 236 /// number of iterations we want to peel off. 237 /// 238 /// The LoopInfo Analysis that is passed will be kept consistent. 239 /// 240 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 241 /// DominatorTree if they are non-null. 242 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 243 bool AllowRuntime, bool AllowExpensiveTripCount, 244 bool PreserveCondBr, bool PreserveOnlyFirst, 245 unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI, 246 ScalarEvolution *SE, DominatorTree *DT, 247 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, 248 bool PreserveLCSSA) { 249 250 BasicBlock *Preheader = L->getLoopPreheader(); 251 if (!Preheader) { 252 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 253 return false; 254 } 255 256 BasicBlock *LatchBlock = L->getLoopLatch(); 257 if (!LatchBlock) { 258 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 259 return false; 260 } 261 262 // Loops with indirectbr cannot be cloned. 263 if (!L->isSafeToClone()) { 264 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 265 return false; 266 } 267 268 BasicBlock *Header = L->getHeader(); 269 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 270 271 if (!BI || BI->isUnconditional()) { 272 // The loop-rotate pass can be helpful to avoid this in many cases. 273 DEBUG(dbgs() << 274 " Can't unroll; loop not terminated by a conditional branch.\n"); 275 return false; 276 } 277 278 if (Header->hasAddressTaken()) { 279 // The loop-rotate pass can be helpful to avoid this in many cases. 280 DEBUG(dbgs() << 281 " Won't unroll loop: address of header block is taken.\n"); 282 return false; 283 } 284 285 if (TripCount != 0) 286 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 287 if (TripMultiple != 1) 288 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 289 290 // Effectively "DCE" unrolled iterations that are beyond the tripcount 291 // and will never be executed. 292 if (TripCount != 0 && Count > TripCount) 293 Count = TripCount; 294 295 // Don't enter the unroll code if there is nothing to do. 296 if (TripCount == 0 && Count < 2 && PeelCount == 0) 297 return false; 298 299 assert(Count > 0); 300 assert(TripMultiple > 0); 301 assert(TripCount == 0 || TripCount % TripMultiple == 0); 302 303 // Are we eliminating the loop control altogether? 304 bool CompletelyUnroll = Count == TripCount; 305 SmallVector<BasicBlock *, 4> ExitBlocks; 306 L->getExitBlocks(ExitBlocks); 307 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 308 309 // Go through all exits of L and see if there are any phi-nodes there. We just 310 // conservatively assume that they're inserted to preserve LCSSA form, which 311 // means that complete unrolling might break this form. We need to either fix 312 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 313 // now we just recompute LCSSA for the outer loop, but it should be possible 314 // to fix it in-place. 315 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 316 any_of(ExitBlocks, [](const BasicBlock *BB) { 317 return isa<PHINode>(BB->begin()); 318 }); 319 320 // We assume a run-time trip count if the compiler cannot 321 // figure out the loop trip count and the unroll-runtime 322 // flag is specified. 323 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 324 325 assert((!RuntimeTripCount || !PeelCount) && 326 "Did not expect runtime trip-count unrolling " 327 "and peeling for the same loop"); 328 329 if (PeelCount) 330 peelLoop(L, PeelCount, LI, SE, DT, PreserveLCSSA); 331 332 // Loops containing convergent instructions must have a count that divides 333 // their TripMultiple. 334 DEBUG( 335 { 336 bool HasConvergent = false; 337 for (auto &BB : L->blocks()) 338 for (auto &I : *BB) 339 if (auto CS = CallSite(&I)) 340 HasConvergent |= CS.isConvergent(); 341 assert((!HasConvergent || TripMultiple % Count == 0) && 342 "Unroll count must divide trip multiple if loop contains a " 343 "convergent operation."); 344 }); 345 346 if (RuntimeTripCount && TripMultiple % Count != 0 && 347 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 348 UnrollRuntimeEpilog, LI, SE, DT, 349 PreserveLCSSA)) { 350 if (Force) 351 RuntimeTripCount = false; 352 else 353 return false; 354 } 355 356 // Notify ScalarEvolution that the loop will be substantially changed, 357 // if not outright eliminated. 358 if (SE) 359 SE->forgetLoop(L); 360 361 // If we know the trip count, we know the multiple... 362 unsigned BreakoutTrip = 0; 363 if (TripCount != 0) { 364 BreakoutTrip = TripCount % Count; 365 TripMultiple = 0; 366 } else { 367 // Figure out what multiple to use. 368 BreakoutTrip = TripMultiple = 369 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 370 } 371 372 using namespace ore; 373 // Report the unrolling decision. 374 if (CompletelyUnroll) { 375 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 376 << " with trip count " << TripCount << "!\n"); 377 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 378 L->getHeader()) 379 << "completely unrolled loop with " 380 << NV("UnrollCount", TripCount) << " iterations"); 381 } else if (PeelCount) { 382 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 383 << " with iteration count " << PeelCount << "!\n"); 384 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 385 L->getHeader()) 386 << " peeled loop by " << NV("PeelCount", PeelCount) 387 << " iterations"); 388 } else { 389 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 390 L->getHeader()); 391 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 392 393 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 394 << " by " << Count); 395 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 396 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 397 ORE->emit(Diag << " with a breakout at trip " 398 << NV("BreakoutTrip", BreakoutTrip)); 399 } else if (TripMultiple != 1) { 400 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 401 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 402 << " trips per branch"); 403 } else if (RuntimeTripCount) { 404 DEBUG(dbgs() << " with run-time trip count"); 405 ORE->emit(Diag << " with run-time trip count"); 406 } 407 DEBUG(dbgs() << "!\n"); 408 } 409 410 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 411 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 412 413 // For the first iteration of the loop, we should use the precloned values for 414 // PHI nodes. Insert associations now. 415 ValueToValueMapTy LastValueMap; 416 std::vector<PHINode*> OrigPHINode; 417 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 418 OrigPHINode.push_back(cast<PHINode>(I)); 419 } 420 421 std::vector<BasicBlock*> Headers; 422 std::vector<BasicBlock*> Latches; 423 Headers.push_back(Header); 424 Latches.push_back(LatchBlock); 425 426 // The current on-the-fly SSA update requires blocks to be processed in 427 // reverse postorder so that LastValueMap contains the correct value at each 428 // exit. 429 LoopBlocksDFS DFS(L); 430 DFS.perform(LI); 431 432 // Stash the DFS iterators before adding blocks to the loop. 433 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 434 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 435 436 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 437 438 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 439 // might break loop-simplified form for these loops (as they, e.g., would 440 // share the same exit blocks). We'll keep track of loops for which we can 441 // break this so that later we can re-simplify them. 442 SmallSetVector<Loop *, 4> LoopsToSimplify; 443 for (Loop *SubLoop : *L) 444 LoopsToSimplify.insert(SubLoop); 445 446 for (unsigned It = 1; It != Count; ++It) { 447 std::vector<BasicBlock*> NewBlocks; 448 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 449 NewLoops[L] = L; 450 451 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 452 ValueToValueMapTy VMap; 453 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 454 Header->getParent()->getBasicBlockList().push_back(New); 455 456 // Tell LI about New. 457 if (*BB == Header) { 458 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 459 L->addBasicBlockToLoop(New, *LI); 460 } else { 461 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 462 if (OldLoop) { 463 LoopsToSimplify.insert(NewLoops[OldLoop]); 464 465 // Forget the old loop, since its inputs may have changed. 466 if (SE) 467 SE->forgetLoop(OldLoop); 468 } 469 } 470 471 if (*BB == Header) 472 // Loop over all of the PHI nodes in the block, changing them to use 473 // the incoming values from the previous block. 474 for (PHINode *OrigPHI : OrigPHINode) { 475 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 476 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 477 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 478 if (It > 1 && L->contains(InValI)) 479 InVal = LastValueMap[InValI]; 480 VMap[OrigPHI] = InVal; 481 New->getInstList().erase(NewPHI); 482 } 483 484 // Update our running map of newest clones 485 LastValueMap[*BB] = New; 486 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 487 VI != VE; ++VI) 488 LastValueMap[VI->first] = VI->second; 489 490 // Add phi entries for newly created values to all exit blocks. 491 for (BasicBlock *Succ : successors(*BB)) { 492 if (L->contains(Succ)) 493 continue; 494 for (BasicBlock::iterator BBI = Succ->begin(); 495 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 496 Value *Incoming = phi->getIncomingValueForBlock(*BB); 497 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 498 if (It != LastValueMap.end()) 499 Incoming = It->second; 500 phi->addIncoming(Incoming, New); 501 } 502 } 503 // Keep track of new headers and latches as we create them, so that 504 // we can insert the proper branches later. 505 if (*BB == Header) 506 Headers.push_back(New); 507 if (*BB == LatchBlock) 508 Latches.push_back(New); 509 510 NewBlocks.push_back(New); 511 UnrolledLoopBlocks.push_back(New); 512 513 // Update DomTree: since we just copy the loop body, and each copy has a 514 // dedicated entry block (copy of the header block), this header's copy 515 // dominates all copied blocks. That means, dominance relations in the 516 // copied body are the same as in the original body. 517 if (DT) { 518 if (*BB == Header) 519 DT->addNewBlock(New, Latches[It - 1]); 520 else { 521 auto BBDomNode = DT->getNode(*BB); 522 auto BBIDom = BBDomNode->getIDom(); 523 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 524 DT->addNewBlock( 525 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 526 } 527 } 528 } 529 530 // Remap all instructions in the most recent iteration 531 for (BasicBlock *NewBlock : NewBlocks) { 532 for (Instruction &I : *NewBlock) { 533 ::remapInstruction(&I, LastValueMap); 534 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 535 if (II->getIntrinsicID() == Intrinsic::assume) 536 AC->registerAssumption(II); 537 } 538 } 539 } 540 541 // Loop over the PHI nodes in the original block, setting incoming values. 542 for (PHINode *PN : OrigPHINode) { 543 if (CompletelyUnroll) { 544 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 545 Header->getInstList().erase(PN); 546 } 547 else if (Count > 1) { 548 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 549 // If this value was defined in the loop, take the value defined by the 550 // last iteration of the loop. 551 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 552 if (L->contains(InValI)) 553 InVal = LastValueMap[InVal]; 554 } 555 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 556 PN->addIncoming(InVal, Latches.back()); 557 } 558 } 559 560 // Now that all the basic blocks for the unrolled iterations are in place, 561 // set up the branches to connect them. 562 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 563 // The original branch was replicated in each unrolled iteration. 564 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 565 566 // The branch destination. 567 unsigned j = (i + 1) % e; 568 BasicBlock *Dest = Headers[j]; 569 bool NeedConditional = true; 570 571 if (RuntimeTripCount && j != 0) { 572 NeedConditional = false; 573 } 574 575 // For a complete unroll, make the last iteration end with a branch 576 // to the exit block. 577 if (CompletelyUnroll) { 578 if (j == 0) 579 Dest = LoopExit; 580 // If using trip count upper bound to completely unroll, we need to keep 581 // the conditional branch except the last one because the loop may exit 582 // after any iteration. 583 assert(NeedConditional && 584 "NeedCondition cannot be modified by both complete " 585 "unrolling and runtime unrolling"); 586 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 587 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 588 // If we know the trip count or a multiple of it, we can safely use an 589 // unconditional branch for some iterations. 590 NeedConditional = false; 591 } 592 593 if (NeedConditional) { 594 // Update the conditional branch's successor for the following 595 // iteration. 596 Term->setSuccessor(!ContinueOnTrue, Dest); 597 } else { 598 // Remove phi operands at this loop exit 599 if (Dest != LoopExit) { 600 BasicBlock *BB = Latches[i]; 601 for (BasicBlock *Succ: successors(BB)) { 602 if (Succ == Headers[i]) 603 continue; 604 for (BasicBlock::iterator BBI = Succ->begin(); 605 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 606 Phi->removeIncomingValue(BB, false); 607 } 608 } 609 } 610 // Replace the conditional branch with an unconditional one. 611 BranchInst::Create(Dest, Term); 612 Term->eraseFromParent(); 613 } 614 } 615 // Update dominators of blocks we might reach through exits. 616 // Immediate dominator of such block might change, because we add more 617 // routes which can lead to the exit: we can now reach it from the copied 618 // iterations too. Thus, the new idom of the block will be the nearest 619 // common dominator of the previous idom and common dominator of all copies of 620 // the previous idom. This is equivalent to the nearest common dominator of 621 // the previous idom and the first latch, which dominates all copies of the 622 // previous idom. 623 if (DT && Count > 1) { 624 for (auto *BB : OriginalLoopBlocks) { 625 auto *BBDomNode = DT->getNode(BB); 626 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 627 for (auto *ChildDomNode : BBDomNode->getChildren()) { 628 auto *ChildBB = ChildDomNode->getBlock(); 629 if (!L->contains(ChildBB)) 630 ChildrenToUpdate.push_back(ChildBB); 631 } 632 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]); 633 for (auto *ChildBB : ChildrenToUpdate) 634 DT->changeImmediateDominator(ChildBB, NewIDom); 635 } 636 } 637 638 // Merge adjacent basic blocks, if possible. 639 SmallPtrSet<Loop *, 4> ForgottenLoops; 640 for (BasicBlock *Latch : Latches) { 641 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 642 if (Term->isUnconditional()) { 643 BasicBlock *Dest = Term->getSuccessor(0); 644 if (BasicBlock *Fold = 645 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 646 // Dest has been folded into Fold. Update our worklists accordingly. 647 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 648 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 649 UnrolledLoopBlocks.end(), Dest), 650 UnrolledLoopBlocks.end()); 651 } 652 } 653 } 654 655 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 656 // updating domtree after partial loop unrolling should also be easy. 657 if (DT && !CompletelyUnroll) 658 DT->recalculate(*L->getHeader()->getParent()); 659 else if (DT) 660 DEBUG(DT->verifyDomTree()); 661 662 // Simplify any new induction variables in the partially unrolled loop. 663 if (SE && !CompletelyUnroll && Count > 1) { 664 SmallVector<WeakVH, 16> DeadInsts; 665 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 666 667 // Aggressively clean up dead instructions that simplifyLoopIVs already 668 // identified. Any remaining should be cleaned up below. 669 while (!DeadInsts.empty()) 670 if (Instruction *Inst = 671 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 672 RecursivelyDeleteTriviallyDeadInstructions(Inst); 673 } 674 675 // At this point, the code is well formed. We now do a quick sweep over the 676 // inserted code, doing constant propagation and dead code elimination as we 677 // go. 678 const DataLayout &DL = Header->getModule()->getDataLayout(); 679 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 680 for (BasicBlock *BB : NewLoopBlocks) { 681 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 682 Instruction *Inst = &*I++; 683 684 if (Value *V = SimplifyInstruction(Inst, DL)) 685 if (LI->replacementPreservesLCSSAForm(Inst, V)) 686 Inst->replaceAllUsesWith(V); 687 if (isInstructionTriviallyDead(Inst)) 688 BB->getInstList().erase(Inst); 689 } 690 } 691 692 // TODO: after peeling or unrolling, previously loop variant conditions are 693 // likely to fold to constants, eagerly propagating those here will require 694 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 695 // appropriate. 696 697 NumCompletelyUnrolled += CompletelyUnroll; 698 ++NumUnrolled; 699 700 Loop *OuterL = L->getParentLoop(); 701 // Update LoopInfo if the loop is completely removed. 702 if (CompletelyUnroll) 703 LI->markAsRemoved(L); 704 705 // After complete unrolling most of the blocks should be contained in OuterL. 706 // However, some of them might happen to be out of OuterL (e.g. if they 707 // precede a loop exit). In this case we might need to insert PHI nodes in 708 // order to preserve LCSSA form. 709 // We don't need to check this if we already know that we need to fix LCSSA 710 // form. 711 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 712 // it should be possible to fix it in-place. 713 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 714 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 715 716 // If we have a pass and a DominatorTree we should re-simplify impacted loops 717 // to ensure subsequent analyses can rely on this form. We want to simplify 718 // at least one layer outside of the loop that was unrolled so that any 719 // changes to the parent loop exposed by the unrolling are considered. 720 if (DT) { 721 if (!OuterL && !CompletelyUnroll) 722 OuterL = L; 723 if (OuterL) { 724 // OuterL includes all loops for which we can break loop-simplify, so 725 // it's sufficient to simplify only it (it'll recursively simplify inner 726 // loops too). 727 // TODO: That potentially might be compile-time expensive. We should try 728 // to fix the loop-simplified form incrementally. 729 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 730 731 // LCSSA must be performed on the outermost affected loop. The unrolled 732 // loop's last loop latch is guaranteed to be in the outermost loop after 733 // LoopInfo's been updated by markAsRemoved. 734 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 735 if (!OuterL->contains(LatchLoop)) 736 while (OuterL->getParentLoop() != LatchLoop) 737 OuterL = OuterL->getParentLoop(); 738 739 if (NeedToFixLCSSA) 740 formLCSSARecursively(*OuterL, *DT, LI, SE); 741 else 742 assert(OuterL->isLCSSAForm(*DT) && 743 "Loops should be in LCSSA form after loop-unroll."); 744 } else { 745 // Simplify loops for which we might've broken loop-simplify form. 746 for (Loop *SubLoop : LoopsToSimplify) 747 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 748 } 749 } 750 751 return true; 752 } 753 754 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 755 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 756 /// such metadata node exists, then nullptr is returned. 757 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 758 // First operand should refer to the loop id itself. 759 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 760 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 761 762 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 763 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 764 if (!MD) 765 continue; 766 767 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 768 if (!S) 769 continue; 770 771 if (Name.equals(S->getString())) 772 return MD; 773 } 774 return nullptr; 775 } 776