1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 // TODO: Should these be here or in LoopUnroll? 44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 46 47 /// RemapInstruction - Convert the instruction operands from referencing the 48 /// current values into those specified by VMap. 49 static inline void RemapInstruction(Instruction *I, 50 ValueToValueMapTy &VMap) { 51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 52 Value *Op = I->getOperand(op); 53 ValueToValueMapTy::iterator It = VMap.find(Op); 54 if (It != VMap.end()) 55 I->setOperand(op, It->second); 56 } 57 58 if (PHINode *PN = dyn_cast<PHINode>(I)) { 59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 61 if (It != VMap.end()) 62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 63 } 64 } 65 } 66 67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 68 /// only has one predecessor, and that predecessor only has one successor. 69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 70 /// successful references to the containing loop must be removed from 71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 72 /// references to the eliminated BB. The argument ForgottenLoops contains a set 73 /// of loops that have already been forgotten to prevent redundant, expensive 74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 75 static BasicBlock * 76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, ScalarEvolution *SE, 77 SmallPtrSetImpl<Loop *> &ForgottenLoops) { 78 // Merge basic blocks into their predecessor if there is only one distinct 79 // pred, and if there is only one distinct successor of the predecessor, and 80 // if there are no PHI nodes. 81 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 82 if (!OnlyPred) return nullptr; 83 84 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 85 return nullptr; 86 87 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 88 89 // Resolve any PHI nodes at the start of the block. They are all 90 // guaranteed to have exactly one entry if they exist, unless there are 91 // multiple duplicate (but guaranteed to be equal) entries for the 92 // incoming edges. This occurs when there are multiple edges from 93 // OnlyPred to OnlySucc. 94 FoldSingleEntryPHINodes(BB); 95 96 // Delete the unconditional branch from the predecessor... 97 OnlyPred->getInstList().pop_back(); 98 99 // Make all PHI nodes that referred to BB now refer to Pred as their 100 // source... 101 BB->replaceAllUsesWith(OnlyPred); 102 103 // Move all definitions in the successor to the predecessor... 104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 105 106 // OldName will be valid until erased. 107 StringRef OldName = BB->getName(); 108 109 // Erase basic block from the function... 110 111 // ScalarEvolution holds references to loop exit blocks. 112 if (SE) { 113 if (Loop *L = LI->getLoopFor(BB)) { 114 if (ForgottenLoops.insert(L).second) 115 SE->forgetLoop(L); 116 } 117 } 118 LI->removeBlock(BB); 119 120 // Inherit predecessor's name if it exists... 121 if (!OldName.empty() && !OnlyPred->hasName()) 122 OnlyPred->setName(OldName); 123 124 BB->eraseFromParent(); 125 126 return OnlyPred; 127 } 128 129 /// Check if unrolling created a situation where we need to insert phi nodes to 130 /// preserve LCSSA form. 131 /// \param Blocks is a vector of basic blocks representing unrolled loop. 132 /// \param L is the outer loop. 133 /// It's possible that some of the blocks are in L, and some are not. In this 134 /// case, if there is a use is outside L, and definition is inside L, we need to 135 /// insert a phi-node, otherwise LCSSA will be broken. 136 /// The function is just a helper function for llvm::UnrollLoop that returns 137 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 138 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 139 LoopInfo *LI) { 140 for (BasicBlock *BB : Blocks) { 141 if (LI->getLoopFor(BB) == L) 142 continue; 143 for (Instruction &I : *BB) { 144 for (Use &U : I.operands()) { 145 if (auto Def = dyn_cast<Instruction>(U)) 146 if (LI->getLoopFor(Def->getParent()) == L) 147 return true; 148 } 149 } 150 } 151 return false; 152 } 153 154 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 155 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 156 /// can only fail when the loop's latch block is not terminated by a conditional 157 /// branch instruction. However, if the trip count (and multiple) are not known, 158 /// loop unrolling will mostly produce more code that is no faster. 159 /// 160 /// TripCount is generally defined as the number of times the loop header 161 /// executes. UnrollLoop relaxes the definition to permit early exits: here 162 /// TripCount is the iteration on which control exits LatchBlock if no early 163 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 164 /// terminates LatchBlock in order to remove unnecesssary instances of the 165 /// test. In other words, control may exit the loop prior to TripCount 166 /// iterations via an early branch, but control may not exit the loop from the 167 /// LatchBlock's terminator prior to TripCount iterations. 168 /// 169 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 170 /// execute without exiting the loop. 171 /// 172 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 173 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 174 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 175 /// iterations before branching into the unrolled loop. UnrollLoop will not 176 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 177 /// AllowExpensiveTripCount is false. 178 /// 179 /// The LoopInfo Analysis that is passed will be kept consistent. 180 /// 181 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 182 /// DominatorTree if they are non-null. 183 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 184 bool AllowRuntime, bool AllowExpensiveTripCount, 185 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE, 186 DominatorTree *DT, AssumptionCache *AC, 187 bool PreserveLCSSA) { 188 BasicBlock *Preheader = L->getLoopPreheader(); 189 if (!Preheader) { 190 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 191 return false; 192 } 193 194 BasicBlock *LatchBlock = L->getLoopLatch(); 195 if (!LatchBlock) { 196 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 197 return false; 198 } 199 200 // Loops with indirectbr cannot be cloned. 201 if (!L->isSafeToClone()) { 202 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 203 return false; 204 } 205 206 BasicBlock *Header = L->getHeader(); 207 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 208 209 if (!BI || BI->isUnconditional()) { 210 // The loop-rotate pass can be helpful to avoid this in many cases. 211 DEBUG(dbgs() << 212 " Can't unroll; loop not terminated by a conditional branch.\n"); 213 return false; 214 } 215 216 if (Header->hasAddressTaken()) { 217 // The loop-rotate pass can be helpful to avoid this in many cases. 218 DEBUG(dbgs() << 219 " Won't unroll loop: address of header block is taken.\n"); 220 return false; 221 } 222 223 if (TripCount != 0) 224 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 225 if (TripMultiple != 1) 226 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 227 228 // Effectively "DCE" unrolled iterations that are beyond the tripcount 229 // and will never be executed. 230 if (TripCount != 0 && Count > TripCount) 231 Count = TripCount; 232 233 // Don't enter the unroll code if there is nothing to do. This way we don't 234 // need to support "partial unrolling by 1". 235 if (TripCount == 0 && Count < 2) 236 return false; 237 238 assert(Count > 0); 239 assert(TripMultiple > 0); 240 assert(TripCount == 0 || TripCount % TripMultiple == 0); 241 242 // Are we eliminating the loop control altogether? 243 bool CompletelyUnroll = Count == TripCount; 244 SmallVector<BasicBlock *, 4> ExitBlocks; 245 L->getExitBlocks(ExitBlocks); 246 247 // Go through all exits of L and see if there are any phi-nodes there. We just 248 // conservatively assume that they're inserted to preserve LCSSA form, which 249 // means that complete unrolling might break this form. We need to either fix 250 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 251 // now we just recompute LCSSA for the outer loop, but it should be possible 252 // to fix it in-place. 253 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 254 std::any_of(ExitBlocks.begin(), ExitBlocks.end(), 255 [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 256 257 // We assume a run-time trip count if the compiler cannot 258 // figure out the loop trip count and the unroll-runtime 259 // flag is specified. 260 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 261 262 if (RuntimeTripCount && 263 !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, SE, DT, 264 PreserveLCSSA)) 265 return false; 266 267 // Notify ScalarEvolution that the loop will be substantially changed, 268 // if not outright eliminated. 269 if (SE) 270 SE->forgetLoop(L); 271 272 // If we know the trip count, we know the multiple... 273 unsigned BreakoutTrip = 0; 274 if (TripCount != 0) { 275 BreakoutTrip = TripCount % Count; 276 TripMultiple = 0; 277 } else { 278 // Figure out what multiple to use. 279 BreakoutTrip = TripMultiple = 280 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 281 } 282 283 // Report the unrolling decision. 284 DebugLoc LoopLoc = L->getStartLoc(); 285 Function *F = Header->getParent(); 286 LLVMContext &Ctx = F->getContext(); 287 288 if (CompletelyUnroll) { 289 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 290 << " with trip count " << TripCount << "!\n"); 291 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 292 Twine("completely unrolled loop with ") + 293 Twine(TripCount) + " iterations"); 294 } else { 295 auto EmitDiag = [&](const Twine &T) { 296 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 297 "unrolled loop by a factor of " + Twine(Count) + 298 T); 299 }; 300 301 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 302 << " by " << Count); 303 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 304 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 305 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 306 } else if (TripMultiple != 1) { 307 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 308 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 309 } else if (RuntimeTripCount) { 310 DEBUG(dbgs() << " with run-time trip count"); 311 EmitDiag(" with run-time trip count"); 312 } 313 DEBUG(dbgs() << "!\n"); 314 } 315 316 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 317 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 318 319 // For the first iteration of the loop, we should use the precloned values for 320 // PHI nodes. Insert associations now. 321 ValueToValueMapTy LastValueMap; 322 std::vector<PHINode*> OrigPHINode; 323 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 324 OrigPHINode.push_back(cast<PHINode>(I)); 325 } 326 327 std::vector<BasicBlock*> Headers; 328 std::vector<BasicBlock*> Latches; 329 Headers.push_back(Header); 330 Latches.push_back(LatchBlock); 331 332 // The current on-the-fly SSA update requires blocks to be processed in 333 // reverse postorder so that LastValueMap contains the correct value at each 334 // exit. 335 LoopBlocksDFS DFS(L); 336 DFS.perform(LI); 337 338 // Stash the DFS iterators before adding blocks to the loop. 339 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 340 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 341 342 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 343 for (unsigned It = 1; It != Count; ++It) { 344 std::vector<BasicBlock*> NewBlocks; 345 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 346 NewLoops[L] = L; 347 348 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 349 ValueToValueMapTy VMap; 350 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 351 Header->getParent()->getBasicBlockList().push_back(New); 352 353 // Tell LI about New. 354 if (*BB == Header) { 355 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 356 L->addBasicBlockToLoop(New, *LI); 357 } else { 358 // Figure out which loop New is in. 359 const Loop *OldLoop = LI->getLoopFor(*BB); 360 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 361 362 Loop *&NewLoop = NewLoops[OldLoop]; 363 if (!NewLoop) { 364 // Found a new sub-loop. 365 assert(*BB == OldLoop->getHeader() && 366 "Header should be first in RPO"); 367 368 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 369 assert(NewLoopParent && 370 "Expected parent loop before sub-loop in RPO"); 371 NewLoop = new Loop; 372 NewLoopParent->addChildLoop(NewLoop); 373 374 // Forget the old loop, since its inputs may have changed. 375 if (SE) 376 SE->forgetLoop(OldLoop); 377 } 378 NewLoop->addBasicBlockToLoop(New, *LI); 379 } 380 381 if (*BB == Header) 382 // Loop over all of the PHI nodes in the block, changing them to use 383 // the incoming values from the previous block. 384 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 385 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 386 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 387 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 388 if (It > 1 && L->contains(InValI)) 389 InVal = LastValueMap[InValI]; 390 VMap[OrigPHINode[i]] = InVal; 391 New->getInstList().erase(NewPHI); 392 } 393 394 // Update our running map of newest clones 395 LastValueMap[*BB] = New; 396 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 397 VI != VE; ++VI) 398 LastValueMap[VI->first] = VI->second; 399 400 // Add phi entries for newly created values to all exit blocks. 401 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 402 SI != SE; ++SI) { 403 if (L->contains(*SI)) 404 continue; 405 for (BasicBlock::iterator BBI = (*SI)->begin(); 406 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 407 Value *Incoming = phi->getIncomingValueForBlock(*BB); 408 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 409 if (It != LastValueMap.end()) 410 Incoming = It->second; 411 phi->addIncoming(Incoming, New); 412 } 413 } 414 // Keep track of new headers and latches as we create them, so that 415 // we can insert the proper branches later. 416 if (*BB == Header) 417 Headers.push_back(New); 418 if (*BB == LatchBlock) 419 Latches.push_back(New); 420 421 NewBlocks.push_back(New); 422 UnrolledLoopBlocks.push_back(New); 423 } 424 425 // Remap all instructions in the most recent iteration 426 for (unsigned i = 0; i < NewBlocks.size(); ++i) 427 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 428 E = NewBlocks[i]->end(); I != E; ++I) 429 ::RemapInstruction(&*I, LastValueMap); 430 } 431 432 // Loop over the PHI nodes in the original block, setting incoming values. 433 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 434 PHINode *PN = OrigPHINode[i]; 435 if (CompletelyUnroll) { 436 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 437 Header->getInstList().erase(PN); 438 } 439 else if (Count > 1) { 440 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 441 // If this value was defined in the loop, take the value defined by the 442 // last iteration of the loop. 443 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 444 if (L->contains(InValI)) 445 InVal = LastValueMap[InVal]; 446 } 447 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 448 PN->addIncoming(InVal, Latches.back()); 449 } 450 } 451 452 // Now that all the basic blocks for the unrolled iterations are in place, 453 // set up the branches to connect them. 454 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 455 // The original branch was replicated in each unrolled iteration. 456 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 457 458 // The branch destination. 459 unsigned j = (i + 1) % e; 460 BasicBlock *Dest = Headers[j]; 461 bool NeedConditional = true; 462 463 if (RuntimeTripCount && j != 0) { 464 NeedConditional = false; 465 } 466 467 // For a complete unroll, make the last iteration end with a branch 468 // to the exit block. 469 if (CompletelyUnroll) { 470 if (j == 0) 471 Dest = LoopExit; 472 NeedConditional = false; 473 } 474 475 // If we know the trip count or a multiple of it, we can safely use an 476 // unconditional branch for some iterations. 477 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 478 NeedConditional = false; 479 } 480 481 if (NeedConditional) { 482 // Update the conditional branch's successor for the following 483 // iteration. 484 Term->setSuccessor(!ContinueOnTrue, Dest); 485 } else { 486 // Remove phi operands at this loop exit 487 if (Dest != LoopExit) { 488 BasicBlock *BB = Latches[i]; 489 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 490 SI != SE; ++SI) { 491 if (*SI == Headers[i]) 492 continue; 493 for (BasicBlock::iterator BBI = (*SI)->begin(); 494 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 495 Phi->removeIncomingValue(BB, false); 496 } 497 } 498 } 499 // Replace the conditional branch with an unconditional one. 500 BranchInst::Create(Dest, Term); 501 Term->eraseFromParent(); 502 } 503 } 504 505 // Merge adjacent basic blocks, if possible. 506 SmallPtrSet<Loop *, 4> ForgottenLoops; 507 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 508 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 509 if (Term->isUnconditional()) { 510 BasicBlock *Dest = Term->getSuccessor(0); 511 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, SE, 512 ForgottenLoops)) { 513 // Dest has been folded into Fold. Update our worklists accordingly. 514 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 515 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 516 UnrolledLoopBlocks.end(), Dest), 517 UnrolledLoopBlocks.end()); 518 } 519 } 520 } 521 522 // FIXME: We could register any cloned assumptions instead of clearing the 523 // whole function's cache. 524 AC->clear(); 525 526 // FIXME: Reconstruct dom info, because it is not preserved properly. 527 // Incrementally updating domtree after loop unrolling would be easy. 528 if (DT) 529 DT->recalculate(*L->getHeader()->getParent()); 530 531 // Simplify any new induction variables in the partially unrolled loop. 532 if (SE && !CompletelyUnroll) { 533 SmallVector<WeakVH, 16> DeadInsts; 534 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 535 536 // Aggressively clean up dead instructions that simplifyLoopIVs already 537 // identified. Any remaining should be cleaned up below. 538 while (!DeadInsts.empty()) 539 if (Instruction *Inst = 540 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 541 RecursivelyDeleteTriviallyDeadInstructions(Inst); 542 } 543 544 // At this point, the code is well formed. We now do a quick sweep over the 545 // inserted code, doing constant propagation and dead code elimination as we 546 // go. 547 const DataLayout &DL = Header->getModule()->getDataLayout(); 548 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 549 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 550 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 551 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 552 Instruction *Inst = &*I++; 553 554 if (isInstructionTriviallyDead(Inst)) 555 (*BB)->getInstList().erase(Inst); 556 else if (Value *V = SimplifyInstruction(Inst, DL)) 557 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 558 Inst->replaceAllUsesWith(V); 559 (*BB)->getInstList().erase(Inst); 560 } 561 } 562 563 NumCompletelyUnrolled += CompletelyUnroll; 564 ++NumUnrolled; 565 566 Loop *OuterL = L->getParentLoop(); 567 // Update LoopInfo if the loop is completely removed. 568 if (CompletelyUnroll) 569 LI->markAsRemoved(L); 570 571 // After complete unrolling most of the blocks should be contained in OuterL. 572 // However, some of them might happen to be out of OuterL (e.g. if they 573 // precede a loop exit). In this case we might need to insert PHI nodes in 574 // order to preserve LCSSA form. 575 // We don't need to check this if we already know that we need to fix LCSSA 576 // form. 577 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 578 // it should be possible to fix it in-place. 579 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 580 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 581 582 // If we have a pass and a DominatorTree we should re-simplify impacted loops 583 // to ensure subsequent analyses can rely on this form. We want to simplify 584 // at least one layer outside of the loop that was unrolled so that any 585 // changes to the parent loop exposed by the unrolling are considered. 586 if (DT) { 587 if (!OuterL && !CompletelyUnroll) 588 OuterL = L; 589 if (OuterL) { 590 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 591 592 // LCSSA must be performed on the outermost affected loop. The unrolled 593 // loop's last loop latch is guaranteed to be in the outermost loop after 594 // LoopInfo's been updated by markAsRemoved. 595 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 596 if (!OuterL->contains(LatchLoop)) 597 while (OuterL->getParentLoop() != LatchLoop) 598 OuterL = OuterL->getParentLoop(); 599 600 if (NeedToFixLCSSA) 601 formLCSSARecursively(*OuterL, *DT, LI, SE); 602 else 603 assert(OuterL->isLCSSAForm(*DT) && 604 "Loops should be in LCSSA form after loop-unroll."); 605 } 606 } 607 608 return true; 609 } 610 611 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 612 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 613 /// such metadata node exists, then nullptr is returned. 614 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 615 // First operand should refer to the loop id itself. 616 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 617 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 618 619 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 620 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 621 if (!MD) 622 continue; 623 624 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 625 if (!S) 626 continue; 627 628 if (Name.equals(S->getString())) 629 return MD; 630 } 631 return nullptr; 632 } 633