1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51                     cl::desc("Allow runtime unrolled loops to be unrolled "
52                              "with epilog instead of prolog."));
53 
54 /// Convert the instruction operands from referencing the current values into
55 /// those specified by VMap.
56 static inline void remapInstruction(Instruction *I,
57                                     ValueToValueMapTy &VMap) {
58   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
59     Value *Op = I->getOperand(op);
60     ValueToValueMapTy::iterator It = VMap.find(Op);
61     if (It != VMap.end())
62       I->setOperand(op, It->second);
63   }
64 
65   if (PHINode *PN = dyn_cast<PHINode>(I)) {
66     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
67       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
68       if (It != VMap.end())
69         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
70     }
71   }
72 }
73 
74 /// Folds a basic block into its predecessor if it only has one predecessor, and
75 /// that predecessor only has one successor.
76 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
77 /// successful references to the containing loop must be removed from
78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
79 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
80 /// of loops that have already been forgotten to prevent redundant, expensive
81 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
82 static BasicBlock *
83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
84                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
85                          DominatorTree *DT) {
86   // Merge basic blocks into their predecessor if there is only one distinct
87   // pred, and if there is only one distinct successor of the predecessor, and
88   // if there are no PHI nodes.
89   BasicBlock *OnlyPred = BB->getSinglePredecessor();
90   if (!OnlyPred) return nullptr;
91 
92   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
93     return nullptr;
94 
95   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
96 
97   // Resolve any PHI nodes at the start of the block.  They are all
98   // guaranteed to have exactly one entry if they exist, unless there are
99   // multiple duplicate (but guaranteed to be equal) entries for the
100   // incoming edges.  This occurs when there are multiple edges from
101   // OnlyPred to OnlySucc.
102   FoldSingleEntryPHINodes(BB);
103 
104   // Delete the unconditional branch from the predecessor...
105   OnlyPred->getInstList().pop_back();
106 
107   // Make all PHI nodes that referred to BB now refer to Pred as their
108   // source...
109   BB->replaceAllUsesWith(OnlyPred);
110 
111   // Move all definitions in the successor to the predecessor...
112   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
113 
114   // OldName will be valid until erased.
115   StringRef OldName = BB->getName();
116 
117   // Erase the old block and update dominator info.
118   if (DT)
119     if (DomTreeNode *DTN = DT->getNode(BB)) {
120       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
121       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
122       for (auto *DI : Children)
123         DT->changeImmediateDominator(DI, PredDTN);
124 
125       DT->eraseNode(BB);
126     }
127 
128   // ScalarEvolution holds references to loop exit blocks.
129   if (SE) {
130     if (Loop *L = LI->getLoopFor(BB)) {
131       if (ForgottenLoops.insert(L).second)
132         SE->forgetLoop(L);
133     }
134   }
135   LI->removeBlock(BB);
136 
137   // Inherit predecessor's name if it exists...
138   if (!OldName.empty() && !OnlyPred->hasName())
139     OnlyPred->setName(OldName);
140 
141   BB->eraseFromParent();
142 
143   return OnlyPred;
144 }
145 
146 /// Check if unrolling created a situation where we need to insert phi nodes to
147 /// preserve LCSSA form.
148 /// \param Blocks is a vector of basic blocks representing unrolled loop.
149 /// \param L is the outer loop.
150 /// It's possible that some of the blocks are in L, and some are not. In this
151 /// case, if there is a use is outside L, and definition is inside L, we need to
152 /// insert a phi-node, otherwise LCSSA will be broken.
153 /// The function is just a helper function for llvm::UnrollLoop that returns
154 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
156                                      LoopInfo *LI) {
157   for (BasicBlock *BB : Blocks) {
158     if (LI->getLoopFor(BB) == L)
159       continue;
160     for (Instruction &I : *BB) {
161       for (Use &U : I.operands()) {
162         if (auto Def = dyn_cast<Instruction>(U)) {
163           Loop *DefLoop = LI->getLoopFor(Def->getParent());
164           if (!DefLoop)
165             continue;
166           if (DefLoop->contains(L))
167             return true;
168         }
169       }
170     }
171   }
172   return false;
173 }
174 
175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
177 /// can only fail when the loop's latch block is not terminated by a conditional
178 /// branch instruction. However, if the trip count (and multiple) are not known,
179 /// loop unrolling will mostly produce more code that is no faster.
180 ///
181 /// TripCount is generally defined as the number of times the loop header
182 /// executes. UnrollLoop relaxes the definition to permit early exits: here
183 /// TripCount is the iteration on which control exits LatchBlock if no early
184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
185 /// terminates LatchBlock in order to remove unnecesssary instances of the
186 /// test. In other words, control may exit the loop prior to TripCount
187 /// iterations via an early branch, but control may not exit the loop from the
188 /// LatchBlock's terminator prior to TripCount iterations.
189 ///
190 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
191 /// execute without exiting the loop.
192 ///
193 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
194 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
195 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
196 /// iterations before branching into the unrolled loop.  UnrollLoop will not
197 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
198 /// AllowExpensiveTripCount is false.
199 ///
200 /// The LoopInfo Analysis that is passed will be kept consistent.
201 ///
202 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
203 /// DominatorTree if they are non-null.
204 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
205                       bool AllowRuntime, bool AllowExpensiveTripCount,
206                       unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
207                       DominatorTree *DT, AssumptionCache *AC,
208                       OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
209   BasicBlock *Preheader = L->getLoopPreheader();
210   if (!Preheader) {
211     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
212     return false;
213   }
214 
215   BasicBlock *LatchBlock = L->getLoopLatch();
216   if (!LatchBlock) {
217     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
218     return false;
219   }
220 
221   // Loops with indirectbr cannot be cloned.
222   if (!L->isSafeToClone()) {
223     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
224     return false;
225   }
226 
227   BasicBlock *Header = L->getHeader();
228   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
229 
230   if (!BI || BI->isUnconditional()) {
231     // The loop-rotate pass can be helpful to avoid this in many cases.
232     DEBUG(dbgs() <<
233              "  Can't unroll; loop not terminated by a conditional branch.\n");
234     return false;
235   }
236 
237   if (Header->hasAddressTaken()) {
238     // The loop-rotate pass can be helpful to avoid this in many cases.
239     DEBUG(dbgs() <<
240           "  Won't unroll loop: address of header block is taken.\n");
241     return false;
242   }
243 
244   if (TripCount != 0)
245     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
246   if (TripMultiple != 1)
247     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
248 
249   // Effectively "DCE" unrolled iterations that are beyond the tripcount
250   // and will never be executed.
251   if (TripCount != 0 && Count > TripCount)
252     Count = TripCount;
253 
254   // Don't enter the unroll code if there is nothing to do. This way we don't
255   // need to support "partial unrolling by 1".
256   if (TripCount == 0 && Count < 2)
257     return false;
258 
259   assert(Count > 0);
260   assert(TripMultiple > 0);
261   assert(TripCount == 0 || TripCount % TripMultiple == 0);
262 
263   // Are we eliminating the loop control altogether?
264   bool CompletelyUnroll = Count == TripCount;
265   SmallVector<BasicBlock *, 4> ExitBlocks;
266   L->getExitBlocks(ExitBlocks);
267   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
268 
269   // Go through all exits of L and see if there are any phi-nodes there. We just
270   // conservatively assume that they're inserted to preserve LCSSA form, which
271   // means that complete unrolling might break this form. We need to either fix
272   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
273   // now we just recompute LCSSA for the outer loop, but it should be possible
274   // to fix it in-place.
275   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
276                         any_of(ExitBlocks, [](const BasicBlock *BB) {
277                           return isa<PHINode>(BB->begin());
278                         });
279 
280   // We assume a run-time trip count if the compiler cannot
281   // figure out the loop trip count and the unroll-runtime
282   // flag is specified.
283   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
284 
285   // Loops containing convergent instructions must have a count that divides
286   // their TripMultiple.
287   DEBUG(
288       {
289         bool HasConvergent = false;
290         for (auto &BB : L->blocks())
291           for (auto &I : *BB)
292             if (auto CS = CallSite(&I))
293               HasConvergent |= CS.isConvergent();
294         assert((!HasConvergent || TripMultiple % Count == 0) &&
295                "Unroll count must divide trip multiple if loop contains a "
296                "convergent operation.");
297       });
298   // Don't output the runtime loop remainder if Count is a multiple of
299   // TripMultiple.  Such a remainder is never needed, and is unsafe if the loop
300   // contains a convergent instruction.
301   if (RuntimeTripCount && TripMultiple % Count != 0 &&
302       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
303                                   UnrollRuntimeEpilog, LI, SE, DT,
304                                   PreserveLCSSA)) {
305     if (Force)
306       RuntimeTripCount = false;
307     else
308       return false;
309   }
310 
311   // Notify ScalarEvolution that the loop will be substantially changed,
312   // if not outright eliminated.
313   if (SE)
314     SE->forgetLoop(L);
315 
316   // If we know the trip count, we know the multiple...
317   unsigned BreakoutTrip = 0;
318   if (TripCount != 0) {
319     BreakoutTrip = TripCount % Count;
320     TripMultiple = 0;
321   } else {
322     // Figure out what multiple to use.
323     BreakoutTrip = TripMultiple =
324       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
325   }
326 
327   // Report the unrolling decision.
328   if (CompletelyUnroll) {
329     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
330           << " with trip count " << TripCount << "!\n");
331     ORE->emitOptimizationRemark(DEBUG_TYPE, L,
332                                 Twine("completely unrolled loop with ") +
333                                     Twine(TripCount) + " iterations");
334   } else {
335     auto EmitDiag = [&](const Twine &T) {
336       ORE->emitOptimizationRemark(
337           DEBUG_TYPE, L, "unrolled loop by a factor of " + Twine(Count) + T);
338     };
339 
340     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
341           << " by " << Count);
342     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
343       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
344       EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
345     } else if (TripMultiple != 1) {
346       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
347       EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
348     } else if (RuntimeTripCount) {
349       DEBUG(dbgs() << " with run-time trip count");
350       EmitDiag(" with run-time trip count");
351     }
352     DEBUG(dbgs() << "!\n");
353   }
354 
355   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
356   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
357 
358   // For the first iteration of the loop, we should use the precloned values for
359   // PHI nodes.  Insert associations now.
360   ValueToValueMapTy LastValueMap;
361   std::vector<PHINode*> OrigPHINode;
362   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
363     OrigPHINode.push_back(cast<PHINode>(I));
364   }
365 
366   std::vector<BasicBlock*> Headers;
367   std::vector<BasicBlock*> Latches;
368   Headers.push_back(Header);
369   Latches.push_back(LatchBlock);
370 
371   // The current on-the-fly SSA update requires blocks to be processed in
372   // reverse postorder so that LastValueMap contains the correct value at each
373   // exit.
374   LoopBlocksDFS DFS(L);
375   DFS.perform(LI);
376 
377   // Stash the DFS iterators before adding blocks to the loop.
378   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
379   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
380 
381   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
382 
383   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
384   // might break loop-simplified form for these loops (as they, e.g., would
385   // share the same exit blocks). We'll keep track of loops for which we can
386   // break this so that later we can re-simplify them.
387   SmallSetVector<Loop *, 4> LoopsToSimplify;
388   for (Loop *SubLoop : *L)
389     LoopsToSimplify.insert(SubLoop);
390 
391   for (unsigned It = 1; It != Count; ++It) {
392     std::vector<BasicBlock*> NewBlocks;
393     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
394     NewLoops[L] = L;
395 
396     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
397       ValueToValueMapTy VMap;
398       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
399       Header->getParent()->getBasicBlockList().push_back(New);
400 
401       // Tell LI about New.
402       if (*BB == Header) {
403         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
404         L->addBasicBlockToLoop(New, *LI);
405       } else {
406         // Figure out which loop New is in.
407         const Loop *OldLoop = LI->getLoopFor(*BB);
408         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
409 
410         Loop *&NewLoop = NewLoops[OldLoop];
411         if (!NewLoop) {
412           // Found a new sub-loop.
413           assert(*BB == OldLoop->getHeader() &&
414                  "Header should be first in RPO");
415 
416           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
417           assert(NewLoopParent &&
418                  "Expected parent loop before sub-loop in RPO");
419           NewLoop = new Loop;
420           NewLoopParent->addChildLoop(NewLoop);
421           LoopsToSimplify.insert(NewLoop);
422 
423           // Forget the old loop, since its inputs may have changed.
424           if (SE)
425             SE->forgetLoop(OldLoop);
426         }
427         NewLoop->addBasicBlockToLoop(New, *LI);
428       }
429 
430       if (*BB == Header)
431         // Loop over all of the PHI nodes in the block, changing them to use
432         // the incoming values from the previous block.
433         for (PHINode *OrigPHI : OrigPHINode) {
434           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
435           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
436           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
437             if (It > 1 && L->contains(InValI))
438               InVal = LastValueMap[InValI];
439           VMap[OrigPHI] = InVal;
440           New->getInstList().erase(NewPHI);
441         }
442 
443       // Update our running map of newest clones
444       LastValueMap[*BB] = New;
445       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
446            VI != VE; ++VI)
447         LastValueMap[VI->first] = VI->second;
448 
449       // Add phi entries for newly created values to all exit blocks.
450       for (BasicBlock *Succ : successors(*BB)) {
451         if (L->contains(Succ))
452           continue;
453         for (BasicBlock::iterator BBI = Succ->begin();
454              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
455           Value *Incoming = phi->getIncomingValueForBlock(*BB);
456           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
457           if (It != LastValueMap.end())
458             Incoming = It->second;
459           phi->addIncoming(Incoming, New);
460         }
461       }
462       // Keep track of new headers and latches as we create them, so that
463       // we can insert the proper branches later.
464       if (*BB == Header)
465         Headers.push_back(New);
466       if (*BB == LatchBlock)
467         Latches.push_back(New);
468 
469       NewBlocks.push_back(New);
470       UnrolledLoopBlocks.push_back(New);
471 
472       // Update DomTree: since we just copy the loop body, and each copy has a
473       // dedicated entry block (copy of the header block), this header's copy
474       // dominates all copied blocks. That means, dominance relations in the
475       // copied body are the same as in the original body.
476       if (DT) {
477         if (*BB == Header)
478           DT->addNewBlock(New, Latches[It - 1]);
479         else {
480           auto BBDomNode = DT->getNode(*BB);
481           auto BBIDom = BBDomNode->getIDom();
482           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
483           DT->addNewBlock(
484               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
485         }
486       }
487     }
488 
489     // Remap all instructions in the most recent iteration
490     for (BasicBlock *NewBlock : NewBlocks) {
491       for (Instruction &I : *NewBlock) {
492         ::remapInstruction(&I, LastValueMap);
493         if (auto *II = dyn_cast<IntrinsicInst>(&I))
494           if (II->getIntrinsicID() == Intrinsic::assume)
495             AC->registerAssumption(II);
496       }
497     }
498   }
499 
500   // Loop over the PHI nodes in the original block, setting incoming values.
501   for (PHINode *PN : OrigPHINode) {
502     if (CompletelyUnroll) {
503       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
504       Header->getInstList().erase(PN);
505     }
506     else if (Count > 1) {
507       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
508       // If this value was defined in the loop, take the value defined by the
509       // last iteration of the loop.
510       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
511         if (L->contains(InValI))
512           InVal = LastValueMap[InVal];
513       }
514       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
515       PN->addIncoming(InVal, Latches.back());
516     }
517   }
518 
519   // Now that all the basic blocks for the unrolled iterations are in place,
520   // set up the branches to connect them.
521   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
522     // The original branch was replicated in each unrolled iteration.
523     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
524 
525     // The branch destination.
526     unsigned j = (i + 1) % e;
527     BasicBlock *Dest = Headers[j];
528     bool NeedConditional = true;
529 
530     if (RuntimeTripCount && j != 0) {
531       NeedConditional = false;
532     }
533 
534     // For a complete unroll, make the last iteration end with a branch
535     // to the exit block.
536     if (CompletelyUnroll) {
537       if (j == 0)
538         Dest = LoopExit;
539       NeedConditional = false;
540     }
541 
542     // If we know the trip count or a multiple of it, we can safely use an
543     // unconditional branch for some iterations.
544     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
545       NeedConditional = false;
546     }
547 
548     if (NeedConditional) {
549       // Update the conditional branch's successor for the following
550       // iteration.
551       Term->setSuccessor(!ContinueOnTrue, Dest);
552     } else {
553       // Remove phi operands at this loop exit
554       if (Dest != LoopExit) {
555         BasicBlock *BB = Latches[i];
556         for (BasicBlock *Succ: successors(BB)) {
557           if (Succ == Headers[i])
558             continue;
559           for (BasicBlock::iterator BBI = Succ->begin();
560                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
561             Phi->removeIncomingValue(BB, false);
562           }
563         }
564       }
565       // Replace the conditional branch with an unconditional one.
566       BranchInst::Create(Dest, Term);
567       Term->eraseFromParent();
568     }
569   }
570   // Update dominators of blocks we might reach through exits.
571   // Immediate dominator of such block might change, because we add more
572   // routes which can lead to the exit: we can now reach it from the copied
573   // iterations too. Thus, the new idom of the block will be the nearest
574   // common dominator of the previous idom and common dominator of all copies of
575   // the previous idom. This is equivalent to the nearest common dominator of
576   // the previous idom and the first latch, which dominates all copies of the
577   // previous idom.
578   if (DT && Count > 1) {
579     for (auto *BB : OriginalLoopBlocks) {
580       auto *BBDomNode = DT->getNode(BB);
581       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
582       for (auto *ChildDomNode : BBDomNode->getChildren()) {
583         auto *ChildBB = ChildDomNode->getBlock();
584         if (!L->contains(ChildBB))
585           ChildrenToUpdate.push_back(ChildBB);
586       }
587       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
588       for (auto *ChildBB : ChildrenToUpdate)
589         DT->changeImmediateDominator(ChildBB, NewIDom);
590     }
591   }
592 
593   // Merge adjacent basic blocks, if possible.
594   SmallPtrSet<Loop *, 4> ForgottenLoops;
595   for (BasicBlock *Latch : Latches) {
596     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
597     if (Term->isUnconditional()) {
598       BasicBlock *Dest = Term->getSuccessor(0);
599       if (BasicBlock *Fold =
600               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
601         // Dest has been folded into Fold. Update our worklists accordingly.
602         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
603         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
604                                              UnrolledLoopBlocks.end(), Dest),
605                                  UnrolledLoopBlocks.end());
606       }
607     }
608   }
609 
610   // FIXME: We only preserve DT info for complete unrolling now. Incrementally
611   // updating domtree after partial loop unrolling should also be easy.
612   if (DT && !CompletelyUnroll)
613     DT->recalculate(*L->getHeader()->getParent());
614   else if (DT)
615     DEBUG(DT->verifyDomTree());
616 
617   // Simplify any new induction variables in the partially unrolled loop.
618   if (SE && !CompletelyUnroll) {
619     SmallVector<WeakVH, 16> DeadInsts;
620     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
621 
622     // Aggressively clean up dead instructions that simplifyLoopIVs already
623     // identified. Any remaining should be cleaned up below.
624     while (!DeadInsts.empty())
625       if (Instruction *Inst =
626               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
627         RecursivelyDeleteTriviallyDeadInstructions(Inst);
628   }
629 
630   // At this point, the code is well formed.  We now do a quick sweep over the
631   // inserted code, doing constant propagation and dead code elimination as we
632   // go.
633   const DataLayout &DL = Header->getModule()->getDataLayout();
634   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
635   for (BasicBlock *BB : NewLoopBlocks) {
636     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
637       Instruction *Inst = &*I++;
638 
639       if (Value *V = SimplifyInstruction(Inst, DL))
640         if (LI->replacementPreservesLCSSAForm(Inst, V))
641           Inst->replaceAllUsesWith(V);
642       if (isInstructionTriviallyDead(Inst))
643         BB->getInstList().erase(Inst);
644     }
645   }
646 
647   NumCompletelyUnrolled += CompletelyUnroll;
648   ++NumUnrolled;
649 
650   Loop *OuterL = L->getParentLoop();
651   // Update LoopInfo if the loop is completely removed.
652   if (CompletelyUnroll)
653     LI->markAsRemoved(L);
654 
655   // After complete unrolling most of the blocks should be contained in OuterL.
656   // However, some of them might happen to be out of OuterL (e.g. if they
657   // precede a loop exit). In this case we might need to insert PHI nodes in
658   // order to preserve LCSSA form.
659   // We don't need to check this if we already know that we need to fix LCSSA
660   // form.
661   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
662   // it should be possible to fix it in-place.
663   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
664     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
665 
666   // If we have a pass and a DominatorTree we should re-simplify impacted loops
667   // to ensure subsequent analyses can rely on this form. We want to simplify
668   // at least one layer outside of the loop that was unrolled so that any
669   // changes to the parent loop exposed by the unrolling are considered.
670   if (DT) {
671     if (!OuterL && !CompletelyUnroll)
672       OuterL = L;
673     if (OuterL) {
674       // OuterL includes all loops for which we can break loop-simplify, so
675       // it's sufficient to simplify only it (it'll recursively simplify inner
676       // loops too).
677       // TODO: That potentially might be compile-time expensive. We should try
678       // to fix the loop-simplified form incrementally.
679       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
680 
681       // LCSSA must be performed on the outermost affected loop. The unrolled
682       // loop's last loop latch is guaranteed to be in the outermost loop after
683       // LoopInfo's been updated by markAsRemoved.
684       Loop *LatchLoop = LI->getLoopFor(Latches.back());
685       if (!OuterL->contains(LatchLoop))
686         while (OuterL->getParentLoop() != LatchLoop)
687           OuterL = OuterL->getParentLoop();
688 
689       if (NeedToFixLCSSA)
690         formLCSSARecursively(*OuterL, *DT, LI, SE);
691       else
692         assert(OuterL->isLCSSAForm(*DT) &&
693                "Loops should be in LCSSA form after loop-unroll.");
694     } else {
695       // Simplify loops for which we might've broken loop-simplify form.
696       for (Loop *SubLoop : LoopsToSimplify)
697         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
698     }
699   }
700 
701   return true;
702 }
703 
704 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
705 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
706 /// such metadata node exists, then nullptr is returned.
707 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
708   // First operand should refer to the loop id itself.
709   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
710   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
711 
712   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
713     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
714     if (!MD)
715       continue;
716 
717     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
718     if (!S)
719       continue;
720 
721     if (Name.equals(S->getString()))
722       return MD;
723   }
724   return nullptr;
725 }
726