1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // It works best when loops have been canonicalized by the -indvars pass, 15 // allowing it to determine the trip counts of loops easily. 16 // 17 // The process of unrolling can produce extraneous basic blocks linked with 18 // unconditional branches. This will be corrected in the future. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #define DEBUG_TYPE "loop-unroll" 23 #include "llvm/Transforms/Utils/UnrollLoop.h" 24 #include "llvm/BasicBlock.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 using namespace llvm; 35 36 // TODO: Should these be here or in LoopUnroll? 37 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 38 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 39 40 /// RemapInstruction - Convert the instruction operands from referencing the 41 /// current values into those specified by VMap. 42 static inline void RemapInstruction(Instruction *I, 43 ValueToValueMapTy &VMap) { 44 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 45 Value *Op = I->getOperand(op); 46 ValueToValueMapTy::iterator It = VMap.find(Op); 47 if (It != VMap.end()) 48 I->setOperand(op, It->second); 49 } 50 } 51 52 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 53 /// only has one predecessor, and that predecessor only has one successor. 54 /// The LoopInfo Analysis that is passed will be kept consistent. 55 /// Returns the new combined block. 56 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) { 57 // Merge basic blocks into their predecessor if there is only one distinct 58 // pred, and if there is only one distinct successor of the predecessor, and 59 // if there are no PHI nodes. 60 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 61 if (!OnlyPred) return 0; 62 63 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 64 return 0; 65 66 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 67 68 // Resolve any PHI nodes at the start of the block. They are all 69 // guaranteed to have exactly one entry if they exist, unless there are 70 // multiple duplicate (but guaranteed to be equal) entries for the 71 // incoming edges. This occurs when there are multiple edges from 72 // OnlyPred to OnlySucc. 73 FoldSingleEntryPHINodes(BB); 74 75 // Delete the unconditional branch from the predecessor... 76 OnlyPred->getInstList().pop_back(); 77 78 // Move all definitions in the successor to the predecessor... 79 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 80 81 // Make all PHI nodes that referred to BB now refer to Pred as their 82 // source... 83 BB->replaceAllUsesWith(OnlyPred); 84 85 std::string OldName = BB->getName(); 86 87 // Erase basic block from the function... 88 LI->removeBlock(BB); 89 BB->eraseFromParent(); 90 91 // Inherit predecessor's name if it exists... 92 if (!OldName.empty() && !OnlyPred->hasName()) 93 OnlyPred->setName(OldName); 94 95 return OnlyPred; 96 } 97 98 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 99 /// if unrolling was succesful, or false if the loop was unmodified. Unrolling 100 /// can only fail when the loop's latch block is not terminated by a conditional 101 /// branch instruction. However, if the trip count (and multiple) are not known, 102 /// loop unrolling will mostly produce more code that is no faster. 103 /// 104 /// The LoopInfo Analysis that is passed will be kept consistent. 105 /// 106 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 107 /// removed from the LoopPassManager as well. LPM can also be NULL. 108 bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) { 109 BasicBlock *Preheader = L->getLoopPreheader(); 110 if (!Preheader) { 111 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 112 return false; 113 } 114 115 BasicBlock *LatchBlock = L->getLoopLatch(); 116 if (!LatchBlock) { 117 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 118 return false; 119 } 120 121 BasicBlock *Header = L->getHeader(); 122 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 123 124 if (!BI || BI->isUnconditional()) { 125 // The loop-rotate pass can be helpful to avoid this in many cases. 126 DEBUG(dbgs() << 127 " Can't unroll; loop not terminated by a conditional branch.\n"); 128 return false; 129 } 130 131 // Notify ScalarEvolution that the loop will be substantially changed, 132 // if not outright eliminated. 133 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) 134 SE->forgetLoop(L); 135 136 // Find trip count 137 unsigned TripCount = L->getSmallConstantTripCount(); 138 // Find trip multiple if count is not available 139 unsigned TripMultiple = 1; 140 if (TripCount == 0) 141 TripMultiple = L->getSmallConstantTripMultiple(); 142 143 if (TripCount != 0) 144 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 145 if (TripMultiple != 1) 146 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 147 148 // Effectively "DCE" unrolled iterations that are beyond the tripcount 149 // and will never be executed. 150 if (TripCount != 0 && Count > TripCount) 151 Count = TripCount; 152 153 assert(Count > 0); 154 assert(TripMultiple > 0); 155 assert(TripCount == 0 || TripCount % TripMultiple == 0); 156 157 // Are we eliminating the loop control altogether? 158 bool CompletelyUnroll = Count == TripCount; 159 160 // If we know the trip count, we know the multiple... 161 unsigned BreakoutTrip = 0; 162 if (TripCount != 0) { 163 BreakoutTrip = TripCount % Count; 164 TripMultiple = 0; 165 } else { 166 // Figure out what multiple to use. 167 BreakoutTrip = TripMultiple = 168 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 169 } 170 171 if (CompletelyUnroll) { 172 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 173 << " with trip count " << TripCount << "!\n"); 174 } else { 175 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 176 << " by " << Count); 177 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 178 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 179 } else if (TripMultiple != 1) { 180 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 181 } 182 DEBUG(dbgs() << "!\n"); 183 } 184 185 std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); 186 187 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 188 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 189 190 // For the first iteration of the loop, we should use the precloned values for 191 // PHI nodes. Insert associations now. 192 ValueToValueMapTy LastValueMap; 193 std::vector<PHINode*> OrigPHINode; 194 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 195 PHINode *PN = cast<PHINode>(I); 196 OrigPHINode.push_back(PN); 197 if (Instruction *I = 198 dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock))) 199 if (L->contains(I)) 200 LastValueMap[I] = I; 201 } 202 203 std::vector<BasicBlock*> Headers; 204 std::vector<BasicBlock*> Latches; 205 Headers.push_back(Header); 206 Latches.push_back(LatchBlock); 207 208 for (unsigned It = 1; It != Count; ++It) { 209 std::vector<BasicBlock*> NewBlocks; 210 211 for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(), 212 E = LoopBlocks.end(); BB != E; ++BB) { 213 ValueToValueMapTy VMap; 214 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 215 Header->getParent()->getBasicBlockList().push_back(New); 216 217 // Loop over all of the PHI nodes in the block, changing them to use the 218 // incoming values from the previous block. 219 if (*BB == Header) 220 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 221 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 222 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 223 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 224 if (It > 1 && L->contains(InValI)) 225 InVal = LastValueMap[InValI]; 226 VMap[OrigPHINode[i]] = InVal; 227 New->getInstList().erase(NewPHI); 228 } 229 230 // Update our running map of newest clones 231 LastValueMap[*BB] = New; 232 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 233 VI != VE; ++VI) 234 LastValueMap[VI->first] = VI->second; 235 236 L->addBasicBlockToLoop(New, LI->getBase()); 237 238 // Add phi entries for newly created values to all exit blocks except 239 // the successor of the latch block. The successor of the exit block will 240 // be updated specially after unrolling all the way. 241 if (*BB != LatchBlock) 242 for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end(); 243 UI != UE;) { 244 Instruction *UseInst = cast<Instruction>(*UI); 245 ++UI; 246 if (isa<PHINode>(UseInst) && !L->contains(UseInst)) { 247 PHINode *phi = cast<PHINode>(UseInst); 248 Value *Incoming = phi->getIncomingValueForBlock(*BB); 249 phi->addIncoming(Incoming, New); 250 } 251 } 252 253 // Keep track of new headers and latches as we create them, so that 254 // we can insert the proper branches later. 255 if (*BB == Header) 256 Headers.push_back(New); 257 if (*BB == LatchBlock) { 258 Latches.push_back(New); 259 260 // Also, clear out the new latch's back edge so that it doesn't look 261 // like a new loop, so that it's amenable to being merged with adjacent 262 // blocks later on. 263 TerminatorInst *Term = New->getTerminator(); 264 assert(L->contains(Term->getSuccessor(!ContinueOnTrue))); 265 assert(Term->getSuccessor(ContinueOnTrue) == LoopExit); 266 Term->setSuccessor(!ContinueOnTrue, NULL); 267 } 268 269 NewBlocks.push_back(New); 270 } 271 272 // Remap all instructions in the most recent iteration 273 for (unsigned i = 0; i < NewBlocks.size(); ++i) 274 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 275 E = NewBlocks[i]->end(); I != E; ++I) 276 ::RemapInstruction(I, LastValueMap); 277 } 278 279 // The latch block exits the loop. If there are any PHI nodes in the 280 // successor blocks, update them to use the appropriate values computed as the 281 // last iteration of the loop. 282 if (Count != 1) { 283 SmallPtrSet<PHINode*, 8> Users; 284 for (Value::use_iterator UI = LatchBlock->use_begin(), 285 UE = LatchBlock->use_end(); UI != UE; ++UI) 286 if (PHINode *phi = dyn_cast<PHINode>(*UI)) 287 Users.insert(phi); 288 289 BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]); 290 for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end(); 291 SI != SE; ++SI) { 292 PHINode *PN = *SI; 293 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 294 // If this value was defined in the loop, take the value defined by the 295 // last iteration of the loop. 296 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 297 if (L->contains(InValI)) 298 InVal = LastValueMap[InVal]; 299 } 300 PN->addIncoming(InVal, LastIterationBB); 301 } 302 } 303 304 // Now, if we're doing complete unrolling, loop over the PHI nodes in the 305 // original block, setting them to their incoming values. 306 if (CompletelyUnroll) { 307 BasicBlock *Preheader = L->getLoopPreheader(); 308 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 309 PHINode *PN = OrigPHINode[i]; 310 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 311 Header->getInstList().erase(PN); 312 } 313 } 314 315 // Now that all the basic blocks for the unrolled iterations are in place, 316 // set up the branches to connect them. 317 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 318 // The original branch was replicated in each unrolled iteration. 319 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 320 321 // The branch destination. 322 unsigned j = (i + 1) % e; 323 BasicBlock *Dest = Headers[j]; 324 bool NeedConditional = true; 325 326 // For a complete unroll, make the last iteration end with a branch 327 // to the exit block. 328 if (CompletelyUnroll && j == 0) { 329 Dest = LoopExit; 330 NeedConditional = false; 331 } 332 333 // If we know the trip count or a multiple of it, we can safely use an 334 // unconditional branch for some iterations. 335 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 336 NeedConditional = false; 337 } 338 339 if (NeedConditional) { 340 // Update the conditional branch's successor for the following 341 // iteration. 342 Term->setSuccessor(!ContinueOnTrue, Dest); 343 } else { 344 // Replace the conditional branch with an unconditional one. 345 BranchInst::Create(Dest, Term); 346 Term->eraseFromParent(); 347 // Merge adjacent basic blocks, if possible. 348 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) { 349 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 350 std::replace(Headers.begin(), Headers.end(), Dest, Fold); 351 } 352 } 353 } 354 355 // At this point, the code is well formed. We now do a quick sweep over the 356 // inserted code, doing constant propagation and dead code elimination as we 357 // go. 358 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 359 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 360 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 361 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 362 Instruction *Inst = I++; 363 364 if (isInstructionTriviallyDead(Inst)) 365 (*BB)->getInstList().erase(Inst); 366 else if (Value *V = SimplifyInstruction(Inst)) 367 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 368 Inst->replaceAllUsesWith(V); 369 (*BB)->getInstList().erase(Inst); 370 } 371 } 372 373 NumCompletelyUnrolled += CompletelyUnroll; 374 ++NumUnrolled; 375 // Remove the loop from the LoopPassManager if it's completely removed. 376 if (CompletelyUnroll && LPM != NULL) 377 LPM->deleteLoopFromQueue(L); 378 379 return true; 380 } 381