1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 65 #include "llvm/Transforms/Utils/UnrollLoop.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <assert.h> 69 #include <type_traits> 70 #include <vector> 71 72 namespace llvm { 73 class DataLayout; 74 class Value; 75 } // namespace llvm 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-unroll" 80 81 // TODO: Should these be here or in LoopUnroll? 82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 85 "latch (completely or otherwise)"); 86 87 static cl::opt<bool> 88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 89 cl::desc("Allow runtime unrolled loops to be unrolled " 90 "with epilog instead of prolog.")); 91 92 static cl::opt<bool> 93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 94 cl::desc("Verify domtree after unrolling"), 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true) 97 #else 98 cl::init(false) 99 #endif 100 ); 101 102 /// Check if unrolling created a situation where we need to insert phi nodes to 103 /// preserve LCSSA form. 104 /// \param Blocks is a vector of basic blocks representing unrolled loop. 105 /// \param L is the outer loop. 106 /// It's possible that some of the blocks are in L, and some are not. In this 107 /// case, if there is a use is outside L, and definition is inside L, we need to 108 /// insert a phi-node, otherwise LCSSA will be broken. 109 /// The function is just a helper function for llvm::UnrollLoop that returns 110 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 111 static bool needToInsertPhisForLCSSA(Loop *L, 112 const std::vector<BasicBlock *> &Blocks, 113 LoopInfo *LI) { 114 for (BasicBlock *BB : Blocks) { 115 if (LI->getLoopFor(BB) == L) 116 continue; 117 for (Instruction &I : *BB) { 118 for (Use &U : I.operands()) { 119 if (const auto *Def = dyn_cast<Instruction>(U)) { 120 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 121 if (!DefLoop) 122 continue; 123 if (DefLoop->contains(L)) 124 return true; 125 } 126 } 127 } 128 } 129 return false; 130 } 131 132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 133 /// and adds a mapping from the original loop to the new loop to NewLoops. 134 /// Returns nullptr if no new loop was created and a pointer to the 135 /// original loop OriginalBB was part of otherwise. 136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 137 BasicBlock *ClonedBB, LoopInfo *LI, 138 NewLoopsMap &NewLoops) { 139 // Figure out which loop New is in. 140 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 141 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 142 143 Loop *&NewLoop = NewLoops[OldLoop]; 144 if (!NewLoop) { 145 // Found a new sub-loop. 146 assert(OriginalBB == OldLoop->getHeader() && 147 "Header should be first in RPO"); 148 149 NewLoop = LI->AllocateLoop(); 150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 151 152 if (NewLoopParent) 153 NewLoopParent->addChildLoop(NewLoop); 154 else 155 LI->addTopLevelLoop(NewLoop); 156 157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 158 return OldLoop; 159 } else { 160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 161 return nullptr; 162 } 163 } 164 165 /// The function chooses which type of unroll (epilog or prolog) is more 166 /// profitabale. 167 /// Epilog unroll is more profitable when there is PHI that starts from 168 /// constant. In this case epilog will leave PHI start from constant, 169 /// but prolog will convert it to non-constant. 170 /// 171 /// loop: 172 /// PN = PHI [I, Latch], [CI, PreHeader] 173 /// I = foo(PN) 174 /// ... 175 /// 176 /// Epilog unroll case. 177 /// loop: 178 /// PN = PHI [I2, Latch], [CI, PreHeader] 179 /// I1 = foo(PN) 180 /// I2 = foo(I1) 181 /// ... 182 /// Prolog unroll case. 183 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 184 /// loop: 185 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 186 /// I1 = foo(PN) 187 /// I2 = foo(I1) 188 /// ... 189 /// 190 static bool isEpilogProfitable(Loop *L) { 191 BasicBlock *PreHeader = L->getLoopPreheader(); 192 BasicBlock *Header = L->getHeader(); 193 assert(PreHeader && Header); 194 for (const PHINode &PN : Header->phis()) { 195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 196 return true; 197 } 198 return false; 199 } 200 201 /// Perform some cleanup and simplifications on loops after unrolling. It is 202 /// useful to simplify the IV's in the new loop, as well as do a quick 203 /// simplify/dce pass of the instructions. 204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 205 ScalarEvolution *SE, DominatorTree *DT, 206 AssumptionCache *AC, 207 const TargetTransformInfo *TTI) { 208 // Simplify any new induction variables in the partially unrolled loop. 209 if (SE && SimplifyIVs) { 210 SmallVector<WeakTrackingVH, 16> DeadInsts; 211 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 212 213 // Aggressively clean up dead instructions that simplifyLoopIVs already 214 // identified. Any remaining should be cleaned up below. 215 while (!DeadInsts.empty()) { 216 Value *V = DeadInsts.pop_back_val(); 217 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 218 RecursivelyDeleteTriviallyDeadInstructions(Inst); 219 } 220 } 221 222 // At this point, the code is well formed. We now do a quick sweep over the 223 // inserted code, doing constant propagation and dead code elimination as we 224 // go. 225 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 226 for (BasicBlock *BB : L->getBlocks()) { 227 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 228 Instruction *Inst = &*I++; 229 230 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 231 if (LI->replacementPreservesLCSSAForm(Inst, V)) 232 Inst->replaceAllUsesWith(V); 233 if (isInstructionTriviallyDead(Inst)) 234 BB->getInstList().erase(Inst); 235 } 236 } 237 238 // TODO: after peeling or unrolling, previously loop variant conditions are 239 // likely to fold to constants, eagerly propagating those here will require 240 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 241 // appropriate. 242 } 243 244 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 245 /// can only fail when the loop's latch block is not terminated by a conditional 246 /// branch instruction. However, if the trip count (and multiple) are not known, 247 /// loop unrolling will mostly produce more code that is no faster. 248 /// 249 /// TripCount is the upper bound of the iteration on which control exits 250 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 251 /// via an early branch in other loop block or via LatchBlock terminator. This 252 /// is relaxed from the general definition of trip count which is the number of 253 /// times the loop header executes. Note that UnrollLoop assumes that the loop 254 /// counter test is in LatchBlock in order to remove unnecesssary instances of 255 /// the test. If control can exit the loop from the LatchBlock's terminator 256 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 257 /// 258 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 259 /// needs to be preserved. It is needed when we use trip count upper bound to 260 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 261 /// conditional branch needs to be preserved. 262 /// 263 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 264 /// execute without exiting the loop. 265 /// 266 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 267 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 268 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 269 /// iterations before branching into the unrolled loop. UnrollLoop will not 270 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 271 /// AllowExpensiveTripCount is false. 272 /// 273 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 274 /// number of iterations we want to peel off. 275 /// 276 /// The LoopInfo Analysis that is passed will be kept consistent. 277 /// 278 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 279 /// DominatorTree if they are non-null. 280 /// 281 /// If RemainderLoop is non-null, it will receive the remainder loop (if 282 /// required and not fully unrolled). 283 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 284 ScalarEvolution *SE, DominatorTree *DT, 285 AssumptionCache *AC, 286 const TargetTransformInfo *TTI, 287 OptimizationRemarkEmitter *ORE, 288 bool PreserveLCSSA, Loop **RemainderLoop) { 289 290 BasicBlock *Preheader = L->getLoopPreheader(); 291 if (!Preheader) { 292 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 293 return LoopUnrollResult::Unmodified; 294 } 295 296 BasicBlock *LatchBlock = L->getLoopLatch(); 297 if (!LatchBlock) { 298 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 299 return LoopUnrollResult::Unmodified; 300 } 301 302 // Loops with indirectbr cannot be cloned. 303 if (!L->isSafeToClone()) { 304 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 305 return LoopUnrollResult::Unmodified; 306 } 307 308 // The current loop unroll pass can unroll loops that have 309 // (1) single latch; and 310 // (2a) latch is unconditional; or 311 // (2b) latch is conditional and is an exiting block 312 // FIXME: The implementation can be extended to work with more complicated 313 // cases, e.g. loops with multiple latches. 314 BasicBlock *Header = L->getHeader(); 315 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 316 317 // A conditional branch which exits the loop, which can be optimized to an 318 // unconditional branch in the unrolled loop in some cases. 319 BranchInst *ExitingBI = nullptr; 320 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 321 if (LatchIsExiting) 322 ExitingBI = LatchBI; 323 else if (BasicBlock *ExitingBlock = L->getExitingBlock()) 324 ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 325 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 326 LLVM_DEBUG( 327 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 328 return LoopUnrollResult::Unmodified; 329 } 330 LLVM_DEBUG({ 331 if (ExitingBI) 332 dbgs() << " Exiting Block = " << ExitingBI->getParent()->getName() 333 << "\n"; 334 else 335 dbgs() << " No single exiting block\n"; 336 }); 337 338 if (Header->hasAddressTaken()) { 339 // The loop-rotate pass can be helpful to avoid this in many cases. 340 LLVM_DEBUG( 341 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 342 return LoopUnrollResult::Unmodified; 343 } 344 345 if (ULO.TripCount != 0) 346 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 347 if (ULO.TripMultiple != 1) 348 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 349 350 // Effectively "DCE" unrolled iterations that are beyond the tripcount 351 // and will never be executed. 352 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 353 ULO.Count = ULO.TripCount; 354 355 // Don't enter the unroll code if there is nothing to do. 356 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 357 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 358 return LoopUnrollResult::Unmodified; 359 } 360 361 assert(ULO.Count > 0); 362 assert(ULO.TripMultiple > 0); 363 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 364 365 // Are we eliminating the loop control altogether? 366 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 367 SmallVector<BasicBlock *, 4> ExitBlocks; 368 L->getExitBlocks(ExitBlocks); 369 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 370 371 // Go through all exits of L and see if there are any phi-nodes there. We just 372 // conservatively assume that they're inserted to preserve LCSSA form, which 373 // means that complete unrolling might break this form. We need to either fix 374 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 375 // now we just recompute LCSSA for the outer loop, but it should be possible 376 // to fix it in-place. 377 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 378 any_of(ExitBlocks, [](const BasicBlock *BB) { 379 return isa<PHINode>(BB->begin()); 380 }); 381 382 // We assume a run-time trip count if the compiler cannot 383 // figure out the loop trip count and the unroll-runtime 384 // flag is specified. 385 bool RuntimeTripCount = 386 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 387 388 assert((!RuntimeTripCount || !ULO.PeelCount) && 389 "Did not expect runtime trip-count unrolling " 390 "and peeling for the same loop"); 391 392 bool Peeled = false; 393 if (ULO.PeelCount) { 394 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 395 396 // Successful peeling may result in a change in the loop preheader/trip 397 // counts. If we later unroll the loop, we want these to be updated. 398 if (Peeled) { 399 // According to our guards and profitability checks the only 400 // meaningful exit should be latch block. Other exits go to deopt, 401 // so we do not worry about them. 402 BasicBlock *ExitingBlock = L->getLoopLatch(); 403 assert(ExitingBlock && "Loop without exiting block?"); 404 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 405 Preheader = L->getLoopPreheader(); 406 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 407 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 408 } 409 } 410 411 // Loops containing convergent instructions must have a count that divides 412 // their TripMultiple. 413 LLVM_DEBUG( 414 { 415 bool HasConvergent = false; 416 for (auto &BB : L->blocks()) 417 for (auto &I : *BB) 418 if (auto *CB = dyn_cast<CallBase>(&I)) 419 HasConvergent |= CB->isConvergent(); 420 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 421 "Unroll count must divide trip multiple if loop contains a " 422 "convergent operation."); 423 }); 424 425 bool EpilogProfitability = 426 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 427 : isEpilogProfitable(L); 428 429 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 430 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 431 EpilogProfitability, ULO.UnrollRemainder, 432 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 433 PreserveLCSSA, RemainderLoop)) { 434 if (ULO.Force) 435 RuntimeTripCount = false; 436 else { 437 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 438 "generated when assuming runtime trip count\n"); 439 return LoopUnrollResult::Unmodified; 440 } 441 } 442 443 // If we know the trip count, we know the multiple... 444 unsigned BreakoutTrip = 0; 445 if (ULO.TripCount != 0) { 446 BreakoutTrip = ULO.TripCount % ULO.Count; 447 ULO.TripMultiple = 0; 448 } else { 449 // Figure out what multiple to use. 450 BreakoutTrip = ULO.TripMultiple = 451 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 452 } 453 454 using namespace ore; 455 // Report the unrolling decision. 456 if (CompletelyUnroll) { 457 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 458 << " with trip count " << ULO.TripCount << "!\n"); 459 if (ORE) 460 ORE->emit([&]() { 461 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 462 L->getHeader()) 463 << "completely unrolled loop with " 464 << NV("UnrollCount", ULO.TripCount) << " iterations"; 465 }); 466 } else if (ULO.PeelCount) { 467 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 468 << " with iteration count " << ULO.PeelCount << "!\n"); 469 if (ORE) 470 ORE->emit([&]() { 471 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 472 L->getHeader()) 473 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 474 << " iterations"; 475 }); 476 } else { 477 auto DiagBuilder = [&]() { 478 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 479 L->getHeader()); 480 return Diag << "unrolled loop by a factor of " 481 << NV("UnrollCount", ULO.Count); 482 }; 483 484 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 485 << ULO.Count); 486 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 487 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 488 if (ORE) 489 ORE->emit([&]() { 490 return DiagBuilder() << " with a breakout at trip " 491 << NV("BreakoutTrip", BreakoutTrip); 492 }); 493 } else if (ULO.TripMultiple != 1) { 494 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 495 if (ORE) 496 ORE->emit([&]() { 497 return DiagBuilder() 498 << " with " << NV("TripMultiple", ULO.TripMultiple) 499 << " trips per branch"; 500 }); 501 } else if (RuntimeTripCount) { 502 LLVM_DEBUG(dbgs() << " with run-time trip count"); 503 if (ORE) 504 ORE->emit( 505 [&]() { return DiagBuilder() << " with run-time trip count"; }); 506 } 507 LLVM_DEBUG(dbgs() << "!\n"); 508 } 509 510 // We are going to make changes to this loop. SCEV may be keeping cached info 511 // about it, in particular about backedge taken count. The changes we make 512 // are guaranteed to invalidate this information for our loop. It is tempting 513 // to only invalidate the loop being unrolled, but it is incorrect as long as 514 // all exiting branches from all inner loops have impact on the outer loops, 515 // and if something changes inside them then any of outer loops may also 516 // change. When we forget outermost loop, we also forget all contained loops 517 // and this is what we need here. 518 if (SE) { 519 if (ULO.ForgetAllSCEV) 520 SE->forgetAllLoops(); 521 else 522 SE->forgetTopmostLoop(L); 523 } 524 525 if (!LatchIsExiting) 526 ++NumUnrolledNotLatch; 527 Optional<bool> ContinueOnTrue = None; 528 BasicBlock *LoopExit = nullptr; 529 if (ExitingBI) { 530 ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0)); 531 LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue); 532 } 533 534 // For the first iteration of the loop, we should use the precloned values for 535 // PHI nodes. Insert associations now. 536 ValueToValueMapTy LastValueMap; 537 std::vector<PHINode*> OrigPHINode; 538 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 539 OrigPHINode.push_back(cast<PHINode>(I)); 540 } 541 542 std::vector<BasicBlock *> Headers; 543 std::vector<BasicBlock *> ExitingBlocks; 544 std::vector<BasicBlock *> ExitingSucc; 545 std::vector<BasicBlock *> Latches; 546 Headers.push_back(Header); 547 Latches.push_back(LatchBlock); 548 if (ExitingBI) { 549 ExitingBlocks.push_back(ExitingBI->getParent()); 550 ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue))); 551 } 552 553 // The current on-the-fly SSA update requires blocks to be processed in 554 // reverse postorder so that LastValueMap contains the correct value at each 555 // exit. 556 LoopBlocksDFS DFS(L); 557 DFS.perform(LI); 558 559 // Stash the DFS iterators before adding blocks to the loop. 560 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 561 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 562 563 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 564 565 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 566 // might break loop-simplified form for these loops (as they, e.g., would 567 // share the same exit blocks). We'll keep track of loops for which we can 568 // break this so that later we can re-simplify them. 569 SmallSetVector<Loop *, 4> LoopsToSimplify; 570 for (Loop *SubLoop : *L) 571 LoopsToSimplify.insert(SubLoop); 572 573 if (Header->getParent()->isDebugInfoForProfiling()) 574 for (BasicBlock *BB : L->getBlocks()) 575 for (Instruction &I : *BB) 576 if (!isa<DbgInfoIntrinsic>(&I)) 577 if (const DILocation *DIL = I.getDebugLoc()) { 578 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 579 if (NewDIL) 580 I.setDebugLoc(NewDIL.getValue()); 581 else 582 LLVM_DEBUG(dbgs() 583 << "Failed to create new discriminator: " 584 << DIL->getFilename() << " Line: " << DIL->getLine()); 585 } 586 587 for (unsigned It = 1; It != ULO.Count; ++It) { 588 SmallVector<BasicBlock *, 8> NewBlocks; 589 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 590 NewLoops[L] = L; 591 592 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 593 ValueToValueMapTy VMap; 594 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 595 Header->getParent()->getBasicBlockList().push_back(New); 596 597 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 598 "Header should not be in a sub-loop"); 599 // Tell LI about New. 600 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 601 if (OldLoop) 602 LoopsToSimplify.insert(NewLoops[OldLoop]); 603 604 if (*BB == Header) 605 // Loop over all of the PHI nodes in the block, changing them to use 606 // the incoming values from the previous block. 607 for (PHINode *OrigPHI : OrigPHINode) { 608 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 609 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 610 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 611 if (It > 1 && L->contains(InValI)) 612 InVal = LastValueMap[InValI]; 613 VMap[OrigPHI] = InVal; 614 New->getInstList().erase(NewPHI); 615 } 616 617 // Update our running map of newest clones 618 LastValueMap[*BB] = New; 619 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 620 VI != VE; ++VI) 621 LastValueMap[VI->first] = VI->second; 622 623 // Add phi entries for newly created values to all exit blocks. 624 for (BasicBlock *Succ : successors(*BB)) { 625 if (L->contains(Succ)) 626 continue; 627 for (PHINode &PHI : Succ->phis()) { 628 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 629 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 630 if (It != LastValueMap.end()) 631 Incoming = It->second; 632 PHI.addIncoming(Incoming, New); 633 } 634 } 635 // Keep track of new headers and latches as we create them, so that 636 // we can insert the proper branches later. 637 if (*BB == Header) 638 Headers.push_back(New); 639 if (*BB == LatchBlock) 640 Latches.push_back(New); 641 642 // Keep track of the exiting block and its successor block contained in 643 // the loop for the current iteration. 644 if (ExitingBI) { 645 if (*BB == ExitingBlocks[0]) 646 ExitingBlocks.push_back(New); 647 if (*BB == ExitingSucc[0]) 648 ExitingSucc.push_back(New); 649 } 650 651 NewBlocks.push_back(New); 652 UnrolledLoopBlocks.push_back(New); 653 654 // Update DomTree: since we just copy the loop body, and each copy has a 655 // dedicated entry block (copy of the header block), this header's copy 656 // dominates all copied blocks. That means, dominance relations in the 657 // copied body are the same as in the original body. 658 if (DT) { 659 if (*BB == Header) 660 DT->addNewBlock(New, Latches[It - 1]); 661 else { 662 auto BBDomNode = DT->getNode(*BB); 663 auto BBIDom = BBDomNode->getIDom(); 664 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 665 DT->addNewBlock( 666 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 667 } 668 } 669 } 670 671 // Remap all instructions in the most recent iteration 672 remapInstructionsInBlocks(NewBlocks, LastValueMap); 673 for (BasicBlock *NewBlock : NewBlocks) { 674 for (Instruction &I : *NewBlock) { 675 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 676 if (II->getIntrinsicID() == Intrinsic::assume) 677 AC->registerAssumption(II); 678 } 679 } 680 } 681 682 // Loop over the PHI nodes in the original block, setting incoming values. 683 for (PHINode *PN : OrigPHINode) { 684 if (CompletelyUnroll) { 685 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 686 Header->getInstList().erase(PN); 687 } else if (ULO.Count > 1) { 688 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 689 // If this value was defined in the loop, take the value defined by the 690 // last iteration of the loop. 691 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 692 if (L->contains(InValI)) 693 InVal = LastValueMap[InVal]; 694 } 695 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 696 PN->addIncoming(InVal, Latches.back()); 697 } 698 } 699 700 auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop, 701 bool NeedConditional, Optional<bool> ContinueOnTrue, 702 bool IsDestLoopExit) { 703 auto *Term = cast<BranchInst>(Src->getTerminator()); 704 if (NeedConditional) { 705 // Update the conditional branch's successor for the following 706 // iteration. 707 assert(ContinueOnTrue.hasValue() && 708 "Expecting valid ContinueOnTrue when NeedConditional is true"); 709 Term->setSuccessor(!(*ContinueOnTrue), Dest); 710 } else { 711 // Remove phi operands at this loop exit 712 if (!IsDestLoopExit) { 713 BasicBlock *BB = Src; 714 for (BasicBlock *Succ : successors(BB)) { 715 // Preserve the incoming value from BB if we are jumping to the block 716 // in the current loop. 717 if (Succ == BlockInLoop) 718 continue; 719 for (PHINode &Phi : Succ->phis()) 720 Phi.removeIncomingValue(BB, false); 721 } 722 } 723 // Replace the conditional branch with an unconditional one. 724 BranchInst::Create(Dest, Term); 725 Term->eraseFromParent(); 726 } 727 }; 728 729 // Connect latches of the unrolled iterations to the headers of the next 730 // iteration. If the latch is also the exiting block, the conditional branch 731 // may have to be preserved. 732 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 733 // The branch destination. 734 unsigned j = (i + 1) % e; 735 BasicBlock *Dest = Headers[j]; 736 bool NeedConditional = LatchIsExiting; 737 738 if (LatchIsExiting) { 739 if (RuntimeTripCount && j != 0) 740 NeedConditional = false; 741 742 // For a complete unroll, make the last iteration end with a branch 743 // to the exit block. 744 if (CompletelyUnroll) { 745 if (j == 0) 746 Dest = LoopExit; 747 // If using trip count upper bound to completely unroll, we need to 748 // keep the conditional branch except the last one because the loop 749 // may exit after any iteration. 750 assert(NeedConditional && 751 "NeedCondition cannot be modified by both complete " 752 "unrolling and runtime unrolling"); 753 NeedConditional = 754 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 755 } else if (j != BreakoutTrip && 756 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 757 // If we know the trip count or a multiple of it, we can safely use an 758 // unconditional branch for some iterations. 759 NeedConditional = false; 760 } 761 } 762 763 setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue, 764 Dest == LoopExit); 765 } 766 767 if (!LatchIsExiting) { 768 // If the latch is not exiting, we may be able to simplify the conditional 769 // branches in the unrolled exiting blocks. 770 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 771 // The branch destination. 772 unsigned j = (i + 1) % e; 773 bool NeedConditional = true; 774 775 if (RuntimeTripCount && j != 0) 776 NeedConditional = false; 777 778 if (CompletelyUnroll) 779 // We cannot drop the conditional branch for the last condition, as we 780 // may have to execute the loop body depending on the condition. 781 NeedConditional = j == 0 || ULO.PreserveCondBr; 782 else if (j != BreakoutTrip && 783 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 784 // If we know the trip count or a multiple of it, we can safely use an 785 // unconditional branch for some iterations. 786 NeedConditional = false; 787 788 // Conditional branches from non-latch exiting block have successors 789 // either in the same loop iteration or outside the loop. The branches are 790 // already correct. 791 if (NeedConditional) 792 continue; 793 setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional, 794 None, false); 795 } 796 797 // When completely unrolling, the last latch becomes unreachable. 798 if (CompletelyUnroll) { 799 BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator()); 800 new UnreachableInst(Term->getContext(), Term); 801 Term->eraseFromParent(); 802 } 803 } 804 805 // Update dominators of blocks we might reach through exits. 806 // Immediate dominator of such block might change, because we add more 807 // routes which can lead to the exit: we can now reach it from the copied 808 // iterations too. 809 if (DT && ULO.Count > 1) { 810 for (auto *BB : OriginalLoopBlocks) { 811 auto *BBDomNode = DT->getNode(BB); 812 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 813 for (auto *ChildDomNode : BBDomNode->children()) { 814 auto *ChildBB = ChildDomNode->getBlock(); 815 if (!L->contains(ChildBB)) 816 ChildrenToUpdate.push_back(ChildBB); 817 } 818 BasicBlock *NewIDom; 819 if (ExitingBI && BB == ExitingBlocks[0]) { 820 // The latch is special because we emit unconditional branches in 821 // some cases where the original loop contained a conditional branch. 822 // Since the latch is always at the bottom of the loop, if the latch 823 // dominated an exit before unrolling, the new dominator of that exit 824 // must also be a latch. Specifically, the dominator is the first 825 // latch which ends in a conditional branch, or the last latch if 826 // there is no such latch. 827 // For loops exiting from non latch exiting block, we limit the 828 // branch simplification to single exiting block loops. 829 NewIDom = ExitingBlocks.back(); 830 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 831 Instruction *Term = ExitingBlocks[i]->getTerminator(); 832 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 833 NewIDom = 834 DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]); 835 break; 836 } 837 } 838 } else { 839 // The new idom of the block will be the nearest common dominator 840 // of all copies of the previous idom. This is equivalent to the 841 // nearest common dominator of the previous idom and the first latch, 842 // which dominates all copies of the previous idom. 843 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 844 } 845 for (auto *ChildBB : ChildrenToUpdate) 846 DT->changeImmediateDominator(ChildBB, NewIDom); 847 } 848 } 849 850 assert(!DT || !UnrollVerifyDomtree || 851 DT->verify(DominatorTree::VerificationLevel::Fast)); 852 853 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 854 // Merge adjacent basic blocks, if possible. 855 for (BasicBlock *Latch : Latches) { 856 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 857 assert((Term || 858 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 859 "Need a branch as terminator, except when fully unrolling with " 860 "unconditional latch"); 861 if (Term && Term->isUnconditional()) { 862 BasicBlock *Dest = Term->getSuccessor(0); 863 BasicBlock *Fold = Dest->getUniquePredecessor(); 864 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 865 // Dest has been folded into Fold. Update our worklists accordingly. 866 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 867 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 868 UnrolledLoopBlocks.end(), Dest), 869 UnrolledLoopBlocks.end()); 870 } 871 } 872 } 873 // Apply updates to the DomTree. 874 DT = &DTU.getDomTree(); 875 876 // At this point, the code is well formed. We now simplify the unrolled loop, 877 // doing constant propagation and dead code elimination as we go. 878 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 879 SE, DT, AC, TTI); 880 881 NumCompletelyUnrolled += CompletelyUnroll; 882 ++NumUnrolled; 883 884 Loop *OuterL = L->getParentLoop(); 885 // Update LoopInfo if the loop is completely removed. 886 if (CompletelyUnroll) 887 LI->erase(L); 888 889 // After complete unrolling most of the blocks should be contained in OuterL. 890 // However, some of them might happen to be out of OuterL (e.g. if they 891 // precede a loop exit). In this case we might need to insert PHI nodes in 892 // order to preserve LCSSA form. 893 // We don't need to check this if we already know that we need to fix LCSSA 894 // form. 895 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 896 // it should be possible to fix it in-place. 897 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 898 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 899 900 // If we have a pass and a DominatorTree we should re-simplify impacted loops 901 // to ensure subsequent analyses can rely on this form. We want to simplify 902 // at least one layer outside of the loop that was unrolled so that any 903 // changes to the parent loop exposed by the unrolling are considered. 904 if (DT) { 905 if (OuterL) { 906 // OuterL includes all loops for which we can break loop-simplify, so 907 // it's sufficient to simplify only it (it'll recursively simplify inner 908 // loops too). 909 if (NeedToFixLCSSA) { 910 // LCSSA must be performed on the outermost affected loop. The unrolled 911 // loop's last loop latch is guaranteed to be in the outermost loop 912 // after LoopInfo's been updated by LoopInfo::erase. 913 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 914 Loop *FixLCSSALoop = OuterL; 915 if (!FixLCSSALoop->contains(LatchLoop)) 916 while (FixLCSSALoop->getParentLoop() != LatchLoop) 917 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 918 919 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 920 } else if (PreserveLCSSA) { 921 assert(OuterL->isLCSSAForm(*DT) && 922 "Loops should be in LCSSA form after loop-unroll."); 923 } 924 925 // TODO: That potentially might be compile-time expensive. We should try 926 // to fix the loop-simplified form incrementally. 927 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 928 } else { 929 // Simplify loops for which we might've broken loop-simplify form. 930 for (Loop *SubLoop : LoopsToSimplify) 931 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 932 } 933 } 934 935 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 936 : LoopUnrollResult::PartiallyUnrolled; 937 } 938 939 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 940 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 941 /// such metadata node exists, then nullptr is returned. 942 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 943 // First operand should refer to the loop id itself. 944 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 945 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 946 947 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 948 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 949 if (!MD) 950 continue; 951 952 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 953 if (!S) 954 continue; 955 956 if (Name.equals(S->getString())) 957 return MD; 958 } 959 return nullptr; 960 } 961