1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 static cl::opt<bool> 55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 56 cl::desc("Verify domtree after unrolling"), 57 #ifdef NDEBUG 58 cl::init(false) 59 #else 60 cl::init(true) 61 #endif 62 ); 63 64 /// Convert the instruction operands from referencing the current values into 65 /// those specified by VMap. 66 static inline void remapInstruction(Instruction *I, 67 ValueToValueMapTy &VMap) { 68 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 69 Value *Op = I->getOperand(op); 70 ValueToValueMapTy::iterator It = VMap.find(Op); 71 if (It != VMap.end()) 72 I->setOperand(op, It->second); 73 } 74 75 if (PHINode *PN = dyn_cast<PHINode>(I)) { 76 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 77 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 78 if (It != VMap.end()) 79 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 80 } 81 } 82 } 83 84 /// Folds a basic block into its predecessor if it only has one predecessor, and 85 /// that predecessor only has one successor. 86 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 87 /// successful references to the containing loop must be removed from 88 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 89 /// references to the eliminated BB. The argument ForgottenLoops contains a set 90 /// of loops that have already been forgotten to prevent redundant, expensive 91 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 92 static BasicBlock * 93 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 94 SmallPtrSetImpl<Loop *> &ForgottenLoops, 95 DominatorTree *DT) { 96 // Merge basic blocks into their predecessor if there is only one distinct 97 // pred, and if there is only one distinct successor of the predecessor, and 98 // if there are no PHI nodes. 99 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 100 if (!OnlyPred) return nullptr; 101 102 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 103 return nullptr; 104 105 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 106 107 // Resolve any PHI nodes at the start of the block. They are all 108 // guaranteed to have exactly one entry if they exist, unless there are 109 // multiple duplicate (but guaranteed to be equal) entries for the 110 // incoming edges. This occurs when there are multiple edges from 111 // OnlyPred to OnlySucc. 112 FoldSingleEntryPHINodes(BB); 113 114 // Delete the unconditional branch from the predecessor... 115 OnlyPred->getInstList().pop_back(); 116 117 // Make all PHI nodes that referred to BB now refer to Pred as their 118 // source... 119 BB->replaceAllUsesWith(OnlyPred); 120 121 // Move all definitions in the successor to the predecessor... 122 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 123 124 // OldName will be valid until erased. 125 StringRef OldName = BB->getName(); 126 127 // Erase the old block and update dominator info. 128 if (DT) 129 if (DomTreeNode *DTN = DT->getNode(BB)) { 130 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 131 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 132 for (auto *DI : Children) 133 DT->changeImmediateDominator(DI, PredDTN); 134 135 DT->eraseNode(BB); 136 } 137 138 // ScalarEvolution holds references to loop exit blocks. 139 if (SE) { 140 if (Loop *L = LI->getLoopFor(BB)) { 141 if (ForgottenLoops.insert(L).second) 142 SE->forgetLoop(L); 143 } 144 } 145 LI->removeBlock(BB); 146 147 // Inherit predecessor's name if it exists... 148 if (!OldName.empty() && !OnlyPred->hasName()) 149 OnlyPred->setName(OldName); 150 151 BB->eraseFromParent(); 152 153 return OnlyPred; 154 } 155 156 /// Check if unrolling created a situation where we need to insert phi nodes to 157 /// preserve LCSSA form. 158 /// \param Blocks is a vector of basic blocks representing unrolled loop. 159 /// \param L is the outer loop. 160 /// It's possible that some of the blocks are in L, and some are not. In this 161 /// case, if there is a use is outside L, and definition is inside L, we need to 162 /// insert a phi-node, otherwise LCSSA will be broken. 163 /// The function is just a helper function for llvm::UnrollLoop that returns 164 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 165 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 166 LoopInfo *LI) { 167 for (BasicBlock *BB : Blocks) { 168 if (LI->getLoopFor(BB) == L) 169 continue; 170 for (Instruction &I : *BB) { 171 for (Use &U : I.operands()) { 172 if (auto Def = dyn_cast<Instruction>(U)) { 173 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 174 if (!DefLoop) 175 continue; 176 if (DefLoop->contains(L)) 177 return true; 178 } 179 } 180 } 181 } 182 return false; 183 } 184 185 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 186 /// and adds a mapping from the original loop to the new loop to NewLoops. 187 /// Returns nullptr if no new loop was created and a pointer to the 188 /// original loop OriginalBB was part of otherwise. 189 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 190 BasicBlock *ClonedBB, LoopInfo *LI, 191 NewLoopsMap &NewLoops) { 192 // Figure out which loop New is in. 193 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 194 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 195 196 Loop *&NewLoop = NewLoops[OldLoop]; 197 if (!NewLoop) { 198 // Found a new sub-loop. 199 assert(OriginalBB == OldLoop->getHeader() && 200 "Header should be first in RPO"); 201 202 NewLoop = new Loop(); 203 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 204 205 if (NewLoopParent) 206 NewLoopParent->addChildLoop(NewLoop); 207 else 208 LI->addTopLevelLoop(NewLoop); 209 210 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 211 return OldLoop; 212 } else { 213 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 214 return nullptr; 215 } 216 } 217 218 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 219 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 220 /// can only fail when the loop's latch block is not terminated by a conditional 221 /// branch instruction. However, if the trip count (and multiple) are not known, 222 /// loop unrolling will mostly produce more code that is no faster. 223 /// 224 /// TripCount is the upper bound of the iteration on which control exits 225 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 226 /// via an early branch in other loop block or via LatchBlock terminator. This 227 /// is relaxed from the general definition of trip count which is the number of 228 /// times the loop header executes. Note that UnrollLoop assumes that the loop 229 /// counter test is in LatchBlock in order to remove unnecesssary instances of 230 /// the test. If control can exit the loop from the LatchBlock's terminator 231 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 232 /// 233 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 234 /// needs to be preserved. It is needed when we use trip count upper bound to 235 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 236 /// conditional branch needs to be preserved. 237 /// 238 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 239 /// execute without exiting the loop. 240 /// 241 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 242 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 243 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 244 /// iterations before branching into the unrolled loop. UnrollLoop will not 245 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 246 /// AllowExpensiveTripCount is false. 247 /// 248 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 249 /// number of iterations we want to peel off. 250 /// 251 /// The LoopInfo Analysis that is passed will be kept consistent. 252 /// 253 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 254 /// DominatorTree if they are non-null. 255 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 256 bool AllowRuntime, bool AllowExpensiveTripCount, 257 bool PreserveCondBr, bool PreserveOnlyFirst, 258 unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI, 259 ScalarEvolution *SE, DominatorTree *DT, 260 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, 261 bool PreserveLCSSA) { 262 263 BasicBlock *Preheader = L->getLoopPreheader(); 264 if (!Preheader) { 265 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 266 return false; 267 } 268 269 BasicBlock *LatchBlock = L->getLoopLatch(); 270 if (!LatchBlock) { 271 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 272 return false; 273 } 274 275 // Loops with indirectbr cannot be cloned. 276 if (!L->isSafeToClone()) { 277 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 278 return false; 279 } 280 281 BasicBlock *Header = L->getHeader(); 282 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 283 284 if (!BI || BI->isUnconditional()) { 285 // The loop-rotate pass can be helpful to avoid this in many cases. 286 DEBUG(dbgs() << 287 " Can't unroll; loop not terminated by a conditional branch.\n"); 288 return false; 289 } 290 291 if (Header->hasAddressTaken()) { 292 // The loop-rotate pass can be helpful to avoid this in many cases. 293 DEBUG(dbgs() << 294 " Won't unroll loop: address of header block is taken.\n"); 295 return false; 296 } 297 298 if (TripCount != 0) 299 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 300 if (TripMultiple != 1) 301 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 302 303 // Effectively "DCE" unrolled iterations that are beyond the tripcount 304 // and will never be executed. 305 if (TripCount != 0 && Count > TripCount) 306 Count = TripCount; 307 308 // Don't enter the unroll code if there is nothing to do. 309 if (TripCount == 0 && Count < 2 && PeelCount == 0) { 310 DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 311 return false; 312 } 313 314 assert(Count > 0); 315 assert(TripMultiple > 0); 316 assert(TripCount == 0 || TripCount % TripMultiple == 0); 317 318 // Are we eliminating the loop control altogether? 319 bool CompletelyUnroll = Count == TripCount; 320 SmallVector<BasicBlock *, 4> ExitBlocks; 321 L->getExitBlocks(ExitBlocks); 322 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 323 324 // Go through all exits of L and see if there are any phi-nodes there. We just 325 // conservatively assume that they're inserted to preserve LCSSA form, which 326 // means that complete unrolling might break this form. We need to either fix 327 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 328 // now we just recompute LCSSA for the outer loop, but it should be possible 329 // to fix it in-place. 330 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 331 any_of(ExitBlocks, [](const BasicBlock *BB) { 332 return isa<PHINode>(BB->begin()); 333 }); 334 335 // We assume a run-time trip count if the compiler cannot 336 // figure out the loop trip count and the unroll-runtime 337 // flag is specified. 338 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 339 340 assert((!RuntimeTripCount || !PeelCount) && 341 "Did not expect runtime trip-count unrolling " 342 "and peeling for the same loop"); 343 344 if (PeelCount) 345 peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA); 346 347 // Loops containing convergent instructions must have a count that divides 348 // their TripMultiple. 349 DEBUG( 350 { 351 bool HasConvergent = false; 352 for (auto &BB : L->blocks()) 353 for (auto &I : *BB) 354 if (auto CS = CallSite(&I)) 355 HasConvergent |= CS.isConvergent(); 356 assert((!HasConvergent || TripMultiple % Count == 0) && 357 "Unroll count must divide trip multiple if loop contains a " 358 "convergent operation."); 359 }); 360 361 if (RuntimeTripCount && TripMultiple % Count != 0 && 362 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 363 UnrollRuntimeEpilog, LI, SE, DT, 364 PreserveLCSSA)) { 365 if (Force) 366 RuntimeTripCount = false; 367 else { 368 DEBUG( 369 dbgs() << "Wont unroll; prolog and epilog code could not be inserted " 370 "when assuming runtime trip count\n"); 371 return false; 372 } 373 } 374 375 // Notify ScalarEvolution that the loop will be substantially changed, 376 // if not outright eliminated. 377 if (SE) 378 SE->forgetLoop(L); 379 380 // If we know the trip count, we know the multiple... 381 unsigned BreakoutTrip = 0; 382 if (TripCount != 0) { 383 BreakoutTrip = TripCount % Count; 384 TripMultiple = 0; 385 } else { 386 // Figure out what multiple to use. 387 BreakoutTrip = TripMultiple = 388 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 389 } 390 391 using namespace ore; 392 // Report the unrolling decision. 393 if (CompletelyUnroll) { 394 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 395 << " with trip count " << TripCount << "!\n"); 396 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 397 L->getHeader()) 398 << "completely unrolled loop with " 399 << NV("UnrollCount", TripCount) << " iterations"); 400 } else if (PeelCount) { 401 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 402 << " with iteration count " << PeelCount << "!\n"); 403 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 404 L->getHeader()) 405 << " peeled loop by " << NV("PeelCount", PeelCount) 406 << " iterations"); 407 } else { 408 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 409 L->getHeader()); 410 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 411 412 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 413 << " by " << Count); 414 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 415 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 416 ORE->emit(Diag << " with a breakout at trip " 417 << NV("BreakoutTrip", BreakoutTrip)); 418 } else if (TripMultiple != 1) { 419 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 420 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 421 << " trips per branch"); 422 } else if (RuntimeTripCount) { 423 DEBUG(dbgs() << " with run-time trip count"); 424 ORE->emit(Diag << " with run-time trip count"); 425 } 426 DEBUG(dbgs() << "!\n"); 427 } 428 429 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 430 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 431 432 // For the first iteration of the loop, we should use the precloned values for 433 // PHI nodes. Insert associations now. 434 ValueToValueMapTy LastValueMap; 435 std::vector<PHINode*> OrigPHINode; 436 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 437 OrigPHINode.push_back(cast<PHINode>(I)); 438 } 439 440 std::vector<BasicBlock*> Headers; 441 std::vector<BasicBlock*> Latches; 442 Headers.push_back(Header); 443 Latches.push_back(LatchBlock); 444 445 // The current on-the-fly SSA update requires blocks to be processed in 446 // reverse postorder so that LastValueMap contains the correct value at each 447 // exit. 448 LoopBlocksDFS DFS(L); 449 DFS.perform(LI); 450 451 // Stash the DFS iterators before adding blocks to the loop. 452 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 453 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 454 455 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 456 457 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 458 // might break loop-simplified form for these loops (as they, e.g., would 459 // share the same exit blocks). We'll keep track of loops for which we can 460 // break this so that later we can re-simplify them. 461 SmallSetVector<Loop *, 4> LoopsToSimplify; 462 for (Loop *SubLoop : *L) 463 LoopsToSimplify.insert(SubLoop); 464 465 for (unsigned It = 1; It != Count; ++It) { 466 std::vector<BasicBlock*> NewBlocks; 467 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 468 NewLoops[L] = L; 469 470 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 471 ValueToValueMapTy VMap; 472 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 473 Header->getParent()->getBasicBlockList().push_back(New); 474 475 // Tell LI about New. 476 if (*BB == Header) { 477 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 478 L->addBasicBlockToLoop(New, *LI); 479 } else { 480 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 481 if (OldLoop) { 482 LoopsToSimplify.insert(NewLoops[OldLoop]); 483 484 // Forget the old loop, since its inputs may have changed. 485 if (SE) 486 SE->forgetLoop(OldLoop); 487 } 488 } 489 490 if (*BB == Header) 491 // Loop over all of the PHI nodes in the block, changing them to use 492 // the incoming values from the previous block. 493 for (PHINode *OrigPHI : OrigPHINode) { 494 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 495 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 496 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 497 if (It > 1 && L->contains(InValI)) 498 InVal = LastValueMap[InValI]; 499 VMap[OrigPHI] = InVal; 500 New->getInstList().erase(NewPHI); 501 } 502 503 // Update our running map of newest clones 504 LastValueMap[*BB] = New; 505 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 506 VI != VE; ++VI) 507 LastValueMap[VI->first] = VI->second; 508 509 // Add phi entries for newly created values to all exit blocks. 510 for (BasicBlock *Succ : successors(*BB)) { 511 if (L->contains(Succ)) 512 continue; 513 for (BasicBlock::iterator BBI = Succ->begin(); 514 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 515 Value *Incoming = phi->getIncomingValueForBlock(*BB); 516 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 517 if (It != LastValueMap.end()) 518 Incoming = It->second; 519 phi->addIncoming(Incoming, New); 520 } 521 } 522 // Keep track of new headers and latches as we create them, so that 523 // we can insert the proper branches later. 524 if (*BB == Header) 525 Headers.push_back(New); 526 if (*BB == LatchBlock) 527 Latches.push_back(New); 528 529 NewBlocks.push_back(New); 530 UnrolledLoopBlocks.push_back(New); 531 532 // Update DomTree: since we just copy the loop body, and each copy has a 533 // dedicated entry block (copy of the header block), this header's copy 534 // dominates all copied blocks. That means, dominance relations in the 535 // copied body are the same as in the original body. 536 if (DT) { 537 if (*BB == Header) 538 DT->addNewBlock(New, Latches[It - 1]); 539 else { 540 auto BBDomNode = DT->getNode(*BB); 541 auto BBIDom = BBDomNode->getIDom(); 542 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 543 DT->addNewBlock( 544 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 545 } 546 } 547 } 548 549 // Remap all instructions in the most recent iteration 550 for (BasicBlock *NewBlock : NewBlocks) { 551 for (Instruction &I : *NewBlock) { 552 ::remapInstruction(&I, LastValueMap); 553 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 554 if (II->getIntrinsicID() == Intrinsic::assume) 555 AC->registerAssumption(II); 556 } 557 } 558 } 559 560 // Loop over the PHI nodes in the original block, setting incoming values. 561 for (PHINode *PN : OrigPHINode) { 562 if (CompletelyUnroll) { 563 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 564 Header->getInstList().erase(PN); 565 } 566 else if (Count > 1) { 567 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 568 // If this value was defined in the loop, take the value defined by the 569 // last iteration of the loop. 570 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 571 if (L->contains(InValI)) 572 InVal = LastValueMap[InVal]; 573 } 574 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 575 PN->addIncoming(InVal, Latches.back()); 576 } 577 } 578 579 // Now that all the basic blocks for the unrolled iterations are in place, 580 // set up the branches to connect them. 581 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 582 // The original branch was replicated in each unrolled iteration. 583 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 584 585 // The branch destination. 586 unsigned j = (i + 1) % e; 587 BasicBlock *Dest = Headers[j]; 588 bool NeedConditional = true; 589 590 if (RuntimeTripCount && j != 0) { 591 NeedConditional = false; 592 } 593 594 // For a complete unroll, make the last iteration end with a branch 595 // to the exit block. 596 if (CompletelyUnroll) { 597 if (j == 0) 598 Dest = LoopExit; 599 // If using trip count upper bound to completely unroll, we need to keep 600 // the conditional branch except the last one because the loop may exit 601 // after any iteration. 602 assert(NeedConditional && 603 "NeedCondition cannot be modified by both complete " 604 "unrolling and runtime unrolling"); 605 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 606 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 607 // If we know the trip count or a multiple of it, we can safely use an 608 // unconditional branch for some iterations. 609 NeedConditional = false; 610 } 611 612 if (NeedConditional) { 613 // Update the conditional branch's successor for the following 614 // iteration. 615 Term->setSuccessor(!ContinueOnTrue, Dest); 616 } else { 617 // Remove phi operands at this loop exit 618 if (Dest != LoopExit) { 619 BasicBlock *BB = Latches[i]; 620 for (BasicBlock *Succ: successors(BB)) { 621 if (Succ == Headers[i]) 622 continue; 623 for (BasicBlock::iterator BBI = Succ->begin(); 624 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 625 Phi->removeIncomingValue(BB, false); 626 } 627 } 628 } 629 // Replace the conditional branch with an unconditional one. 630 BranchInst::Create(Dest, Term); 631 Term->eraseFromParent(); 632 } 633 } 634 635 // Update dominators of blocks we might reach through exits. 636 // Immediate dominator of such block might change, because we add more 637 // routes which can lead to the exit: we can now reach it from the copied 638 // iterations too. 639 if (DT && Count > 1) { 640 for (auto *BB : OriginalLoopBlocks) { 641 auto *BBDomNode = DT->getNode(BB); 642 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 643 for (auto *ChildDomNode : BBDomNode->getChildren()) { 644 auto *ChildBB = ChildDomNode->getBlock(); 645 if (!L->contains(ChildBB)) 646 ChildrenToUpdate.push_back(ChildBB); 647 } 648 BasicBlock *NewIDom; 649 if (BB == LatchBlock) { 650 // The latch is special because we emit unconditional branches in 651 // some cases where the original loop contained a conditional branch. 652 // Since the latch is always at the bottom of the loop, if the latch 653 // dominated an exit before unrolling, the new dominator of that exit 654 // must also be a latch. Specifically, the dominator is the first 655 // latch which ends in a conditional branch, or the last latch if 656 // there is no such latch. 657 NewIDom = Latches.back(); 658 for (BasicBlock *IterLatch : Latches) { 659 TerminatorInst *Term = IterLatch->getTerminator(); 660 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 661 NewIDom = IterLatch; 662 break; 663 } 664 } 665 } else { 666 // The new idom of the block will be the nearest common dominator 667 // of all copies of the previous idom. This is equivalent to the 668 // nearest common dominator of the previous idom and the first latch, 669 // which dominates all copies of the previous idom. 670 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 671 } 672 for (auto *ChildBB : ChildrenToUpdate) 673 DT->changeImmediateDominator(ChildBB, NewIDom); 674 } 675 } 676 677 if (DT && UnrollVerifyDomtree) 678 DT->verifyDomTree(); 679 680 // Merge adjacent basic blocks, if possible. 681 SmallPtrSet<Loop *, 4> ForgottenLoops; 682 for (BasicBlock *Latch : Latches) { 683 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 684 if (Term->isUnconditional()) { 685 BasicBlock *Dest = Term->getSuccessor(0); 686 if (BasicBlock *Fold = 687 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 688 // Dest has been folded into Fold. Update our worklists accordingly. 689 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 690 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 691 UnrolledLoopBlocks.end(), Dest), 692 UnrolledLoopBlocks.end()); 693 } 694 } 695 } 696 697 // Simplify any new induction variables in the partially unrolled loop. 698 if (SE && !CompletelyUnroll && Count > 1) { 699 SmallVector<WeakVH, 16> DeadInsts; 700 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 701 702 // Aggressively clean up dead instructions that simplifyLoopIVs already 703 // identified. Any remaining should be cleaned up below. 704 while (!DeadInsts.empty()) 705 if (Instruction *Inst = 706 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 707 RecursivelyDeleteTriviallyDeadInstructions(Inst); 708 } 709 710 // At this point, the code is well formed. We now do a quick sweep over the 711 // inserted code, doing constant propagation and dead code elimination as we 712 // go. 713 const DataLayout &DL = Header->getModule()->getDataLayout(); 714 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 715 for (BasicBlock *BB : NewLoopBlocks) { 716 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 717 Instruction *Inst = &*I++; 718 719 if (Value *V = SimplifyInstruction(Inst, DL)) 720 if (LI->replacementPreservesLCSSAForm(Inst, V)) 721 Inst->replaceAllUsesWith(V); 722 if (isInstructionTriviallyDead(Inst)) 723 BB->getInstList().erase(Inst); 724 } 725 } 726 727 // TODO: after peeling or unrolling, previously loop variant conditions are 728 // likely to fold to constants, eagerly propagating those here will require 729 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 730 // appropriate. 731 732 NumCompletelyUnrolled += CompletelyUnroll; 733 ++NumUnrolled; 734 735 Loop *OuterL = L->getParentLoop(); 736 // Update LoopInfo if the loop is completely removed. 737 if (CompletelyUnroll) 738 LI->markAsRemoved(L); 739 740 // After complete unrolling most of the blocks should be contained in OuterL. 741 // However, some of them might happen to be out of OuterL (e.g. if they 742 // precede a loop exit). In this case we might need to insert PHI nodes in 743 // order to preserve LCSSA form. 744 // We don't need to check this if we already know that we need to fix LCSSA 745 // form. 746 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 747 // it should be possible to fix it in-place. 748 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 749 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 750 751 // If we have a pass and a DominatorTree we should re-simplify impacted loops 752 // to ensure subsequent analyses can rely on this form. We want to simplify 753 // at least one layer outside of the loop that was unrolled so that any 754 // changes to the parent loop exposed by the unrolling are considered. 755 if (DT) { 756 if (OuterL) { 757 // OuterL includes all loops for which we can break loop-simplify, so 758 // it's sufficient to simplify only it (it'll recursively simplify inner 759 // loops too). 760 if (NeedToFixLCSSA) { 761 // LCSSA must be performed on the outermost affected loop. The unrolled 762 // loop's last loop latch is guaranteed to be in the outermost loop 763 // after LoopInfo's been updated by markAsRemoved. 764 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 765 Loop *FixLCSSALoop = OuterL; 766 if (!FixLCSSALoop->contains(LatchLoop)) 767 while (FixLCSSALoop->getParentLoop() != LatchLoop) 768 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 769 770 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 771 } else if (PreserveLCSSA) { 772 assert(OuterL->isLCSSAForm(*DT) && 773 "Loops should be in LCSSA form after loop-unroll."); 774 } 775 776 // TODO: That potentially might be compile-time expensive. We should try 777 // to fix the loop-simplified form incrementally. 778 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 779 } else { 780 // Simplify loops for which we might've broken loop-simplify form. 781 for (Loop *SubLoop : LoopsToSimplify) 782 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 783 } 784 } 785 786 return true; 787 } 788 789 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 790 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 791 /// such metadata node exists, then nullptr is returned. 792 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 793 // First operand should refer to the loop id itself. 794 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 795 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 796 797 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 798 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 799 if (!MD) 800 continue; 801 802 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 803 if (!S) 804 continue; 805 806 if (Name.equals(S->getString())) 807 return MD; 808 } 809 return nullptr; 810 } 811