1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 // TODO: Should these be here or in LoopUnroll? 44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 46 47 /// RemapInstruction - Convert the instruction operands from referencing the 48 /// current values into those specified by VMap. 49 static inline void RemapInstruction(Instruction *I, 50 ValueToValueMapTy &VMap) { 51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 52 Value *Op = I->getOperand(op); 53 ValueToValueMapTy::iterator It = VMap.find(Op); 54 if (It != VMap.end()) 55 I->setOperand(op, It->second); 56 } 57 58 if (PHINode *PN = dyn_cast<PHINode>(I)) { 59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 61 if (It != VMap.end()) 62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 63 } 64 } 65 } 66 67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 68 /// only has one predecessor, and that predecessor only has one successor. 69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 70 /// successful references to the containing loop must be removed from 71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 72 /// references to the eliminated BB. The argument ForgottenLoops contains a set 73 /// of loops that have already been forgotten to prevent redundant, expensive 74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 75 static BasicBlock * 76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM, 77 SmallPtrSetImpl<Loop *> &ForgottenLoops) { 78 // Merge basic blocks into their predecessor if there is only one distinct 79 // pred, and if there is only one distinct successor of the predecessor, and 80 // if there are no PHI nodes. 81 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 82 if (!OnlyPred) return nullptr; 83 84 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 85 return nullptr; 86 87 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 88 89 // Resolve any PHI nodes at the start of the block. They are all 90 // guaranteed to have exactly one entry if they exist, unless there are 91 // multiple duplicate (but guaranteed to be equal) entries for the 92 // incoming edges. This occurs when there are multiple edges from 93 // OnlyPred to OnlySucc. 94 FoldSingleEntryPHINodes(BB); 95 96 // Delete the unconditional branch from the predecessor... 97 OnlyPred->getInstList().pop_back(); 98 99 // Make all PHI nodes that referred to BB now refer to Pred as their 100 // source... 101 BB->replaceAllUsesWith(OnlyPred); 102 103 // Move all definitions in the successor to the predecessor... 104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 105 106 // OldName will be valid until erased. 107 StringRef OldName = BB->getName(); 108 109 // Erase basic block from the function... 110 111 // ScalarEvolution holds references to loop exit blocks. 112 if (LPM) { 113 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { 114 if (Loop *L = LI->getLoopFor(BB)) { 115 if (ForgottenLoops.insert(L).second) 116 SE->forgetLoop(L); 117 } 118 } 119 } 120 LI->removeBlock(BB); 121 122 // Inherit predecessor's name if it exists... 123 if (!OldName.empty() && !OnlyPred->hasName()) 124 OnlyPred->setName(OldName); 125 126 BB->eraseFromParent(); 127 128 return OnlyPred; 129 } 130 131 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 132 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 133 /// can only fail when the loop's latch block is not terminated by a conditional 134 /// branch instruction. However, if the trip count (and multiple) are not known, 135 /// loop unrolling will mostly produce more code that is no faster. 136 /// 137 /// TripCount is generally defined as the number of times the loop header 138 /// executes. UnrollLoop relaxes the definition to permit early exits: here 139 /// TripCount is the iteration on which control exits LatchBlock if no early 140 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 141 /// terminates LatchBlock in order to remove unnecesssary instances of the 142 /// test. In other words, control may exit the loop prior to TripCount 143 /// iterations via an early branch, but control may not exit the loop from the 144 /// LatchBlock's terminator prior to TripCount iterations. 145 /// 146 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 147 /// execute without exiting the loop. 148 /// 149 /// The LoopInfo Analysis that is passed will be kept consistent. 150 /// 151 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 152 /// removed from the LoopPassManager as well. LPM can also be NULL. 153 /// 154 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are 155 /// available from the Pass it must also preserve those analyses. 156 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 157 bool AllowRuntime, unsigned TripMultiple, LoopInfo *LI, 158 Pass *PP, LPPassManager *LPM, AssumptionCache *AC) { 159 BasicBlock *Preheader = L->getLoopPreheader(); 160 if (!Preheader) { 161 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 162 return false; 163 } 164 165 BasicBlock *LatchBlock = L->getLoopLatch(); 166 if (!LatchBlock) { 167 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 168 return false; 169 } 170 171 // Loops with indirectbr cannot be cloned. 172 if (!L->isSafeToClone()) { 173 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 174 return false; 175 } 176 177 BasicBlock *Header = L->getHeader(); 178 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 179 180 if (!BI || BI->isUnconditional()) { 181 // The loop-rotate pass can be helpful to avoid this in many cases. 182 DEBUG(dbgs() << 183 " Can't unroll; loop not terminated by a conditional branch.\n"); 184 return false; 185 } 186 187 if (Header->hasAddressTaken()) { 188 // The loop-rotate pass can be helpful to avoid this in many cases. 189 DEBUG(dbgs() << 190 " Won't unroll loop: address of header block is taken.\n"); 191 return false; 192 } 193 194 if (TripCount != 0) 195 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 196 if (TripMultiple != 1) 197 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 198 199 // Effectively "DCE" unrolled iterations that are beyond the tripcount 200 // and will never be executed. 201 if (TripCount != 0 && Count > TripCount) 202 Count = TripCount; 203 204 // Don't enter the unroll code if there is nothing to do. This way we don't 205 // need to support "partial unrolling by 1". 206 if (TripCount == 0 && Count < 2) 207 return false; 208 209 assert(Count > 0); 210 assert(TripMultiple > 0); 211 assert(TripCount == 0 || TripCount % TripMultiple == 0); 212 213 // Are we eliminating the loop control altogether? 214 bool CompletelyUnroll = Count == TripCount; 215 216 // We assume a run-time trip count if the compiler cannot 217 // figure out the loop trip count and the unroll-runtime 218 // flag is specified. 219 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 220 221 if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) 222 return false; 223 224 // Notify ScalarEvolution that the loop will be substantially changed, 225 // if not outright eliminated. 226 ScalarEvolution *SE = 227 PP ? PP->getAnalysisIfAvailable<ScalarEvolution>() : nullptr; 228 if (SE) 229 SE->forgetLoop(L); 230 231 // If we know the trip count, we know the multiple... 232 unsigned BreakoutTrip = 0; 233 if (TripCount != 0) { 234 BreakoutTrip = TripCount % Count; 235 TripMultiple = 0; 236 } else { 237 // Figure out what multiple to use. 238 BreakoutTrip = TripMultiple = 239 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 240 } 241 242 // Report the unrolling decision. 243 DebugLoc LoopLoc = L->getStartLoc(); 244 Function *F = Header->getParent(); 245 LLVMContext &Ctx = F->getContext(); 246 247 if (CompletelyUnroll) { 248 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 249 << " with trip count " << TripCount << "!\n"); 250 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 251 Twine("completely unrolled loop with ") + 252 Twine(TripCount) + " iterations"); 253 } else { 254 auto EmitDiag = [&](const Twine &T) { 255 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 256 "unrolled loop by a factor of " + Twine(Count) + 257 T); 258 }; 259 260 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 261 << " by " << Count); 262 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 263 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 264 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 265 } else if (TripMultiple != 1) { 266 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 267 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 268 } else if (RuntimeTripCount) { 269 DEBUG(dbgs() << " with run-time trip count"); 270 EmitDiag(" with run-time trip count"); 271 } 272 DEBUG(dbgs() << "!\n"); 273 } 274 275 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 276 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 277 278 // For the first iteration of the loop, we should use the precloned values for 279 // PHI nodes. Insert associations now. 280 ValueToValueMapTy LastValueMap; 281 std::vector<PHINode*> OrigPHINode; 282 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 283 OrigPHINode.push_back(cast<PHINode>(I)); 284 } 285 286 std::vector<BasicBlock*> Headers; 287 std::vector<BasicBlock*> Latches; 288 Headers.push_back(Header); 289 Latches.push_back(LatchBlock); 290 291 // The current on-the-fly SSA update requires blocks to be processed in 292 // reverse postorder so that LastValueMap contains the correct value at each 293 // exit. 294 LoopBlocksDFS DFS(L); 295 DFS.perform(LI); 296 297 // Stash the DFS iterators before adding blocks to the loop. 298 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 299 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 300 301 for (unsigned It = 1; It != Count; ++It) { 302 std::vector<BasicBlock*> NewBlocks; 303 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 304 NewLoops[L] = L; 305 306 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 307 ValueToValueMapTy VMap; 308 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 309 Header->getParent()->getBasicBlockList().push_back(New); 310 311 // Tell LI about New. 312 if (*BB == Header) { 313 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 314 L->addBasicBlockToLoop(New, *LI); 315 } else { 316 // Figure out which loop New is in. 317 const Loop *OldLoop = LI->getLoopFor(*BB); 318 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 319 320 Loop *&NewLoop = NewLoops[OldLoop]; 321 if (!NewLoop) { 322 // Found a new sub-loop. 323 assert(*BB == OldLoop->getHeader() && 324 "Header should be first in RPO"); 325 326 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 327 assert(NewLoopParent && 328 "Expected parent loop before sub-loop in RPO"); 329 NewLoop = new Loop; 330 NewLoopParent->addChildLoop(NewLoop); 331 332 // Forget the old loop, since its inputs may have changed. 333 if (SE) 334 SE->forgetLoop(OldLoop); 335 } 336 NewLoop->addBasicBlockToLoop(New, *LI); 337 } 338 339 if (*BB == Header) 340 // Loop over all of the PHI nodes in the block, changing them to use 341 // the incoming values from the previous block. 342 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 343 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 344 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 345 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 346 if (It > 1 && L->contains(InValI)) 347 InVal = LastValueMap[InValI]; 348 VMap[OrigPHINode[i]] = InVal; 349 New->getInstList().erase(NewPHI); 350 } 351 352 // Update our running map of newest clones 353 LastValueMap[*BB] = New; 354 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 355 VI != VE; ++VI) 356 LastValueMap[VI->first] = VI->second; 357 358 // Add phi entries for newly created values to all exit blocks. 359 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 360 SI != SE; ++SI) { 361 if (L->contains(*SI)) 362 continue; 363 for (BasicBlock::iterator BBI = (*SI)->begin(); 364 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 365 Value *Incoming = phi->getIncomingValueForBlock(*BB); 366 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 367 if (It != LastValueMap.end()) 368 Incoming = It->second; 369 phi->addIncoming(Incoming, New); 370 } 371 } 372 // Keep track of new headers and latches as we create them, so that 373 // we can insert the proper branches later. 374 if (*BB == Header) 375 Headers.push_back(New); 376 if (*BB == LatchBlock) 377 Latches.push_back(New); 378 379 NewBlocks.push_back(New); 380 } 381 382 // Remap all instructions in the most recent iteration 383 for (unsigned i = 0; i < NewBlocks.size(); ++i) 384 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 385 E = NewBlocks[i]->end(); I != E; ++I) 386 ::RemapInstruction(I, LastValueMap); 387 } 388 389 // Loop over the PHI nodes in the original block, setting incoming values. 390 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 391 PHINode *PN = OrigPHINode[i]; 392 if (CompletelyUnroll) { 393 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 394 Header->getInstList().erase(PN); 395 } 396 else if (Count > 1) { 397 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 398 // If this value was defined in the loop, take the value defined by the 399 // last iteration of the loop. 400 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 401 if (L->contains(InValI)) 402 InVal = LastValueMap[InVal]; 403 } 404 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 405 PN->addIncoming(InVal, Latches.back()); 406 } 407 } 408 409 // Now that all the basic blocks for the unrolled iterations are in place, 410 // set up the branches to connect them. 411 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 412 // The original branch was replicated in each unrolled iteration. 413 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 414 415 // The branch destination. 416 unsigned j = (i + 1) % e; 417 BasicBlock *Dest = Headers[j]; 418 bool NeedConditional = true; 419 420 if (RuntimeTripCount && j != 0) { 421 NeedConditional = false; 422 } 423 424 // For a complete unroll, make the last iteration end with a branch 425 // to the exit block. 426 if (CompletelyUnroll && j == 0) { 427 Dest = LoopExit; 428 NeedConditional = false; 429 } 430 431 // If we know the trip count or a multiple of it, we can safely use an 432 // unconditional branch for some iterations. 433 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 434 NeedConditional = false; 435 } 436 437 if (NeedConditional) { 438 // Update the conditional branch's successor for the following 439 // iteration. 440 Term->setSuccessor(!ContinueOnTrue, Dest); 441 } else { 442 // Remove phi operands at this loop exit 443 if (Dest != LoopExit) { 444 BasicBlock *BB = Latches[i]; 445 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 446 SI != SE; ++SI) { 447 if (*SI == Headers[i]) 448 continue; 449 for (BasicBlock::iterator BBI = (*SI)->begin(); 450 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 451 Phi->removeIncomingValue(BB, false); 452 } 453 } 454 } 455 // Replace the conditional branch with an unconditional one. 456 BranchInst::Create(Dest, Term); 457 Term->eraseFromParent(); 458 } 459 } 460 461 // Merge adjacent basic blocks, if possible. 462 SmallPtrSet<Loop *, 4> ForgottenLoops; 463 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 464 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 465 if (Term->isUnconditional()) { 466 BasicBlock *Dest = Term->getSuccessor(0); 467 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM, 468 ForgottenLoops)) 469 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 470 } 471 } 472 473 // FIXME: We could register any cloned assumptions instead of clearing the 474 // whole function's cache. 475 AC->clear(); 476 477 DominatorTree *DT = nullptr; 478 if (PP) { 479 // FIXME: Reconstruct dom info, because it is not preserved properly. 480 // Incrementally updating domtree after loop unrolling would be easy. 481 if (DominatorTreeWrapperPass *DTWP = 482 PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 483 DT = &DTWP->getDomTree(); 484 DT->recalculate(*L->getHeader()->getParent()); 485 } 486 487 // Simplify any new induction variables in the partially unrolled loop. 488 if (SE && !CompletelyUnroll) { 489 SmallVector<WeakVH, 16> DeadInsts; 490 simplifyLoopIVs(L, SE, LPM, DeadInsts); 491 492 // Aggressively clean up dead instructions that simplifyLoopIVs already 493 // identified. Any remaining should be cleaned up below. 494 while (!DeadInsts.empty()) 495 if (Instruction *Inst = 496 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 497 RecursivelyDeleteTriviallyDeadInstructions(Inst); 498 } 499 } 500 // At this point, the code is well formed. We now do a quick sweep over the 501 // inserted code, doing constant propagation and dead code elimination as we 502 // go. 503 const DataLayout &DL = Header->getModule()->getDataLayout(); 504 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 505 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 506 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 507 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 508 Instruction *Inst = I++; 509 510 if (isInstructionTriviallyDead(Inst)) 511 (*BB)->getInstList().erase(Inst); 512 else if (Value *V = SimplifyInstruction(Inst, DL)) 513 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 514 Inst->replaceAllUsesWith(V); 515 (*BB)->getInstList().erase(Inst); 516 } 517 } 518 519 NumCompletelyUnrolled += CompletelyUnroll; 520 ++NumUnrolled; 521 522 Loop *OuterL = L->getParentLoop(); 523 // Remove the loop from the LoopPassManager if it's completely removed. 524 if (CompletelyUnroll && LPM != nullptr) 525 LPM->deleteLoopFromQueue(L); 526 527 // If we have a pass and a DominatorTree we should re-simplify impacted loops 528 // to ensure subsequent analyses can rely on this form. We want to simplify 529 // at least one layer outside of the loop that was unrolled so that any 530 // changes to the parent loop exposed by the unrolling are considered. 531 if (PP && DT) { 532 if (!OuterL && !CompletelyUnroll) 533 OuterL = L; 534 if (OuterL) { 535 simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, AC); 536 537 // LCSSA must be performed on the outermost affected loop. The unrolled 538 // loop's last loop latch is guaranteed to be in the outermost loop after 539 // deleteLoopFromQueue updates LoopInfo. 540 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 541 if (!OuterL->contains(LatchLoop)) 542 while (OuterL->getParentLoop() != LatchLoop) 543 OuterL = OuterL->getParentLoop(); 544 545 formLCSSARecursively(*OuterL, *DT, LI, SE); 546 } 547 } 548 549 return true; 550 } 551 552 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 553 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 554 /// such metadata node exists, then nullptr is returned. 555 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 556 // First operand should refer to the loop id itself. 557 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 558 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 559 560 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 561 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 562 if (!MD) 563 continue; 564 565 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 566 if (!S) 567 continue; 568 569 if (Name.equals(S->getString())) 570 return MD; 571 } 572 return nullptr; 573 } 574