1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "loop-unroll"
42 
43 // TODO: Should these be here or in LoopUnroll?
44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
46 
47 static cl::opt<bool>
48 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(true), cl::Hidden,
49                     cl::desc("Allow runtime unrolled loops to be unrolled "
50                              "with epilog instead of prolog."));
51 
52 /// Convert the instruction operands from referencing the current values into
53 /// those specified by VMap.
54 static inline void remapInstruction(Instruction *I,
55                                     ValueToValueMapTy &VMap) {
56   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
57     Value *Op = I->getOperand(op);
58     ValueToValueMapTy::iterator It = VMap.find(Op);
59     if (It != VMap.end())
60       I->setOperand(op, It->second);
61   }
62 
63   if (PHINode *PN = dyn_cast<PHINode>(I)) {
64     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
65       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
66       if (It != VMap.end())
67         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
68     }
69   }
70 }
71 
72 /// Folds a basic block into its predecessor if it only has one predecessor, and
73 /// that predecessor only has one successor.
74 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
75 /// successful references to the containing loop must be removed from
76 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
77 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
78 /// of loops that have already been forgotten to prevent redundant, expensive
79 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
80 static BasicBlock *
81 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
82                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
83                          DominatorTree *DT) {
84   // Merge basic blocks into their predecessor if there is only one distinct
85   // pred, and if there is only one distinct successor of the predecessor, and
86   // if there are no PHI nodes.
87   BasicBlock *OnlyPred = BB->getSinglePredecessor();
88   if (!OnlyPred) return nullptr;
89 
90   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
91     return nullptr;
92 
93   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
94 
95   // Resolve any PHI nodes at the start of the block.  They are all
96   // guaranteed to have exactly one entry if they exist, unless there are
97   // multiple duplicate (but guaranteed to be equal) entries for the
98   // incoming edges.  This occurs when there are multiple edges from
99   // OnlyPred to OnlySucc.
100   FoldSingleEntryPHINodes(BB);
101 
102   // Delete the unconditional branch from the predecessor...
103   OnlyPred->getInstList().pop_back();
104 
105   // Make all PHI nodes that referred to BB now refer to Pred as their
106   // source...
107   BB->replaceAllUsesWith(OnlyPred);
108 
109   // Move all definitions in the successor to the predecessor...
110   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
111 
112   // OldName will be valid until erased.
113   StringRef OldName = BB->getName();
114 
115   // Erase the old block and update dominator info.
116   if (DT)
117     if (DomTreeNode *DTN = DT->getNode(BB)) {
118       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
119       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
120       for (auto *DI : Children)
121         DT->changeImmediateDominator(DI, PredDTN);
122 
123       DT->eraseNode(BB);
124     }
125 
126   // ScalarEvolution holds references to loop exit blocks.
127   if (SE) {
128     if (Loop *L = LI->getLoopFor(BB)) {
129       if (ForgottenLoops.insert(L).second)
130         SE->forgetLoop(L);
131     }
132   }
133   LI->removeBlock(BB);
134 
135   // Inherit predecessor's name if it exists...
136   if (!OldName.empty() && !OnlyPred->hasName())
137     OnlyPred->setName(OldName);
138 
139   BB->eraseFromParent();
140 
141   return OnlyPred;
142 }
143 
144 /// Check if unrolling created a situation where we need to insert phi nodes to
145 /// preserve LCSSA form.
146 /// \param Blocks is a vector of basic blocks representing unrolled loop.
147 /// \param L is the outer loop.
148 /// It's possible that some of the blocks are in L, and some are not. In this
149 /// case, if there is a use is outside L, and definition is inside L, we need to
150 /// insert a phi-node, otherwise LCSSA will be broken.
151 /// The function is just a helper function for llvm::UnrollLoop that returns
152 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
153 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
154                                      LoopInfo *LI) {
155   for (BasicBlock *BB : Blocks) {
156     if (LI->getLoopFor(BB) == L)
157       continue;
158     for (Instruction &I : *BB) {
159       for (Use &U : I.operands()) {
160         if (auto Def = dyn_cast<Instruction>(U)) {
161           Loop *DefLoop = LI->getLoopFor(Def->getParent());
162           if (!DefLoop)
163             continue;
164           if (DefLoop->contains(L))
165             return true;
166         }
167       }
168     }
169   }
170   return false;
171 }
172 
173 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
174 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
175 /// can only fail when the loop's latch block is not terminated by a conditional
176 /// branch instruction. However, if the trip count (and multiple) are not known,
177 /// loop unrolling will mostly produce more code that is no faster.
178 ///
179 /// TripCount is generally defined as the number of times the loop header
180 /// executes. UnrollLoop relaxes the definition to permit early exits: here
181 /// TripCount is the iteration on which control exits LatchBlock if no early
182 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
183 /// terminates LatchBlock in order to remove unnecesssary instances of the
184 /// test. In other words, control may exit the loop prior to TripCount
185 /// iterations via an early branch, but control may not exit the loop from the
186 /// LatchBlock's terminator prior to TripCount iterations.
187 ///
188 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
189 /// execute without exiting the loop.
190 ///
191 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
192 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
193 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
194 /// iterations before branching into the unrolled loop.  UnrollLoop will not
195 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
196 /// AllowExpensiveTripCount is false.
197 ///
198 /// The LoopInfo Analysis that is passed will be kept consistent.
199 ///
200 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
201 /// DominatorTree if they are non-null.
202 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
203                       bool AllowRuntime, bool AllowExpensiveTripCount,
204                       unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
205                       DominatorTree *DT, AssumptionCache *AC,
206                       bool PreserveLCSSA) {
207   BasicBlock *Preheader = L->getLoopPreheader();
208   if (!Preheader) {
209     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
210     return false;
211   }
212 
213   BasicBlock *LatchBlock = L->getLoopLatch();
214   if (!LatchBlock) {
215     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
216     return false;
217   }
218 
219   // Loops with indirectbr cannot be cloned.
220   if (!L->isSafeToClone()) {
221     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
222     return false;
223   }
224 
225   BasicBlock *Header = L->getHeader();
226   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
227 
228   if (!BI || BI->isUnconditional()) {
229     // The loop-rotate pass can be helpful to avoid this in many cases.
230     DEBUG(dbgs() <<
231              "  Can't unroll; loop not terminated by a conditional branch.\n");
232     return false;
233   }
234 
235   if (Header->hasAddressTaken()) {
236     // The loop-rotate pass can be helpful to avoid this in many cases.
237     DEBUG(dbgs() <<
238           "  Won't unroll loop: address of header block is taken.\n");
239     return false;
240   }
241 
242   if (TripCount != 0)
243     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
244   if (TripMultiple != 1)
245     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
246 
247   // Effectively "DCE" unrolled iterations that are beyond the tripcount
248   // and will never be executed.
249   if (TripCount != 0 && Count > TripCount)
250     Count = TripCount;
251 
252   // Don't enter the unroll code if there is nothing to do. This way we don't
253   // need to support "partial unrolling by 1".
254   if (TripCount == 0 && Count < 2)
255     return false;
256 
257   assert(Count > 0);
258   assert(TripMultiple > 0);
259   assert(TripCount == 0 || TripCount % TripMultiple == 0);
260 
261   // Are we eliminating the loop control altogether?
262   bool CompletelyUnroll = Count == TripCount;
263   SmallVector<BasicBlock *, 4> ExitBlocks;
264   L->getExitBlocks(ExitBlocks);
265   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
266 
267   // Go through all exits of L and see if there are any phi-nodes there. We just
268   // conservatively assume that they're inserted to preserve LCSSA form, which
269   // means that complete unrolling might break this form. We need to either fix
270   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
271   // now we just recompute LCSSA for the outer loop, but it should be possible
272   // to fix it in-place.
273   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
274       std::any_of(ExitBlocks.begin(), ExitBlocks.end(),
275                   [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
276 
277   // We assume a run-time trip count if the compiler cannot
278   // figure out the loop trip count and the unroll-runtime
279   // flag is specified.
280   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
281 
282   // Loops containing convergent instructions must have a count that divides
283   // their TripMultiple.
284   DEBUG(
285       {
286         bool HasConvergent = false;
287         for (auto &BB : L->blocks())
288           for (auto &I : *BB)
289             if (auto CS = CallSite(&I))
290               HasConvergent |= CS.isConvergent();
291         assert((!HasConvergent || TripMultiple % Count == 0) &&
292                "Unroll count must divide trip multiple if loop contains a "
293                "convergent operation.");
294       });
295   // Don't output the runtime loop remainder if Count is a multiple of
296   // TripMultiple.  Such a remainder is never needed, and is unsafe if the loop
297   // contains a convergent instruction.
298   if (RuntimeTripCount && TripMultiple % Count != 0 &&
299       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
300                                   UnrollRuntimeEpilog, LI, SE, DT,
301                                   PreserveLCSSA))
302     return false;
303 
304   // Notify ScalarEvolution that the loop will be substantially changed,
305   // if not outright eliminated.
306   if (SE)
307     SE->forgetLoop(L);
308 
309   // If we know the trip count, we know the multiple...
310   unsigned BreakoutTrip = 0;
311   if (TripCount != 0) {
312     BreakoutTrip = TripCount % Count;
313     TripMultiple = 0;
314   } else {
315     // Figure out what multiple to use.
316     BreakoutTrip = TripMultiple =
317       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
318   }
319 
320   // Report the unrolling decision.
321   DebugLoc LoopLoc = L->getStartLoc();
322   Function *F = Header->getParent();
323   LLVMContext &Ctx = F->getContext();
324 
325   if (CompletelyUnroll) {
326     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
327           << " with trip count " << TripCount << "!\n");
328     emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
329                            Twine("completely unrolled loop with ") +
330                                Twine(TripCount) + " iterations");
331   } else {
332     auto EmitDiag = [&](const Twine &T) {
333       emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
334                              "unrolled loop by a factor of " + Twine(Count) +
335                                  T);
336     };
337 
338     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
339           << " by " << Count);
340     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
341       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
342       EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
343     } else if (TripMultiple != 1) {
344       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
345       EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
346     } else if (RuntimeTripCount) {
347       DEBUG(dbgs() << " with run-time trip count");
348       EmitDiag(" with run-time trip count");
349     }
350     DEBUG(dbgs() << "!\n");
351   }
352 
353   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
354   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
355 
356   // For the first iteration of the loop, we should use the precloned values for
357   // PHI nodes.  Insert associations now.
358   ValueToValueMapTy LastValueMap;
359   std::vector<PHINode*> OrigPHINode;
360   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
361     OrigPHINode.push_back(cast<PHINode>(I));
362   }
363 
364   std::vector<BasicBlock*> Headers;
365   std::vector<BasicBlock*> Latches;
366   Headers.push_back(Header);
367   Latches.push_back(LatchBlock);
368 
369   // The current on-the-fly SSA update requires blocks to be processed in
370   // reverse postorder so that LastValueMap contains the correct value at each
371   // exit.
372   LoopBlocksDFS DFS(L);
373   DFS.perform(LI);
374 
375   // Stash the DFS iterators before adding blocks to the loop.
376   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
377   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
378 
379   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
380   for (unsigned It = 1; It != Count; ++It) {
381     std::vector<BasicBlock*> NewBlocks;
382     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
383     NewLoops[L] = L;
384 
385     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
386       ValueToValueMapTy VMap;
387       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
388       Header->getParent()->getBasicBlockList().push_back(New);
389 
390       // Tell LI about New.
391       if (*BB == Header) {
392         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
393         L->addBasicBlockToLoop(New, *LI);
394       } else {
395         // Figure out which loop New is in.
396         const Loop *OldLoop = LI->getLoopFor(*BB);
397         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
398 
399         Loop *&NewLoop = NewLoops[OldLoop];
400         if (!NewLoop) {
401           // Found a new sub-loop.
402           assert(*BB == OldLoop->getHeader() &&
403                  "Header should be first in RPO");
404 
405           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
406           assert(NewLoopParent &&
407                  "Expected parent loop before sub-loop in RPO");
408           NewLoop = new Loop;
409           NewLoopParent->addChildLoop(NewLoop);
410 
411           // Forget the old loop, since its inputs may have changed.
412           if (SE)
413             SE->forgetLoop(OldLoop);
414         }
415         NewLoop->addBasicBlockToLoop(New, *LI);
416       }
417 
418       if (*BB == Header)
419         // Loop over all of the PHI nodes in the block, changing them to use
420         // the incoming values from the previous block.
421         for (PHINode *OrigPHI : OrigPHINode) {
422           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
423           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
424           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
425             if (It > 1 && L->contains(InValI))
426               InVal = LastValueMap[InValI];
427           VMap[OrigPHI] = InVal;
428           New->getInstList().erase(NewPHI);
429         }
430 
431       // Update our running map of newest clones
432       LastValueMap[*BB] = New;
433       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
434            VI != VE; ++VI)
435         LastValueMap[VI->first] = VI->second;
436 
437       // Add phi entries for newly created values to all exit blocks.
438       for (BasicBlock *Succ : successors(*BB)) {
439         if (L->contains(Succ))
440           continue;
441         for (BasicBlock::iterator BBI = Succ->begin();
442              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
443           Value *Incoming = phi->getIncomingValueForBlock(*BB);
444           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
445           if (It != LastValueMap.end())
446             Incoming = It->second;
447           phi->addIncoming(Incoming, New);
448         }
449       }
450       // Keep track of new headers and latches as we create them, so that
451       // we can insert the proper branches later.
452       if (*BB == Header)
453         Headers.push_back(New);
454       if (*BB == LatchBlock)
455         Latches.push_back(New);
456 
457       NewBlocks.push_back(New);
458       UnrolledLoopBlocks.push_back(New);
459 
460       // Update DomTree: since we just copy the loop body, and each copy has a
461       // dedicated entry block (copy of the header block), this header's copy
462       // dominates all copied blocks. That means, dominance relations in the
463       // copied body are the same as in the original body.
464       if (DT) {
465         if (*BB == Header)
466           DT->addNewBlock(New, Latches[It - 1]);
467         else {
468           auto BBDomNode = DT->getNode(*BB);
469           auto BBIDom = BBDomNode->getIDom();
470           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
471           DT->addNewBlock(
472               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
473         }
474       }
475     }
476 
477     // Remap all instructions in the most recent iteration
478     for (BasicBlock *NewBlock : NewBlocks)
479       for (Instruction &I : *NewBlock)
480         ::remapInstruction(&I, LastValueMap);
481   }
482 
483   // Loop over the PHI nodes in the original block, setting incoming values.
484   for (PHINode *PN : OrigPHINode) {
485     if (CompletelyUnroll) {
486       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
487       Header->getInstList().erase(PN);
488     }
489     else if (Count > 1) {
490       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
491       // If this value was defined in the loop, take the value defined by the
492       // last iteration of the loop.
493       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
494         if (L->contains(InValI))
495           InVal = LastValueMap[InVal];
496       }
497       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
498       PN->addIncoming(InVal, Latches.back());
499     }
500   }
501 
502   // Now that all the basic blocks for the unrolled iterations are in place,
503   // set up the branches to connect them.
504   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
505     // The original branch was replicated in each unrolled iteration.
506     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
507 
508     // The branch destination.
509     unsigned j = (i + 1) % e;
510     BasicBlock *Dest = Headers[j];
511     bool NeedConditional = true;
512 
513     if (RuntimeTripCount && j != 0) {
514       NeedConditional = false;
515     }
516 
517     // For a complete unroll, make the last iteration end with a branch
518     // to the exit block.
519     if (CompletelyUnroll) {
520       if (j == 0)
521         Dest = LoopExit;
522       NeedConditional = false;
523     }
524 
525     // If we know the trip count or a multiple of it, we can safely use an
526     // unconditional branch for some iterations.
527     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
528       NeedConditional = false;
529     }
530 
531     if (NeedConditional) {
532       // Update the conditional branch's successor for the following
533       // iteration.
534       Term->setSuccessor(!ContinueOnTrue, Dest);
535     } else {
536       // Remove phi operands at this loop exit
537       if (Dest != LoopExit) {
538         BasicBlock *BB = Latches[i];
539         for (BasicBlock *Succ: successors(BB)) {
540           if (Succ == Headers[i])
541             continue;
542           for (BasicBlock::iterator BBI = Succ->begin();
543                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
544             Phi->removeIncomingValue(BB, false);
545           }
546         }
547       }
548       // Replace the conditional branch with an unconditional one.
549       BranchInst::Create(Dest, Term);
550       Term->eraseFromParent();
551     }
552   }
553   // Update dominators of blocks we might reach through exits.
554   // Immediate dominator of such block might change, because we add more
555   // routes which can lead to the exit: we can now reach it from the copied
556   // iterations too. Thus, the new idom of the block will be the nearest
557   // common dominator of the previous idom and common dominator of all copies of
558   // the previous idom. This is equivalent to the nearest common dominator of
559   // the previous idom and the first latch, which dominates all copies of the
560   // previous idom.
561   if (DT && Count > 1) {
562     for (auto *BB : OriginalLoopBlocks) {
563       auto *BBDomNode = DT->getNode(BB);
564       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
565       for (auto *ChildDomNode : BBDomNode->getChildren()) {
566         auto *ChildBB = ChildDomNode->getBlock();
567         if (!L->contains(ChildBB))
568           ChildrenToUpdate.push_back(ChildBB);
569       }
570       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
571       for (auto *ChildBB : ChildrenToUpdate)
572         DT->changeImmediateDominator(ChildBB, NewIDom);
573     }
574   }
575 
576   // Merge adjacent basic blocks, if possible.
577   SmallPtrSet<Loop *, 4> ForgottenLoops;
578   for (BasicBlock *Latch : Latches) {
579     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
580     if (Term->isUnconditional()) {
581       BasicBlock *Dest = Term->getSuccessor(0);
582       if (BasicBlock *Fold =
583               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
584         // Dest has been folded into Fold. Update our worklists accordingly.
585         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
586         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
587                                              UnrolledLoopBlocks.end(), Dest),
588                                  UnrolledLoopBlocks.end());
589       }
590     }
591   }
592 
593   // FIXME: We could register any cloned assumptions instead of clearing the
594   // whole function's cache.
595   AC->clear();
596 
597   // FIXME: We only preserve DT info for complete unrolling now. Incrementally
598   // updating domtree after partial loop unrolling should also be easy.
599   if (DT && !CompletelyUnroll)
600     DT->recalculate(*L->getHeader()->getParent());
601   else
602     DEBUG(DT->verifyDomTree());
603 
604   // Simplify any new induction variables in the partially unrolled loop.
605   if (SE && !CompletelyUnroll) {
606     SmallVector<WeakVH, 16> DeadInsts;
607     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
608 
609     // Aggressively clean up dead instructions that simplifyLoopIVs already
610     // identified. Any remaining should be cleaned up below.
611     while (!DeadInsts.empty())
612       if (Instruction *Inst =
613               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
614         RecursivelyDeleteTriviallyDeadInstructions(Inst);
615   }
616 
617   // At this point, the code is well formed.  We now do a quick sweep over the
618   // inserted code, doing constant propagation and dead code elimination as we
619   // go.
620   const DataLayout &DL = Header->getModule()->getDataLayout();
621   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
622   for (BasicBlock *BB : NewLoopBlocks)
623     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
624       Instruction *Inst = &*I++;
625 
626       if (isInstructionTriviallyDead(Inst))
627         BB->getInstList().erase(Inst);
628       else if (Value *V = SimplifyInstruction(Inst, DL))
629         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
630           Inst->replaceAllUsesWith(V);
631           BB->getInstList().erase(Inst);
632         }
633     }
634 
635   NumCompletelyUnrolled += CompletelyUnroll;
636   ++NumUnrolled;
637 
638   Loop *OuterL = L->getParentLoop();
639   // Update LoopInfo if the loop is completely removed.
640   if (CompletelyUnroll)
641     LI->markAsRemoved(L);
642 
643   // After complete unrolling most of the blocks should be contained in OuterL.
644   // However, some of them might happen to be out of OuterL (e.g. if they
645   // precede a loop exit). In this case we might need to insert PHI nodes in
646   // order to preserve LCSSA form.
647   // We don't need to check this if we already know that we need to fix LCSSA
648   // form.
649   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
650   // it should be possible to fix it in-place.
651   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
652     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
653 
654   // If we have a pass and a DominatorTree we should re-simplify impacted loops
655   // to ensure subsequent analyses can rely on this form. We want to simplify
656   // at least one layer outside of the loop that was unrolled so that any
657   // changes to the parent loop exposed by the unrolling are considered.
658   if (DT) {
659     if (!OuterL && !CompletelyUnroll)
660       OuterL = L;
661     if (OuterL) {
662       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
663 
664       // LCSSA must be performed on the outermost affected loop. The unrolled
665       // loop's last loop latch is guaranteed to be in the outermost loop after
666       // LoopInfo's been updated by markAsRemoved.
667       Loop *LatchLoop = LI->getLoopFor(Latches.back());
668       if (!OuterL->contains(LatchLoop))
669         while (OuterL->getParentLoop() != LatchLoop)
670           OuterL = OuterL->getParentLoop();
671 
672       if (NeedToFixLCSSA)
673         formLCSSARecursively(*OuterL, *DT, LI, SE);
674       else
675         assert(OuterL->isLCSSAForm(*DT) &&
676                "Loops should be in LCSSA form after loop-unroll.");
677     }
678   }
679 
680   return true;
681 }
682 
683 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
684 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
685 /// such metadata node exists, then nullptr is returned.
686 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
687   // First operand should refer to the loop id itself.
688   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
689   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
690 
691   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
692     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
693     if (!MD)
694       continue;
695 
696     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
697     if (!S)
698       continue;
699 
700     if (Name.equals(S->getString()))
701       return MD;
702   }
703   return nullptr;
704 }
705