1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 // TODO: Should these be here or in LoopUnroll? 44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 46 47 static cl::opt<bool> 48 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(true), cl::Hidden, 49 cl::desc("Allow runtime unrolled loops to be unrolled " 50 "with epilog instead of prolog.")); 51 52 /// Convert the instruction operands from referencing the current values into 53 /// those specified by VMap. 54 static inline void remapInstruction(Instruction *I, 55 ValueToValueMapTy &VMap) { 56 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 57 Value *Op = I->getOperand(op); 58 ValueToValueMapTy::iterator It = VMap.find(Op); 59 if (It != VMap.end()) 60 I->setOperand(op, It->second); 61 } 62 63 if (PHINode *PN = dyn_cast<PHINode>(I)) { 64 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 65 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 66 if (It != VMap.end()) 67 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 68 } 69 } 70 } 71 72 /// Folds a basic block into its predecessor if it only has one predecessor, and 73 /// that predecessor only has one successor. 74 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 75 /// successful references to the containing loop must be removed from 76 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 77 /// references to the eliminated BB. The argument ForgottenLoops contains a set 78 /// of loops that have already been forgotten to prevent redundant, expensive 79 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 80 static BasicBlock * 81 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 82 SmallPtrSetImpl<Loop *> &ForgottenLoops, 83 DominatorTree *DT) { 84 // Merge basic blocks into their predecessor if there is only one distinct 85 // pred, and if there is only one distinct successor of the predecessor, and 86 // if there are no PHI nodes. 87 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 88 if (!OnlyPred) return nullptr; 89 90 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 91 return nullptr; 92 93 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 94 95 // Resolve any PHI nodes at the start of the block. They are all 96 // guaranteed to have exactly one entry if they exist, unless there are 97 // multiple duplicate (but guaranteed to be equal) entries for the 98 // incoming edges. This occurs when there are multiple edges from 99 // OnlyPred to OnlySucc. 100 FoldSingleEntryPHINodes(BB); 101 102 // Delete the unconditional branch from the predecessor... 103 OnlyPred->getInstList().pop_back(); 104 105 // Make all PHI nodes that referred to BB now refer to Pred as their 106 // source... 107 BB->replaceAllUsesWith(OnlyPred); 108 109 // Move all definitions in the successor to the predecessor... 110 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 111 112 // OldName will be valid until erased. 113 StringRef OldName = BB->getName(); 114 115 // Erase the old block and update dominator info. 116 if (DT) 117 if (DomTreeNode *DTN = DT->getNode(BB)) { 118 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 119 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 120 for (auto *DI : Children) 121 DT->changeImmediateDominator(DI, PredDTN); 122 123 DT->eraseNode(BB); 124 } 125 126 // ScalarEvolution holds references to loop exit blocks. 127 if (SE) { 128 if (Loop *L = LI->getLoopFor(BB)) { 129 if (ForgottenLoops.insert(L).second) 130 SE->forgetLoop(L); 131 } 132 } 133 LI->removeBlock(BB); 134 135 // Inherit predecessor's name if it exists... 136 if (!OldName.empty() && !OnlyPred->hasName()) 137 OnlyPred->setName(OldName); 138 139 BB->eraseFromParent(); 140 141 return OnlyPred; 142 } 143 144 /// Check if unrolling created a situation where we need to insert phi nodes to 145 /// preserve LCSSA form. 146 /// \param Blocks is a vector of basic blocks representing unrolled loop. 147 /// \param L is the outer loop. 148 /// It's possible that some of the blocks are in L, and some are not. In this 149 /// case, if there is a use is outside L, and definition is inside L, we need to 150 /// insert a phi-node, otherwise LCSSA will be broken. 151 /// The function is just a helper function for llvm::UnrollLoop that returns 152 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 153 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 154 LoopInfo *LI) { 155 for (BasicBlock *BB : Blocks) { 156 if (LI->getLoopFor(BB) == L) 157 continue; 158 for (Instruction &I : *BB) { 159 for (Use &U : I.operands()) { 160 if (auto Def = dyn_cast<Instruction>(U)) { 161 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 162 if (!DefLoop) 163 continue; 164 if (DefLoop->contains(L)) 165 return true; 166 } 167 } 168 } 169 } 170 return false; 171 } 172 173 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 174 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 175 /// can only fail when the loop's latch block is not terminated by a conditional 176 /// branch instruction. However, if the trip count (and multiple) are not known, 177 /// loop unrolling will mostly produce more code that is no faster. 178 /// 179 /// TripCount is generally defined as the number of times the loop header 180 /// executes. UnrollLoop relaxes the definition to permit early exits: here 181 /// TripCount is the iteration on which control exits LatchBlock if no early 182 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 183 /// terminates LatchBlock in order to remove unnecesssary instances of the 184 /// test. In other words, control may exit the loop prior to TripCount 185 /// iterations via an early branch, but control may not exit the loop from the 186 /// LatchBlock's terminator prior to TripCount iterations. 187 /// 188 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 189 /// execute without exiting the loop. 190 /// 191 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 192 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 193 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 194 /// iterations before branching into the unrolled loop. UnrollLoop will not 195 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 196 /// AllowExpensiveTripCount is false. 197 /// 198 /// The LoopInfo Analysis that is passed will be kept consistent. 199 /// 200 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 201 /// DominatorTree if they are non-null. 202 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 203 bool AllowRuntime, bool AllowExpensiveTripCount, 204 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE, 205 DominatorTree *DT, AssumptionCache *AC, 206 bool PreserveLCSSA) { 207 BasicBlock *Preheader = L->getLoopPreheader(); 208 if (!Preheader) { 209 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 210 return false; 211 } 212 213 BasicBlock *LatchBlock = L->getLoopLatch(); 214 if (!LatchBlock) { 215 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 216 return false; 217 } 218 219 // Loops with indirectbr cannot be cloned. 220 if (!L->isSafeToClone()) { 221 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 222 return false; 223 } 224 225 BasicBlock *Header = L->getHeader(); 226 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 227 228 if (!BI || BI->isUnconditional()) { 229 // The loop-rotate pass can be helpful to avoid this in many cases. 230 DEBUG(dbgs() << 231 " Can't unroll; loop not terminated by a conditional branch.\n"); 232 return false; 233 } 234 235 if (Header->hasAddressTaken()) { 236 // The loop-rotate pass can be helpful to avoid this in many cases. 237 DEBUG(dbgs() << 238 " Won't unroll loop: address of header block is taken.\n"); 239 return false; 240 } 241 242 if (TripCount != 0) 243 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 244 if (TripMultiple != 1) 245 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 246 247 // Effectively "DCE" unrolled iterations that are beyond the tripcount 248 // and will never be executed. 249 if (TripCount != 0 && Count > TripCount) 250 Count = TripCount; 251 252 // Don't enter the unroll code if there is nothing to do. This way we don't 253 // need to support "partial unrolling by 1". 254 if (TripCount == 0 && Count < 2) 255 return false; 256 257 assert(Count > 0); 258 assert(TripMultiple > 0); 259 assert(TripCount == 0 || TripCount % TripMultiple == 0); 260 261 // Are we eliminating the loop control altogether? 262 bool CompletelyUnroll = Count == TripCount; 263 SmallVector<BasicBlock *, 4> ExitBlocks; 264 L->getExitBlocks(ExitBlocks); 265 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 266 267 // Go through all exits of L and see if there are any phi-nodes there. We just 268 // conservatively assume that they're inserted to preserve LCSSA form, which 269 // means that complete unrolling might break this form. We need to either fix 270 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 271 // now we just recompute LCSSA for the outer loop, but it should be possible 272 // to fix it in-place. 273 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 274 std::any_of(ExitBlocks.begin(), ExitBlocks.end(), 275 [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 276 277 // We assume a run-time trip count if the compiler cannot 278 // figure out the loop trip count and the unroll-runtime 279 // flag is specified. 280 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 281 282 // Loops containing convergent instructions must have a count that divides 283 // their TripMultiple. 284 DEBUG( 285 { 286 bool HasConvergent = false; 287 for (auto &BB : L->blocks()) 288 for (auto &I : *BB) 289 if (auto CS = CallSite(&I)) 290 HasConvergent |= CS.isConvergent(); 291 assert((!HasConvergent || TripMultiple % Count == 0) && 292 "Unroll count must divide trip multiple if loop contains a " 293 "convergent operation."); 294 }); 295 // Don't output the runtime loop remainder if Count is a multiple of 296 // TripMultiple. Such a remainder is never needed, and is unsafe if the loop 297 // contains a convergent instruction. 298 if (RuntimeTripCount && TripMultiple % Count != 0 && 299 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 300 UnrollRuntimeEpilog, LI, SE, DT, 301 PreserveLCSSA)) 302 return false; 303 304 // Notify ScalarEvolution that the loop will be substantially changed, 305 // if not outright eliminated. 306 if (SE) 307 SE->forgetLoop(L); 308 309 // If we know the trip count, we know the multiple... 310 unsigned BreakoutTrip = 0; 311 if (TripCount != 0) { 312 BreakoutTrip = TripCount % Count; 313 TripMultiple = 0; 314 } else { 315 // Figure out what multiple to use. 316 BreakoutTrip = TripMultiple = 317 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 318 } 319 320 // Report the unrolling decision. 321 DebugLoc LoopLoc = L->getStartLoc(); 322 Function *F = Header->getParent(); 323 LLVMContext &Ctx = F->getContext(); 324 325 if (CompletelyUnroll) { 326 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 327 << " with trip count " << TripCount << "!\n"); 328 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 329 Twine("completely unrolled loop with ") + 330 Twine(TripCount) + " iterations"); 331 } else { 332 auto EmitDiag = [&](const Twine &T) { 333 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 334 "unrolled loop by a factor of " + Twine(Count) + 335 T); 336 }; 337 338 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 339 << " by " << Count); 340 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 341 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 342 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 343 } else if (TripMultiple != 1) { 344 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 345 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 346 } else if (RuntimeTripCount) { 347 DEBUG(dbgs() << " with run-time trip count"); 348 EmitDiag(" with run-time trip count"); 349 } 350 DEBUG(dbgs() << "!\n"); 351 } 352 353 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 354 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 355 356 // For the first iteration of the loop, we should use the precloned values for 357 // PHI nodes. Insert associations now. 358 ValueToValueMapTy LastValueMap; 359 std::vector<PHINode*> OrigPHINode; 360 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 361 OrigPHINode.push_back(cast<PHINode>(I)); 362 } 363 364 std::vector<BasicBlock*> Headers; 365 std::vector<BasicBlock*> Latches; 366 Headers.push_back(Header); 367 Latches.push_back(LatchBlock); 368 369 // The current on-the-fly SSA update requires blocks to be processed in 370 // reverse postorder so that LastValueMap contains the correct value at each 371 // exit. 372 LoopBlocksDFS DFS(L); 373 DFS.perform(LI); 374 375 // Stash the DFS iterators before adding blocks to the loop. 376 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 377 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 378 379 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 380 for (unsigned It = 1; It != Count; ++It) { 381 std::vector<BasicBlock*> NewBlocks; 382 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 383 NewLoops[L] = L; 384 385 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 386 ValueToValueMapTy VMap; 387 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 388 Header->getParent()->getBasicBlockList().push_back(New); 389 390 // Tell LI about New. 391 if (*BB == Header) { 392 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 393 L->addBasicBlockToLoop(New, *LI); 394 } else { 395 // Figure out which loop New is in. 396 const Loop *OldLoop = LI->getLoopFor(*BB); 397 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 398 399 Loop *&NewLoop = NewLoops[OldLoop]; 400 if (!NewLoop) { 401 // Found a new sub-loop. 402 assert(*BB == OldLoop->getHeader() && 403 "Header should be first in RPO"); 404 405 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 406 assert(NewLoopParent && 407 "Expected parent loop before sub-loop in RPO"); 408 NewLoop = new Loop; 409 NewLoopParent->addChildLoop(NewLoop); 410 411 // Forget the old loop, since its inputs may have changed. 412 if (SE) 413 SE->forgetLoop(OldLoop); 414 } 415 NewLoop->addBasicBlockToLoop(New, *LI); 416 } 417 418 if (*BB == Header) 419 // Loop over all of the PHI nodes in the block, changing them to use 420 // the incoming values from the previous block. 421 for (PHINode *OrigPHI : OrigPHINode) { 422 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 423 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 424 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 425 if (It > 1 && L->contains(InValI)) 426 InVal = LastValueMap[InValI]; 427 VMap[OrigPHI] = InVal; 428 New->getInstList().erase(NewPHI); 429 } 430 431 // Update our running map of newest clones 432 LastValueMap[*BB] = New; 433 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 434 VI != VE; ++VI) 435 LastValueMap[VI->first] = VI->second; 436 437 // Add phi entries for newly created values to all exit blocks. 438 for (BasicBlock *Succ : successors(*BB)) { 439 if (L->contains(Succ)) 440 continue; 441 for (BasicBlock::iterator BBI = Succ->begin(); 442 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 443 Value *Incoming = phi->getIncomingValueForBlock(*BB); 444 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 445 if (It != LastValueMap.end()) 446 Incoming = It->second; 447 phi->addIncoming(Incoming, New); 448 } 449 } 450 // Keep track of new headers and latches as we create them, so that 451 // we can insert the proper branches later. 452 if (*BB == Header) 453 Headers.push_back(New); 454 if (*BB == LatchBlock) 455 Latches.push_back(New); 456 457 NewBlocks.push_back(New); 458 UnrolledLoopBlocks.push_back(New); 459 460 // Update DomTree: since we just copy the loop body, and each copy has a 461 // dedicated entry block (copy of the header block), this header's copy 462 // dominates all copied blocks. That means, dominance relations in the 463 // copied body are the same as in the original body. 464 if (DT) { 465 if (*BB == Header) 466 DT->addNewBlock(New, Latches[It - 1]); 467 else { 468 auto BBDomNode = DT->getNode(*BB); 469 auto BBIDom = BBDomNode->getIDom(); 470 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 471 DT->addNewBlock( 472 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 473 } 474 } 475 } 476 477 // Remap all instructions in the most recent iteration 478 for (BasicBlock *NewBlock : NewBlocks) 479 for (Instruction &I : *NewBlock) 480 ::remapInstruction(&I, LastValueMap); 481 } 482 483 // Loop over the PHI nodes in the original block, setting incoming values. 484 for (PHINode *PN : OrigPHINode) { 485 if (CompletelyUnroll) { 486 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 487 Header->getInstList().erase(PN); 488 } 489 else if (Count > 1) { 490 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 491 // If this value was defined in the loop, take the value defined by the 492 // last iteration of the loop. 493 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 494 if (L->contains(InValI)) 495 InVal = LastValueMap[InVal]; 496 } 497 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 498 PN->addIncoming(InVal, Latches.back()); 499 } 500 } 501 502 // Now that all the basic blocks for the unrolled iterations are in place, 503 // set up the branches to connect them. 504 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 505 // The original branch was replicated in each unrolled iteration. 506 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 507 508 // The branch destination. 509 unsigned j = (i + 1) % e; 510 BasicBlock *Dest = Headers[j]; 511 bool NeedConditional = true; 512 513 if (RuntimeTripCount && j != 0) { 514 NeedConditional = false; 515 } 516 517 // For a complete unroll, make the last iteration end with a branch 518 // to the exit block. 519 if (CompletelyUnroll) { 520 if (j == 0) 521 Dest = LoopExit; 522 NeedConditional = false; 523 } 524 525 // If we know the trip count or a multiple of it, we can safely use an 526 // unconditional branch for some iterations. 527 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 528 NeedConditional = false; 529 } 530 531 if (NeedConditional) { 532 // Update the conditional branch's successor for the following 533 // iteration. 534 Term->setSuccessor(!ContinueOnTrue, Dest); 535 } else { 536 // Remove phi operands at this loop exit 537 if (Dest != LoopExit) { 538 BasicBlock *BB = Latches[i]; 539 for (BasicBlock *Succ: successors(BB)) { 540 if (Succ == Headers[i]) 541 continue; 542 for (BasicBlock::iterator BBI = Succ->begin(); 543 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 544 Phi->removeIncomingValue(BB, false); 545 } 546 } 547 } 548 // Replace the conditional branch with an unconditional one. 549 BranchInst::Create(Dest, Term); 550 Term->eraseFromParent(); 551 } 552 } 553 // Update dominators of blocks we might reach through exits. 554 // Immediate dominator of such block might change, because we add more 555 // routes which can lead to the exit: we can now reach it from the copied 556 // iterations too. Thus, the new idom of the block will be the nearest 557 // common dominator of the previous idom and common dominator of all copies of 558 // the previous idom. This is equivalent to the nearest common dominator of 559 // the previous idom and the first latch, which dominates all copies of the 560 // previous idom. 561 if (DT && Count > 1) { 562 for (auto *BB : OriginalLoopBlocks) { 563 auto *BBDomNode = DT->getNode(BB); 564 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 565 for (auto *ChildDomNode : BBDomNode->getChildren()) { 566 auto *ChildBB = ChildDomNode->getBlock(); 567 if (!L->contains(ChildBB)) 568 ChildrenToUpdate.push_back(ChildBB); 569 } 570 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]); 571 for (auto *ChildBB : ChildrenToUpdate) 572 DT->changeImmediateDominator(ChildBB, NewIDom); 573 } 574 } 575 576 // Merge adjacent basic blocks, if possible. 577 SmallPtrSet<Loop *, 4> ForgottenLoops; 578 for (BasicBlock *Latch : Latches) { 579 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 580 if (Term->isUnconditional()) { 581 BasicBlock *Dest = Term->getSuccessor(0); 582 if (BasicBlock *Fold = 583 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 584 // Dest has been folded into Fold. Update our worklists accordingly. 585 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 586 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 587 UnrolledLoopBlocks.end(), Dest), 588 UnrolledLoopBlocks.end()); 589 } 590 } 591 } 592 593 // FIXME: We could register any cloned assumptions instead of clearing the 594 // whole function's cache. 595 AC->clear(); 596 597 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 598 // updating domtree after partial loop unrolling should also be easy. 599 if (DT && !CompletelyUnroll) 600 DT->recalculate(*L->getHeader()->getParent()); 601 else 602 DEBUG(DT->verifyDomTree()); 603 604 // Simplify any new induction variables in the partially unrolled loop. 605 if (SE && !CompletelyUnroll) { 606 SmallVector<WeakVH, 16> DeadInsts; 607 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 608 609 // Aggressively clean up dead instructions that simplifyLoopIVs already 610 // identified. Any remaining should be cleaned up below. 611 while (!DeadInsts.empty()) 612 if (Instruction *Inst = 613 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 614 RecursivelyDeleteTriviallyDeadInstructions(Inst); 615 } 616 617 // At this point, the code is well formed. We now do a quick sweep over the 618 // inserted code, doing constant propagation and dead code elimination as we 619 // go. 620 const DataLayout &DL = Header->getModule()->getDataLayout(); 621 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 622 for (BasicBlock *BB : NewLoopBlocks) 623 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 624 Instruction *Inst = &*I++; 625 626 if (isInstructionTriviallyDead(Inst)) 627 BB->getInstList().erase(Inst); 628 else if (Value *V = SimplifyInstruction(Inst, DL)) 629 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 630 Inst->replaceAllUsesWith(V); 631 BB->getInstList().erase(Inst); 632 } 633 } 634 635 NumCompletelyUnrolled += CompletelyUnroll; 636 ++NumUnrolled; 637 638 Loop *OuterL = L->getParentLoop(); 639 // Update LoopInfo if the loop is completely removed. 640 if (CompletelyUnroll) 641 LI->markAsRemoved(L); 642 643 // After complete unrolling most of the blocks should be contained in OuterL. 644 // However, some of them might happen to be out of OuterL (e.g. if they 645 // precede a loop exit). In this case we might need to insert PHI nodes in 646 // order to preserve LCSSA form. 647 // We don't need to check this if we already know that we need to fix LCSSA 648 // form. 649 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 650 // it should be possible to fix it in-place. 651 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 652 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 653 654 // If we have a pass and a DominatorTree we should re-simplify impacted loops 655 // to ensure subsequent analyses can rely on this form. We want to simplify 656 // at least one layer outside of the loop that was unrolled so that any 657 // changes to the parent loop exposed by the unrolling are considered. 658 if (DT) { 659 if (!OuterL && !CompletelyUnroll) 660 OuterL = L; 661 if (OuterL) { 662 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 663 664 // LCSSA must be performed on the outermost affected loop. The unrolled 665 // loop's last loop latch is guaranteed to be in the outermost loop after 666 // LoopInfo's been updated by markAsRemoved. 667 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 668 if (!OuterL->contains(LatchLoop)) 669 while (OuterL->getParentLoop() != LatchLoop) 670 OuterL = OuterL->getParentLoop(); 671 672 if (NeedToFixLCSSA) 673 formLCSSARecursively(*OuterL, *DT, LI, SE); 674 else 675 assert(OuterL->isLCSSAForm(*DT) && 676 "Loops should be in LCSSA form after loop-unroll."); 677 } 678 } 679 680 return true; 681 } 682 683 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 684 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 685 /// such metadata node exists, then nullptr is returned. 686 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 687 // First operand should refer to the loop id itself. 688 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 689 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 690 691 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 692 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 693 if (!MD) 694 continue; 695 696 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 697 if (!S) 698 continue; 699 700 if (Name.equals(S->getString())) 701 return MD; 702 } 703 return nullptr; 704 } 705