1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 // TODO: Should these be here or in LoopUnroll? 44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 46 47 /// RemapInstruction - Convert the instruction operands from referencing the 48 /// current values into those specified by VMap. 49 static inline void RemapInstruction(Instruction *I, 50 ValueToValueMapTy &VMap) { 51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 52 Value *Op = I->getOperand(op); 53 ValueToValueMapTy::iterator It = VMap.find(Op); 54 if (It != VMap.end()) 55 I->setOperand(op, It->second); 56 } 57 58 if (PHINode *PN = dyn_cast<PHINode>(I)) { 59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 61 if (It != VMap.end()) 62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 63 } 64 } 65 } 66 67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 68 /// only has one predecessor, and that predecessor only has one successor. 69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 70 /// successful references to the containing loop must be removed from 71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 72 /// references to the eliminated BB. The argument ForgottenLoops contains a set 73 /// of loops that have already been forgotten to prevent redundant, expensive 74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 75 static BasicBlock * 76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM, 77 SmallPtrSetImpl<Loop *> &ForgottenLoops) { 78 // Merge basic blocks into their predecessor if there is only one distinct 79 // pred, and if there is only one distinct successor of the predecessor, and 80 // if there are no PHI nodes. 81 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 82 if (!OnlyPred) return nullptr; 83 84 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 85 return nullptr; 86 87 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 88 89 // Resolve any PHI nodes at the start of the block. They are all 90 // guaranteed to have exactly one entry if they exist, unless there are 91 // multiple duplicate (but guaranteed to be equal) entries for the 92 // incoming edges. This occurs when there are multiple edges from 93 // OnlyPred to OnlySucc. 94 FoldSingleEntryPHINodes(BB); 95 96 // Delete the unconditional branch from the predecessor... 97 OnlyPred->getInstList().pop_back(); 98 99 // Make all PHI nodes that referred to BB now refer to Pred as their 100 // source... 101 BB->replaceAllUsesWith(OnlyPred); 102 103 // Move all definitions in the successor to the predecessor... 104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 105 106 // OldName will be valid until erased. 107 StringRef OldName = BB->getName(); 108 109 // Erase basic block from the function... 110 111 // ScalarEvolution holds references to loop exit blocks. 112 if (LPM) { 113 if (auto *SEWP = 114 LPM->getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) { 115 if (Loop *L = LI->getLoopFor(BB)) { 116 if (ForgottenLoops.insert(L).second) 117 SEWP->getSE().forgetLoop(L); 118 } 119 } 120 } 121 LI->removeBlock(BB); 122 123 // Inherit predecessor's name if it exists... 124 if (!OldName.empty() && !OnlyPred->hasName()) 125 OnlyPred->setName(OldName); 126 127 BB->eraseFromParent(); 128 129 return OnlyPred; 130 } 131 132 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 133 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 134 /// can only fail when the loop's latch block is not terminated by a conditional 135 /// branch instruction. However, if the trip count (and multiple) are not known, 136 /// loop unrolling will mostly produce more code that is no faster. 137 /// 138 /// TripCount is generally defined as the number of times the loop header 139 /// executes. UnrollLoop relaxes the definition to permit early exits: here 140 /// TripCount is the iteration on which control exits LatchBlock if no early 141 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 142 /// terminates LatchBlock in order to remove unnecesssary instances of the 143 /// test. In other words, control may exit the loop prior to TripCount 144 /// iterations via an early branch, but control may not exit the loop from the 145 /// LatchBlock's terminator prior to TripCount iterations. 146 /// 147 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 148 /// execute without exiting the loop. 149 /// 150 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 151 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 152 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 153 /// iterations before branching into the unrolled loop. UnrollLoop will not 154 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 155 /// AllowExpensiveTripCount is false. 156 /// 157 /// The LoopInfo Analysis that is passed will be kept consistent. 158 /// 159 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 160 /// removed from the LoopPassManager as well. LPM can also be NULL. 161 /// 162 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are 163 /// available from the Pass it must also preserve those analyses. 164 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 165 bool AllowRuntime, bool AllowExpensiveTripCount, 166 unsigned TripMultiple, LoopInfo *LI, Pass *PP, 167 LPPassManager *LPM, AssumptionCache *AC) { 168 BasicBlock *Preheader = L->getLoopPreheader(); 169 if (!Preheader) { 170 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 171 return false; 172 } 173 174 BasicBlock *LatchBlock = L->getLoopLatch(); 175 if (!LatchBlock) { 176 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 177 return false; 178 } 179 180 // Loops with indirectbr cannot be cloned. 181 if (!L->isSafeToClone()) { 182 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 183 return false; 184 } 185 186 BasicBlock *Header = L->getHeader(); 187 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 188 189 if (!BI || BI->isUnconditional()) { 190 // The loop-rotate pass can be helpful to avoid this in many cases. 191 DEBUG(dbgs() << 192 " Can't unroll; loop not terminated by a conditional branch.\n"); 193 return false; 194 } 195 196 if (Header->hasAddressTaken()) { 197 // The loop-rotate pass can be helpful to avoid this in many cases. 198 DEBUG(dbgs() << 199 " Won't unroll loop: address of header block is taken.\n"); 200 return false; 201 } 202 203 if (TripCount != 0) 204 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 205 if (TripMultiple != 1) 206 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 207 208 // Effectively "DCE" unrolled iterations that are beyond the tripcount 209 // and will never be executed. 210 if (TripCount != 0 && Count > TripCount) 211 Count = TripCount; 212 213 // Don't enter the unroll code if there is nothing to do. This way we don't 214 // need to support "partial unrolling by 1". 215 if (TripCount == 0 && Count < 2) 216 return false; 217 218 assert(Count > 0); 219 assert(TripMultiple > 0); 220 assert(TripCount == 0 || TripCount % TripMultiple == 0); 221 222 // Are we eliminating the loop control altogether? 223 bool CompletelyUnroll = Count == TripCount; 224 SmallVector<BasicBlock *, 4> ExitBlocks; 225 L->getExitBlocks(ExitBlocks); 226 Loop *ParentL = L->getParentLoop(); 227 bool AllExitsAreInsideParentLoop = !ParentL || 228 std::all_of(ExitBlocks.begin(), ExitBlocks.end(), 229 [&](BasicBlock *BB) { return ParentL->contains(BB); }); 230 231 // We assume a run-time trip count if the compiler cannot 232 // figure out the loop trip count and the unroll-runtime 233 // flag is specified. 234 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 235 236 if (RuntimeTripCount && 237 !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, LPM)) 238 return false; 239 240 // Notify ScalarEvolution that the loop will be substantially changed, 241 // if not outright eliminated. 242 auto *SEWP = 243 PP ? PP->getAnalysisIfAvailable<ScalarEvolutionWrapperPass>() : nullptr; 244 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 245 if (SE) 246 SE->forgetLoop(L); 247 248 // If we know the trip count, we know the multiple... 249 unsigned BreakoutTrip = 0; 250 if (TripCount != 0) { 251 BreakoutTrip = TripCount % Count; 252 TripMultiple = 0; 253 } else { 254 // Figure out what multiple to use. 255 BreakoutTrip = TripMultiple = 256 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 257 } 258 259 // Report the unrolling decision. 260 DebugLoc LoopLoc = L->getStartLoc(); 261 Function *F = Header->getParent(); 262 LLVMContext &Ctx = F->getContext(); 263 264 if (CompletelyUnroll) { 265 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 266 << " with trip count " << TripCount << "!\n"); 267 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 268 Twine("completely unrolled loop with ") + 269 Twine(TripCount) + " iterations"); 270 } else { 271 auto EmitDiag = [&](const Twine &T) { 272 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 273 "unrolled loop by a factor of " + Twine(Count) + 274 T); 275 }; 276 277 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 278 << " by " << Count); 279 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 280 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 281 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 282 } else if (TripMultiple != 1) { 283 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 284 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 285 } else if (RuntimeTripCount) { 286 DEBUG(dbgs() << " with run-time trip count"); 287 EmitDiag(" with run-time trip count"); 288 } 289 DEBUG(dbgs() << "!\n"); 290 } 291 292 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 293 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 294 295 // For the first iteration of the loop, we should use the precloned values for 296 // PHI nodes. Insert associations now. 297 ValueToValueMapTy LastValueMap; 298 std::vector<PHINode*> OrigPHINode; 299 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 300 OrigPHINode.push_back(cast<PHINode>(I)); 301 } 302 303 std::vector<BasicBlock*> Headers; 304 std::vector<BasicBlock*> Latches; 305 Headers.push_back(Header); 306 Latches.push_back(LatchBlock); 307 308 // The current on-the-fly SSA update requires blocks to be processed in 309 // reverse postorder so that LastValueMap contains the correct value at each 310 // exit. 311 LoopBlocksDFS DFS(L); 312 DFS.perform(LI); 313 314 // Stash the DFS iterators before adding blocks to the loop. 315 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 316 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 317 318 for (unsigned It = 1; It != Count; ++It) { 319 std::vector<BasicBlock*> NewBlocks; 320 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 321 NewLoops[L] = L; 322 323 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 324 ValueToValueMapTy VMap; 325 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 326 Header->getParent()->getBasicBlockList().push_back(New); 327 328 // Tell LI about New. 329 if (*BB == Header) { 330 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 331 L->addBasicBlockToLoop(New, *LI); 332 } else { 333 // Figure out which loop New is in. 334 const Loop *OldLoop = LI->getLoopFor(*BB); 335 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 336 337 Loop *&NewLoop = NewLoops[OldLoop]; 338 if (!NewLoop) { 339 // Found a new sub-loop. 340 assert(*BB == OldLoop->getHeader() && 341 "Header should be first in RPO"); 342 343 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 344 assert(NewLoopParent && 345 "Expected parent loop before sub-loop in RPO"); 346 NewLoop = new Loop; 347 NewLoopParent->addChildLoop(NewLoop); 348 349 // Forget the old loop, since its inputs may have changed. 350 if (SE) 351 SE->forgetLoop(OldLoop); 352 } 353 NewLoop->addBasicBlockToLoop(New, *LI); 354 } 355 356 if (*BB == Header) 357 // Loop over all of the PHI nodes in the block, changing them to use 358 // the incoming values from the previous block. 359 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 360 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 361 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 362 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 363 if (It > 1 && L->contains(InValI)) 364 InVal = LastValueMap[InValI]; 365 VMap[OrigPHINode[i]] = InVal; 366 New->getInstList().erase(NewPHI); 367 } 368 369 // Update our running map of newest clones 370 LastValueMap[*BB] = New; 371 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 372 VI != VE; ++VI) 373 LastValueMap[VI->first] = VI->second; 374 375 // Add phi entries for newly created values to all exit blocks. 376 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 377 SI != SE; ++SI) { 378 if (L->contains(*SI)) 379 continue; 380 for (BasicBlock::iterator BBI = (*SI)->begin(); 381 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 382 Value *Incoming = phi->getIncomingValueForBlock(*BB); 383 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 384 if (It != LastValueMap.end()) 385 Incoming = It->second; 386 phi->addIncoming(Incoming, New); 387 } 388 } 389 // Keep track of new headers and latches as we create them, so that 390 // we can insert the proper branches later. 391 if (*BB == Header) 392 Headers.push_back(New); 393 if (*BB == LatchBlock) 394 Latches.push_back(New); 395 396 NewBlocks.push_back(New); 397 } 398 399 // Remap all instructions in the most recent iteration 400 for (unsigned i = 0; i < NewBlocks.size(); ++i) 401 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 402 E = NewBlocks[i]->end(); I != E; ++I) 403 ::RemapInstruction(&*I, LastValueMap); 404 } 405 406 // Loop over the PHI nodes in the original block, setting incoming values. 407 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 408 PHINode *PN = OrigPHINode[i]; 409 if (CompletelyUnroll) { 410 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 411 Header->getInstList().erase(PN); 412 } 413 else if (Count > 1) { 414 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 415 // If this value was defined in the loop, take the value defined by the 416 // last iteration of the loop. 417 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 418 if (L->contains(InValI)) 419 InVal = LastValueMap[InVal]; 420 } 421 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 422 PN->addIncoming(InVal, Latches.back()); 423 } 424 } 425 426 // Now that all the basic blocks for the unrolled iterations are in place, 427 // set up the branches to connect them. 428 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 429 // The original branch was replicated in each unrolled iteration. 430 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 431 432 // The branch destination. 433 unsigned j = (i + 1) % e; 434 BasicBlock *Dest = Headers[j]; 435 bool NeedConditional = true; 436 437 if (RuntimeTripCount && j != 0) { 438 NeedConditional = false; 439 } 440 441 // For a complete unroll, make the last iteration end with a branch 442 // to the exit block. 443 if (CompletelyUnroll) { 444 if (j == 0) 445 Dest = LoopExit; 446 NeedConditional = false; 447 } 448 449 // If we know the trip count or a multiple of it, we can safely use an 450 // unconditional branch for some iterations. 451 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 452 NeedConditional = false; 453 } 454 455 if (NeedConditional) { 456 // Update the conditional branch's successor for the following 457 // iteration. 458 Term->setSuccessor(!ContinueOnTrue, Dest); 459 } else { 460 // Remove phi operands at this loop exit 461 if (Dest != LoopExit) { 462 BasicBlock *BB = Latches[i]; 463 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 464 SI != SE; ++SI) { 465 if (*SI == Headers[i]) 466 continue; 467 for (BasicBlock::iterator BBI = (*SI)->begin(); 468 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 469 Phi->removeIncomingValue(BB, false); 470 } 471 } 472 } 473 // Replace the conditional branch with an unconditional one. 474 BranchInst::Create(Dest, Term); 475 Term->eraseFromParent(); 476 } 477 } 478 479 // Merge adjacent basic blocks, if possible. 480 SmallPtrSet<Loop *, 4> ForgottenLoops; 481 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 482 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 483 if (Term->isUnconditional()) { 484 BasicBlock *Dest = Term->getSuccessor(0); 485 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM, 486 ForgottenLoops)) 487 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 488 } 489 } 490 491 // FIXME: We could register any cloned assumptions instead of clearing the 492 // whole function's cache. 493 AC->clear(); 494 495 DominatorTree *DT = nullptr; 496 if (PP) { 497 // FIXME: Reconstruct dom info, because it is not preserved properly. 498 // Incrementally updating domtree after loop unrolling would be easy. 499 if (DominatorTreeWrapperPass *DTWP = 500 PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 501 DT = &DTWP->getDomTree(); 502 DT->recalculate(*L->getHeader()->getParent()); 503 } 504 505 // Simplify any new induction variables in the partially unrolled loop. 506 if (SE && !CompletelyUnroll) { 507 SmallVector<WeakVH, 16> DeadInsts; 508 simplifyLoopIVs(L, SE, DT, LPM, DeadInsts); 509 510 // Aggressively clean up dead instructions that simplifyLoopIVs already 511 // identified. Any remaining should be cleaned up below. 512 while (!DeadInsts.empty()) 513 if (Instruction *Inst = 514 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 515 RecursivelyDeleteTriviallyDeadInstructions(Inst); 516 } 517 } 518 // At this point, the code is well formed. We now do a quick sweep over the 519 // inserted code, doing constant propagation and dead code elimination as we 520 // go. 521 const DataLayout &DL = Header->getModule()->getDataLayout(); 522 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 523 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 524 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 525 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 526 Instruction *Inst = &*I++; 527 528 if (isInstructionTriviallyDead(Inst)) 529 (*BB)->getInstList().erase(Inst); 530 else if (Value *V = SimplifyInstruction(Inst, DL)) 531 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 532 Inst->replaceAllUsesWith(V); 533 (*BB)->getInstList().erase(Inst); 534 } 535 } 536 537 NumCompletelyUnrolled += CompletelyUnroll; 538 ++NumUnrolled; 539 540 Loop *OuterL = L->getParentLoop(); 541 // Remove the loop from the LoopPassManager if it's completely removed. 542 if (CompletelyUnroll && LPM != nullptr) 543 LPM->deleteLoopFromQueue(L); 544 545 // If we have a pass and a DominatorTree we should re-simplify impacted loops 546 // to ensure subsequent analyses can rely on this form. We want to simplify 547 // at least one layer outside of the loop that was unrolled so that any 548 // changes to the parent loop exposed by the unrolling are considered. 549 if (PP && DT) { 550 if (!OuterL && !CompletelyUnroll) 551 OuterL = L; 552 if (OuterL) { 553 bool Simplified = simplifyLoop(OuterL, DT, LI, PP, SE, AC); 554 555 // LCSSA must be performed on the outermost affected loop. The unrolled 556 // loop's last loop latch is guaranteed to be in the outermost loop after 557 // deleteLoopFromQueue updates LoopInfo. 558 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 559 if (!OuterL->contains(LatchLoop)) 560 while (OuterL->getParentLoop() != LatchLoop) 561 OuterL = OuterL->getParentLoop(); 562 563 if (CompletelyUnroll && (!AllExitsAreInsideParentLoop || Simplified)) 564 formLCSSARecursively(*OuterL, *DT, LI, SE); 565 else 566 assert(OuterL->isLCSSAForm(*DT) && 567 "Loops should be in LCSSA form after loop-unroll."); 568 } 569 } 570 571 return true; 572 } 573 574 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 575 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 576 /// such metadata node exists, then nullptr is returned. 577 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 578 // First operand should refer to the loop id itself. 579 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 580 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 581 582 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 583 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 584 if (!MD) 585 continue; 586 587 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 588 if (!S) 589 continue; 590 591 if (Name.equals(S->getString())) 592 return MD; 593 } 594 return nullptr; 595 } 596