1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopIterator.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/Utils/Local.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/LoopSimplify.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 static cl::opt<bool> 55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 56 cl::desc("Verify domtree after unrolling"), 57 #ifdef NDEBUG 58 cl::init(false) 59 #else 60 cl::init(true) 61 #endif 62 ); 63 64 /// Convert the instruction operands from referencing the current values into 65 /// those specified by VMap. 66 static inline void remapInstruction(Instruction *I, 67 ValueToValueMapTy &VMap) { 68 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 69 Value *Op = I->getOperand(op); 70 71 // Unwrap arguments of dbg.value intrinsics. 72 bool Wrapped = false; 73 if (auto *V = dyn_cast<MetadataAsValue>(Op)) 74 if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) { 75 Op = Unwrapped->getValue(); 76 Wrapped = true; 77 } 78 79 auto wrap = [&](Value *V) { 80 auto &C = I->getContext(); 81 return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V; 82 }; 83 84 ValueToValueMapTy::iterator It = VMap.find(Op); 85 if (It != VMap.end()) 86 I->setOperand(op, wrap(It->second)); 87 } 88 89 if (PHINode *PN = dyn_cast<PHINode>(I)) { 90 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 91 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 92 if (It != VMap.end()) 93 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 94 } 95 } 96 } 97 98 /// Folds a basic block into its predecessor if it only has one predecessor, and 99 /// that predecessor only has one successor. 100 /// The LoopInfo Analysis that is passed will be kept consistent. 101 static BasicBlock * 102 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 103 DominatorTree *DT) { 104 // Merge basic blocks into their predecessor if there is only one distinct 105 // pred, and if there is only one distinct successor of the predecessor, and 106 // if there are no PHI nodes. 107 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 108 if (!OnlyPred) return nullptr; 109 110 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 111 return nullptr; 112 113 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 114 115 // Resolve any PHI nodes at the start of the block. They are all 116 // guaranteed to have exactly one entry if they exist, unless there are 117 // multiple duplicate (but guaranteed to be equal) entries for the 118 // incoming edges. This occurs when there are multiple edges from 119 // OnlyPred to OnlySucc. 120 FoldSingleEntryPHINodes(BB); 121 122 // Delete the unconditional branch from the predecessor... 123 OnlyPred->getInstList().pop_back(); 124 125 // Make all PHI nodes that referred to BB now refer to Pred as their 126 // source... 127 BB->replaceAllUsesWith(OnlyPred); 128 129 // Move all definitions in the successor to the predecessor... 130 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 131 132 // OldName will be valid until erased. 133 StringRef OldName = BB->getName(); 134 135 // Erase the old block and update dominator info. 136 if (DT) 137 if (DomTreeNode *DTN = DT->getNode(BB)) { 138 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 139 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 140 for (auto *DI : Children) 141 DT->changeImmediateDominator(DI, PredDTN); 142 143 DT->eraseNode(BB); 144 } 145 146 LI->removeBlock(BB); 147 148 // Inherit predecessor's name if it exists... 149 if (!OldName.empty() && !OnlyPred->hasName()) 150 OnlyPred->setName(OldName); 151 152 BB->eraseFromParent(); 153 154 return OnlyPred; 155 } 156 157 /// Check if unrolling created a situation where we need to insert phi nodes to 158 /// preserve LCSSA form. 159 /// \param Blocks is a vector of basic blocks representing unrolled loop. 160 /// \param L is the outer loop. 161 /// It's possible that some of the blocks are in L, and some are not. In this 162 /// case, if there is a use is outside L, and definition is inside L, we need to 163 /// insert a phi-node, otherwise LCSSA will be broken. 164 /// The function is just a helper function for llvm::UnrollLoop that returns 165 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 167 LoopInfo *LI) { 168 for (BasicBlock *BB : Blocks) { 169 if (LI->getLoopFor(BB) == L) 170 continue; 171 for (Instruction &I : *BB) { 172 for (Use &U : I.operands()) { 173 if (auto Def = dyn_cast<Instruction>(U)) { 174 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 175 if (!DefLoop) 176 continue; 177 if (DefLoop->contains(L)) 178 return true; 179 } 180 } 181 } 182 } 183 return false; 184 } 185 186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 187 /// and adds a mapping from the original loop to the new loop to NewLoops. 188 /// Returns nullptr if no new loop was created and a pointer to the 189 /// original loop OriginalBB was part of otherwise. 190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 191 BasicBlock *ClonedBB, LoopInfo *LI, 192 NewLoopsMap &NewLoops) { 193 // Figure out which loop New is in. 194 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 195 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 196 197 Loop *&NewLoop = NewLoops[OldLoop]; 198 if (!NewLoop) { 199 // Found a new sub-loop. 200 assert(OriginalBB == OldLoop->getHeader() && 201 "Header should be first in RPO"); 202 203 NewLoop = LI->AllocateLoop(); 204 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 205 206 if (NewLoopParent) 207 NewLoopParent->addChildLoop(NewLoop); 208 else 209 LI->addTopLevelLoop(NewLoop); 210 211 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 212 return OldLoop; 213 } else { 214 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 215 return nullptr; 216 } 217 } 218 219 /// The function chooses which type of unroll (epilog or prolog) is more 220 /// profitabale. 221 /// Epilog unroll is more profitable when there is PHI that starts from 222 /// constant. In this case epilog will leave PHI start from constant, 223 /// but prolog will convert it to non-constant. 224 /// 225 /// loop: 226 /// PN = PHI [I, Latch], [CI, PreHeader] 227 /// I = foo(PN) 228 /// ... 229 /// 230 /// Epilog unroll case. 231 /// loop: 232 /// PN = PHI [I2, Latch], [CI, PreHeader] 233 /// I1 = foo(PN) 234 /// I2 = foo(I1) 235 /// ... 236 /// Prolog unroll case. 237 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 238 /// loop: 239 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 240 /// I1 = foo(PN) 241 /// I2 = foo(I1) 242 /// ... 243 /// 244 static bool isEpilogProfitable(Loop *L) { 245 BasicBlock *PreHeader = L->getLoopPreheader(); 246 BasicBlock *Header = L->getHeader(); 247 assert(PreHeader && Header); 248 for (const PHINode &PN : Header->phis()) { 249 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 250 return true; 251 } 252 return false; 253 } 254 255 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 256 /// can only fail when the loop's latch block is not terminated by a conditional 257 /// branch instruction. However, if the trip count (and multiple) are not known, 258 /// loop unrolling will mostly produce more code that is no faster. 259 /// 260 /// TripCount is the upper bound of the iteration on which control exits 261 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 262 /// via an early branch in other loop block or via LatchBlock terminator. This 263 /// is relaxed from the general definition of trip count which is the number of 264 /// times the loop header executes. Note that UnrollLoop assumes that the loop 265 /// counter test is in LatchBlock in order to remove unnecesssary instances of 266 /// the test. If control can exit the loop from the LatchBlock's terminator 267 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 268 /// 269 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 270 /// needs to be preserved. It is needed when we use trip count upper bound to 271 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 272 /// conditional branch needs to be preserved. 273 /// 274 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 275 /// execute without exiting the loop. 276 /// 277 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 278 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 279 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 280 /// iterations before branching into the unrolled loop. UnrollLoop will not 281 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 282 /// AllowExpensiveTripCount is false. 283 /// 284 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 285 /// number of iterations we want to peel off. 286 /// 287 /// The LoopInfo Analysis that is passed will be kept consistent. 288 /// 289 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 290 /// DominatorTree if they are non-null. 291 LoopUnrollResult llvm::UnrollLoop( 292 Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime, 293 bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst, 294 unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder, 295 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 296 OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) { 297 298 BasicBlock *Preheader = L->getLoopPreheader(); 299 if (!Preheader) { 300 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 301 return LoopUnrollResult::Unmodified; 302 } 303 304 BasicBlock *LatchBlock = L->getLoopLatch(); 305 if (!LatchBlock) { 306 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 307 return LoopUnrollResult::Unmodified; 308 } 309 310 // Loops with indirectbr cannot be cloned. 311 if (!L->isSafeToClone()) { 312 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 313 return LoopUnrollResult::Unmodified; 314 } 315 316 // The current loop unroll pass can only unroll loops with a single latch 317 // that's a conditional branch exiting the loop. 318 // FIXME: The implementation can be extended to work with more complicated 319 // cases, e.g. loops with multiple latches. 320 BasicBlock *Header = L->getHeader(); 321 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 322 323 if (!BI || BI->isUnconditional()) { 324 // The loop-rotate pass can be helpful to avoid this in many cases. 325 DEBUG(dbgs() << 326 " Can't unroll; loop not terminated by a conditional branch.\n"); 327 return LoopUnrollResult::Unmodified; 328 } 329 330 auto CheckSuccessors = [&](unsigned S1, unsigned S2) { 331 return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2)); 332 }; 333 334 if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) { 335 DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch" 336 " exiting the loop can be unrolled\n"); 337 return LoopUnrollResult::Unmodified; 338 } 339 340 if (Header->hasAddressTaken()) { 341 // The loop-rotate pass can be helpful to avoid this in many cases. 342 DEBUG(dbgs() << 343 " Won't unroll loop: address of header block is taken.\n"); 344 return LoopUnrollResult::Unmodified; 345 } 346 347 if (TripCount != 0) 348 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 349 if (TripMultiple != 1) 350 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 351 352 // Effectively "DCE" unrolled iterations that are beyond the tripcount 353 // and will never be executed. 354 if (TripCount != 0 && Count > TripCount) 355 Count = TripCount; 356 357 // Don't enter the unroll code if there is nothing to do. 358 if (TripCount == 0 && Count < 2 && PeelCount == 0) { 359 DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 360 return LoopUnrollResult::Unmodified; 361 } 362 363 assert(Count > 0); 364 assert(TripMultiple > 0); 365 assert(TripCount == 0 || TripCount % TripMultiple == 0); 366 367 // Are we eliminating the loop control altogether? 368 bool CompletelyUnroll = Count == TripCount; 369 SmallVector<BasicBlock *, 4> ExitBlocks; 370 L->getExitBlocks(ExitBlocks); 371 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 372 373 // Go through all exits of L and see if there are any phi-nodes there. We just 374 // conservatively assume that they're inserted to preserve LCSSA form, which 375 // means that complete unrolling might break this form. We need to either fix 376 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 377 // now we just recompute LCSSA for the outer loop, but it should be possible 378 // to fix it in-place. 379 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 380 any_of(ExitBlocks, [](const BasicBlock *BB) { 381 return isa<PHINode>(BB->begin()); 382 }); 383 384 // We assume a run-time trip count if the compiler cannot 385 // figure out the loop trip count and the unroll-runtime 386 // flag is specified. 387 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 388 389 assert((!RuntimeTripCount || !PeelCount) && 390 "Did not expect runtime trip-count unrolling " 391 "and peeling for the same loop"); 392 393 bool Peeled = false; 394 if (PeelCount) { 395 Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA); 396 397 // Successful peeling may result in a change in the loop preheader/trip 398 // counts. If we later unroll the loop, we want these to be updated. 399 if (Peeled) { 400 BasicBlock *ExitingBlock = L->getExitingBlock(); 401 assert(ExitingBlock && "Loop without exiting block?"); 402 Preheader = L->getLoopPreheader(); 403 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 404 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 405 } 406 } 407 408 // Loops containing convergent instructions must have a count that divides 409 // their TripMultiple. 410 DEBUG( 411 { 412 bool HasConvergent = false; 413 for (auto &BB : L->blocks()) 414 for (auto &I : *BB) 415 if (auto CS = CallSite(&I)) 416 HasConvergent |= CS.isConvergent(); 417 assert((!HasConvergent || TripMultiple % Count == 0) && 418 "Unroll count must divide trip multiple if loop contains a " 419 "convergent operation."); 420 }); 421 422 bool EpilogProfitability = 423 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 424 : isEpilogProfitable(L); 425 426 if (RuntimeTripCount && TripMultiple % Count != 0 && 427 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 428 EpilogProfitability, UnrollRemainder, LI, SE, 429 DT, AC, PreserveLCSSA)) { 430 if (Force) 431 RuntimeTripCount = false; 432 else { 433 DEBUG( 434 dbgs() << "Wont unroll; remainder loop could not be generated" 435 "when assuming runtime trip count\n"); 436 return LoopUnrollResult::Unmodified; 437 } 438 } 439 440 // If we know the trip count, we know the multiple... 441 unsigned BreakoutTrip = 0; 442 if (TripCount != 0) { 443 BreakoutTrip = TripCount % Count; 444 TripMultiple = 0; 445 } else { 446 // Figure out what multiple to use. 447 BreakoutTrip = TripMultiple = 448 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 449 } 450 451 using namespace ore; 452 // Report the unrolling decision. 453 if (CompletelyUnroll) { 454 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 455 << " with trip count " << TripCount << "!\n"); 456 if (ORE) 457 ORE->emit([&]() { 458 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 459 L->getHeader()) 460 << "completely unrolled loop with " 461 << NV("UnrollCount", TripCount) << " iterations"; 462 }); 463 } else if (PeelCount) { 464 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 465 << " with iteration count " << PeelCount << "!\n"); 466 if (ORE) 467 ORE->emit([&]() { 468 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 469 L->getHeader()) 470 << " peeled loop by " << NV("PeelCount", PeelCount) 471 << " iterations"; 472 }); 473 } else { 474 auto DiagBuilder = [&]() { 475 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 476 L->getHeader()); 477 return Diag << "unrolled loop by a factor of " 478 << NV("UnrollCount", Count); 479 }; 480 481 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 482 << " by " << Count); 483 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 484 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 485 if (ORE) 486 ORE->emit([&]() { 487 return DiagBuilder() << " with a breakout at trip " 488 << NV("BreakoutTrip", BreakoutTrip); 489 }); 490 } else if (TripMultiple != 1) { 491 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 492 if (ORE) 493 ORE->emit([&]() { 494 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) 495 << " trips per branch"; 496 }); 497 } else if (RuntimeTripCount) { 498 DEBUG(dbgs() << " with run-time trip count"); 499 if (ORE) 500 ORE->emit( 501 [&]() { return DiagBuilder() << " with run-time trip count"; }); 502 } 503 DEBUG(dbgs() << "!\n"); 504 } 505 506 // We are going to make changes to this loop. SCEV may be keeping cached info 507 // about it, in particular about backedge taken count. The changes we make 508 // are guaranteed to invalidate this information for our loop. It is tempting 509 // to only invalidate the loop being unrolled, but it is incorrect as long as 510 // all exiting branches from all inner loops have impact on the outer loops, 511 // and if something changes inside them then any of outer loops may also 512 // change. When we forget outermost loop, we also forget all contained loops 513 // and this is what we need here. 514 if (SE) { 515 const Loop *CurrL = L; 516 while (const Loop *ParentL = CurrL->getParentLoop()) 517 CurrL = ParentL; 518 SE->forgetLoop(CurrL); 519 } 520 521 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 522 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 523 524 // For the first iteration of the loop, we should use the precloned values for 525 // PHI nodes. Insert associations now. 526 ValueToValueMapTy LastValueMap; 527 std::vector<PHINode*> OrigPHINode; 528 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 529 OrigPHINode.push_back(cast<PHINode>(I)); 530 } 531 532 std::vector<BasicBlock*> Headers; 533 std::vector<BasicBlock*> Latches; 534 Headers.push_back(Header); 535 Latches.push_back(LatchBlock); 536 537 // The current on-the-fly SSA update requires blocks to be processed in 538 // reverse postorder so that LastValueMap contains the correct value at each 539 // exit. 540 LoopBlocksDFS DFS(L); 541 DFS.perform(LI); 542 543 // Stash the DFS iterators before adding blocks to the loop. 544 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 545 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 546 547 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 548 549 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 550 // might break loop-simplified form for these loops (as they, e.g., would 551 // share the same exit blocks). We'll keep track of loops for which we can 552 // break this so that later we can re-simplify them. 553 SmallSetVector<Loop *, 4> LoopsToSimplify; 554 for (Loop *SubLoop : *L) 555 LoopsToSimplify.insert(SubLoop); 556 557 if (Header->getParent()->isDebugInfoForProfiling()) 558 for (BasicBlock *BB : L->getBlocks()) 559 for (Instruction &I : *BB) 560 if (!isa<DbgInfoIntrinsic>(&I)) 561 if (const DILocation *DIL = I.getDebugLoc()) 562 I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count)); 563 564 for (unsigned It = 1; It != Count; ++It) { 565 std::vector<BasicBlock*> NewBlocks; 566 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 567 NewLoops[L] = L; 568 569 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 570 ValueToValueMapTy VMap; 571 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 572 Header->getParent()->getBasicBlockList().push_back(New); 573 574 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 575 "Header should not be in a sub-loop"); 576 // Tell LI about New. 577 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 578 if (OldLoop) 579 LoopsToSimplify.insert(NewLoops[OldLoop]); 580 581 if (*BB == Header) 582 // Loop over all of the PHI nodes in the block, changing them to use 583 // the incoming values from the previous block. 584 for (PHINode *OrigPHI : OrigPHINode) { 585 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 586 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 587 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 588 if (It > 1 && L->contains(InValI)) 589 InVal = LastValueMap[InValI]; 590 VMap[OrigPHI] = InVal; 591 New->getInstList().erase(NewPHI); 592 } 593 594 // Update our running map of newest clones 595 LastValueMap[*BB] = New; 596 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 597 VI != VE; ++VI) 598 LastValueMap[VI->first] = VI->second; 599 600 // Add phi entries for newly created values to all exit blocks. 601 for (BasicBlock *Succ : successors(*BB)) { 602 if (L->contains(Succ)) 603 continue; 604 for (PHINode &PHI : Succ->phis()) { 605 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 606 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 607 if (It != LastValueMap.end()) 608 Incoming = It->second; 609 PHI.addIncoming(Incoming, New); 610 } 611 } 612 // Keep track of new headers and latches as we create them, so that 613 // we can insert the proper branches later. 614 if (*BB == Header) 615 Headers.push_back(New); 616 if (*BB == LatchBlock) 617 Latches.push_back(New); 618 619 NewBlocks.push_back(New); 620 UnrolledLoopBlocks.push_back(New); 621 622 // Update DomTree: since we just copy the loop body, and each copy has a 623 // dedicated entry block (copy of the header block), this header's copy 624 // dominates all copied blocks. That means, dominance relations in the 625 // copied body are the same as in the original body. 626 if (DT) { 627 if (*BB == Header) 628 DT->addNewBlock(New, Latches[It - 1]); 629 else { 630 auto BBDomNode = DT->getNode(*BB); 631 auto BBIDom = BBDomNode->getIDom(); 632 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 633 DT->addNewBlock( 634 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 635 } 636 } 637 } 638 639 // Remap all instructions in the most recent iteration 640 for (BasicBlock *NewBlock : NewBlocks) { 641 for (Instruction &I : *NewBlock) { 642 ::remapInstruction(&I, LastValueMap); 643 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 644 if (II->getIntrinsicID() == Intrinsic::assume) 645 AC->registerAssumption(II); 646 } 647 } 648 } 649 650 // Loop over the PHI nodes in the original block, setting incoming values. 651 for (PHINode *PN : OrigPHINode) { 652 if (CompletelyUnroll) { 653 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 654 Header->getInstList().erase(PN); 655 } 656 else if (Count > 1) { 657 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 658 // If this value was defined in the loop, take the value defined by the 659 // last iteration of the loop. 660 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 661 if (L->contains(InValI)) 662 InVal = LastValueMap[InVal]; 663 } 664 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 665 PN->addIncoming(InVal, Latches.back()); 666 } 667 } 668 669 // Now that all the basic blocks for the unrolled iterations are in place, 670 // set up the branches to connect them. 671 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 672 // The original branch was replicated in each unrolled iteration. 673 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 674 675 // The branch destination. 676 unsigned j = (i + 1) % e; 677 BasicBlock *Dest = Headers[j]; 678 bool NeedConditional = true; 679 680 if (RuntimeTripCount && j != 0) { 681 NeedConditional = false; 682 } 683 684 // For a complete unroll, make the last iteration end with a branch 685 // to the exit block. 686 if (CompletelyUnroll) { 687 if (j == 0) 688 Dest = LoopExit; 689 // If using trip count upper bound to completely unroll, we need to keep 690 // the conditional branch except the last one because the loop may exit 691 // after any iteration. 692 assert(NeedConditional && 693 "NeedCondition cannot be modified by both complete " 694 "unrolling and runtime unrolling"); 695 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 696 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 697 // If we know the trip count or a multiple of it, we can safely use an 698 // unconditional branch for some iterations. 699 NeedConditional = false; 700 } 701 702 if (NeedConditional) { 703 // Update the conditional branch's successor for the following 704 // iteration. 705 Term->setSuccessor(!ContinueOnTrue, Dest); 706 } else { 707 // Remove phi operands at this loop exit 708 if (Dest != LoopExit) { 709 BasicBlock *BB = Latches[i]; 710 for (BasicBlock *Succ: successors(BB)) { 711 if (Succ == Headers[i]) 712 continue; 713 for (PHINode &Phi : Succ->phis()) 714 Phi.removeIncomingValue(BB, false); 715 } 716 } 717 // Replace the conditional branch with an unconditional one. 718 BranchInst::Create(Dest, Term); 719 Term->eraseFromParent(); 720 } 721 } 722 723 // Update dominators of blocks we might reach through exits. 724 // Immediate dominator of such block might change, because we add more 725 // routes which can lead to the exit: we can now reach it from the copied 726 // iterations too. 727 if (DT && Count > 1) { 728 for (auto *BB : OriginalLoopBlocks) { 729 auto *BBDomNode = DT->getNode(BB); 730 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 731 for (auto *ChildDomNode : BBDomNode->getChildren()) { 732 auto *ChildBB = ChildDomNode->getBlock(); 733 if (!L->contains(ChildBB)) 734 ChildrenToUpdate.push_back(ChildBB); 735 } 736 BasicBlock *NewIDom; 737 if (BB == LatchBlock) { 738 // The latch is special because we emit unconditional branches in 739 // some cases where the original loop contained a conditional branch. 740 // Since the latch is always at the bottom of the loop, if the latch 741 // dominated an exit before unrolling, the new dominator of that exit 742 // must also be a latch. Specifically, the dominator is the first 743 // latch which ends in a conditional branch, or the last latch if 744 // there is no such latch. 745 NewIDom = Latches.back(); 746 for (BasicBlock *IterLatch : Latches) { 747 TerminatorInst *Term = IterLatch->getTerminator(); 748 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 749 NewIDom = IterLatch; 750 break; 751 } 752 } 753 } else { 754 // The new idom of the block will be the nearest common dominator 755 // of all copies of the previous idom. This is equivalent to the 756 // nearest common dominator of the previous idom and the first latch, 757 // which dominates all copies of the previous idom. 758 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 759 } 760 for (auto *ChildBB : ChildrenToUpdate) 761 DT->changeImmediateDominator(ChildBB, NewIDom); 762 } 763 } 764 765 assert(!DT || !UnrollVerifyDomtree || 766 DT->verify(DominatorTree::VerificationLevel::Fast)); 767 768 // Merge adjacent basic blocks, if possible. 769 for (BasicBlock *Latch : Latches) { 770 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 771 if (Term->isUnconditional()) { 772 BasicBlock *Dest = Term->getSuccessor(0); 773 if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) { 774 // Dest has been folded into Fold. Update our worklists accordingly. 775 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 776 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 777 UnrolledLoopBlocks.end(), Dest), 778 UnrolledLoopBlocks.end()); 779 } 780 } 781 } 782 783 // Simplify any new induction variables in the partially unrolled loop. 784 if (SE && !CompletelyUnroll && (Count > 1 || Peeled)) { 785 SmallVector<WeakTrackingVH, 16> DeadInsts; 786 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 787 788 // Aggressively clean up dead instructions that simplifyLoopIVs already 789 // identified. Any remaining should be cleaned up below. 790 while (!DeadInsts.empty()) 791 if (Instruction *Inst = 792 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 793 RecursivelyDeleteTriviallyDeadInstructions(Inst); 794 } 795 796 // At this point, the code is well formed. We now do a quick sweep over the 797 // inserted code, doing constant propagation and dead code elimination as we 798 // go. 799 const DataLayout &DL = Header->getModule()->getDataLayout(); 800 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 801 for (BasicBlock *BB : NewLoopBlocks) { 802 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 803 Instruction *Inst = &*I++; 804 805 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 806 if (LI->replacementPreservesLCSSAForm(Inst, V)) 807 Inst->replaceAllUsesWith(V); 808 if (isInstructionTriviallyDead(Inst)) 809 BB->getInstList().erase(Inst); 810 } 811 } 812 813 // TODO: after peeling or unrolling, previously loop variant conditions are 814 // likely to fold to constants, eagerly propagating those here will require 815 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 816 // appropriate. 817 818 NumCompletelyUnrolled += CompletelyUnroll; 819 ++NumUnrolled; 820 821 Loop *OuterL = L->getParentLoop(); 822 // Update LoopInfo if the loop is completely removed. 823 if (CompletelyUnroll) 824 LI->erase(L); 825 826 // After complete unrolling most of the blocks should be contained in OuterL. 827 // However, some of them might happen to be out of OuterL (e.g. if they 828 // precede a loop exit). In this case we might need to insert PHI nodes in 829 // order to preserve LCSSA form. 830 // We don't need to check this if we already know that we need to fix LCSSA 831 // form. 832 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 833 // it should be possible to fix it in-place. 834 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 835 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 836 837 // If we have a pass and a DominatorTree we should re-simplify impacted loops 838 // to ensure subsequent analyses can rely on this form. We want to simplify 839 // at least one layer outside of the loop that was unrolled so that any 840 // changes to the parent loop exposed by the unrolling are considered. 841 if (DT) { 842 if (OuterL) { 843 // OuterL includes all loops for which we can break loop-simplify, so 844 // it's sufficient to simplify only it (it'll recursively simplify inner 845 // loops too). 846 if (NeedToFixLCSSA) { 847 // LCSSA must be performed on the outermost affected loop. The unrolled 848 // loop's last loop latch is guaranteed to be in the outermost loop 849 // after LoopInfo's been updated by LoopInfo::erase. 850 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 851 Loop *FixLCSSALoop = OuterL; 852 if (!FixLCSSALoop->contains(LatchLoop)) 853 while (FixLCSSALoop->getParentLoop() != LatchLoop) 854 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 855 856 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 857 } else if (PreserveLCSSA) { 858 assert(OuterL->isLCSSAForm(*DT) && 859 "Loops should be in LCSSA form after loop-unroll."); 860 } 861 862 // TODO: That potentially might be compile-time expensive. We should try 863 // to fix the loop-simplified form incrementally. 864 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 865 } else { 866 // Simplify loops for which we might've broken loop-simplify form. 867 for (Loop *SubLoop : LoopsToSimplify) 868 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 869 } 870 } 871 872 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 873 : LoopUnrollResult::PartiallyUnrolled; 874 } 875 876 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 877 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 878 /// such metadata node exists, then nullptr is returned. 879 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 880 // First operand should refer to the loop id itself. 881 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 882 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 883 884 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 885 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 886 if (!MD) 887 continue; 888 889 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 890 if (!S) 891 continue; 892 893 if (Name.equals(S->getString())) 894 return MD; 895 } 896 return nullptr; 897 } 898