1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 // TODO: Should these be here or in LoopUnroll?
47 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
48 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
49 
50 static cl::opt<bool>
51 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
52                     cl::desc("Allow runtime unrolled loops to be unrolled "
53                              "with epilog instead of prolog."));
54 
55 static cl::opt<bool>
56 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
57                     cl::desc("Verify domtree after unrolling"),
58 #ifdef NDEBUG
59     cl::init(false)
60 #else
61     cl::init(true)
62 #endif
63                     );
64 
65 /// Convert the instruction operands from referencing the current values into
66 /// those specified by VMap.
67 static inline void remapInstruction(Instruction *I,
68                                     ValueToValueMapTy &VMap) {
69   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
70     Value *Op = I->getOperand(op);
71 
72     // Unwrap arguments of dbg.value intrinsics.
73     bool Wrapped = false;
74     if (auto *V = dyn_cast<MetadataAsValue>(Op))
75       if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
76         Op = Unwrapped->getValue();
77         Wrapped = true;
78       }
79 
80     auto wrap = [&](Value *V) {
81       auto &C = I->getContext();
82       return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
83     };
84 
85     ValueToValueMapTy::iterator It = VMap.find(Op);
86     if (It != VMap.end())
87       I->setOperand(op, wrap(It->second));
88   }
89 
90   if (PHINode *PN = dyn_cast<PHINode>(I)) {
91     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
92       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
93       if (It != VMap.end())
94         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
95     }
96   }
97 }
98 
99 /// Folds a basic block into its predecessor if it only has one predecessor, and
100 /// that predecessor only has one successor.
101 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
102 /// successful references to the containing loop must be removed from
103 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
104 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
105 /// of loops that have already been forgotten to prevent redundant, expensive
106 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
107 static BasicBlock *
108 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
109                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
110                          DominatorTree *DT) {
111   // Merge basic blocks into their predecessor if there is only one distinct
112   // pred, and if there is only one distinct successor of the predecessor, and
113   // if there are no PHI nodes.
114   BasicBlock *OnlyPred = BB->getSinglePredecessor();
115   if (!OnlyPred) return nullptr;
116 
117   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
118     return nullptr;
119 
120   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
121 
122   // Resolve any PHI nodes at the start of the block.  They are all
123   // guaranteed to have exactly one entry if they exist, unless there are
124   // multiple duplicate (but guaranteed to be equal) entries for the
125   // incoming edges.  This occurs when there are multiple edges from
126   // OnlyPred to OnlySucc.
127   FoldSingleEntryPHINodes(BB);
128 
129   // Delete the unconditional branch from the predecessor...
130   OnlyPred->getInstList().pop_back();
131 
132   // Make all PHI nodes that referred to BB now refer to Pred as their
133   // source...
134   BB->replaceAllUsesWith(OnlyPred);
135 
136   // Move all definitions in the successor to the predecessor...
137   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
138 
139   // OldName will be valid until erased.
140   StringRef OldName = BB->getName();
141 
142   // Erase the old block and update dominator info.
143   if (DT)
144     if (DomTreeNode *DTN = DT->getNode(BB)) {
145       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
146       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
147       for (auto *DI : Children)
148         DT->changeImmediateDominator(DI, PredDTN);
149 
150       DT->eraseNode(BB);
151     }
152 
153   // ScalarEvolution holds references to loop exit blocks.
154   if (SE) {
155     if (Loop *L = LI->getLoopFor(BB)) {
156       if (ForgottenLoops.insert(L).second)
157         SE->forgetLoop(L);
158     }
159   }
160   LI->removeBlock(BB);
161 
162   // Inherit predecessor's name if it exists...
163   if (!OldName.empty() && !OnlyPred->hasName())
164     OnlyPred->setName(OldName);
165 
166   BB->eraseFromParent();
167 
168   return OnlyPred;
169 }
170 
171 /// Check if unrolling created a situation where we need to insert phi nodes to
172 /// preserve LCSSA form.
173 /// \param Blocks is a vector of basic blocks representing unrolled loop.
174 /// \param L is the outer loop.
175 /// It's possible that some of the blocks are in L, and some are not. In this
176 /// case, if there is a use is outside L, and definition is inside L, we need to
177 /// insert a phi-node, otherwise LCSSA will be broken.
178 /// The function is just a helper function for llvm::UnrollLoop that returns
179 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
180 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
181                                      LoopInfo *LI) {
182   for (BasicBlock *BB : Blocks) {
183     if (LI->getLoopFor(BB) == L)
184       continue;
185     for (Instruction &I : *BB) {
186       for (Use &U : I.operands()) {
187         if (auto Def = dyn_cast<Instruction>(U)) {
188           Loop *DefLoop = LI->getLoopFor(Def->getParent());
189           if (!DefLoop)
190             continue;
191           if (DefLoop->contains(L))
192             return true;
193         }
194       }
195     }
196   }
197   return false;
198 }
199 
200 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
201 /// and adds a mapping from the original loop to the new loop to NewLoops.
202 /// Returns nullptr if no new loop was created and a pointer to the
203 /// original loop OriginalBB was part of otherwise.
204 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
205                                            BasicBlock *ClonedBB, LoopInfo *LI,
206                                            NewLoopsMap &NewLoops) {
207   // Figure out which loop New is in.
208   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
209   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
210 
211   Loop *&NewLoop = NewLoops[OldLoop];
212   if (!NewLoop) {
213     // Found a new sub-loop.
214     assert(OriginalBB == OldLoop->getHeader() &&
215            "Header should be first in RPO");
216 
217     NewLoop = LI->AllocateLoop();
218     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
219 
220     if (NewLoopParent)
221       NewLoopParent->addChildLoop(NewLoop);
222     else
223       LI->addTopLevelLoop(NewLoop);
224 
225     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
226     return OldLoop;
227   } else {
228     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
229     return nullptr;
230   }
231 }
232 
233 /// The function chooses which type of unroll (epilog or prolog) is more
234 /// profitabale.
235 /// Epilog unroll is more profitable when there is PHI that starts from
236 /// constant.  In this case epilog will leave PHI start from constant,
237 /// but prolog will convert it to non-constant.
238 ///
239 /// loop:
240 ///   PN = PHI [I, Latch], [CI, PreHeader]
241 ///   I = foo(PN)
242 ///   ...
243 ///
244 /// Epilog unroll case.
245 /// loop:
246 ///   PN = PHI [I2, Latch], [CI, PreHeader]
247 ///   I1 = foo(PN)
248 ///   I2 = foo(I1)
249 ///   ...
250 /// Prolog unroll case.
251 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
252 /// loop:
253 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
254 ///   I1 = foo(PN)
255 ///   I2 = foo(I1)
256 ///   ...
257 ///
258 static bool isEpilogProfitable(Loop *L) {
259   BasicBlock *PreHeader = L->getLoopPreheader();
260   BasicBlock *Header = L->getHeader();
261   assert(PreHeader && Header);
262   for (Instruction &BBI : *Header) {
263     PHINode *PN = dyn_cast<PHINode>(&BBI);
264     if (!PN)
265       break;
266     if (isa<ConstantInt>(PN->getIncomingValueForBlock(PreHeader)))
267       return true;
268   }
269   return false;
270 }
271 
272 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
273 /// can only fail when the loop's latch block is not terminated by a conditional
274 /// branch instruction. However, if the trip count (and multiple) are not known,
275 /// loop unrolling will mostly produce more code that is no faster.
276 ///
277 /// TripCount is the upper bound of the iteration on which control exits
278 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
279 /// via an early branch in other loop block or via LatchBlock terminator. This
280 /// is relaxed from the general definition of trip count which is the number of
281 /// times the loop header executes. Note that UnrollLoop assumes that the loop
282 /// counter test is in LatchBlock in order to remove unnecesssary instances of
283 /// the test.  If control can exit the loop from the LatchBlock's terminator
284 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
285 ///
286 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
287 /// needs to be preserved.  It is needed when we use trip count upper bound to
288 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
289 /// conditional branch needs to be preserved.
290 ///
291 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
292 /// execute without exiting the loop.
293 ///
294 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
295 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
296 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
297 /// iterations before branching into the unrolled loop.  UnrollLoop will not
298 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
299 /// AllowExpensiveTripCount is false.
300 ///
301 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
302 /// number of iterations we want to peel off.
303 ///
304 /// The LoopInfo Analysis that is passed will be kept consistent.
305 ///
306 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
307 /// DominatorTree if they are non-null.
308 LoopUnrollResult llvm::UnrollLoop(
309     Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime,
310     bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst,
311     unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder,
312     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
313     OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
314 
315   BasicBlock *Preheader = L->getLoopPreheader();
316   if (!Preheader) {
317     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
318     return LoopUnrollResult::Unmodified;
319   }
320 
321   BasicBlock *LatchBlock = L->getLoopLatch();
322   if (!LatchBlock) {
323     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
324     return LoopUnrollResult::Unmodified;
325   }
326 
327   // Loops with indirectbr cannot be cloned.
328   if (!L->isSafeToClone()) {
329     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
330     return LoopUnrollResult::Unmodified;
331   }
332 
333   // The current loop unroll pass can only unroll loops with a single latch
334   // that's a conditional branch exiting the loop.
335   // FIXME: The implementation can be extended to work with more complicated
336   // cases, e.g. loops with multiple latches.
337   BasicBlock *Header = L->getHeader();
338   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
339 
340   if (!BI || BI->isUnconditional()) {
341     // The loop-rotate pass can be helpful to avoid this in many cases.
342     DEBUG(dbgs() <<
343              "  Can't unroll; loop not terminated by a conditional branch.\n");
344     return LoopUnrollResult::Unmodified;
345   }
346 
347   auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
348     return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
349   };
350 
351   if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
352     DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
353                     " exiting the loop can be unrolled\n");
354     return LoopUnrollResult::Unmodified;
355   }
356 
357   if (Header->hasAddressTaken()) {
358     // The loop-rotate pass can be helpful to avoid this in many cases.
359     DEBUG(dbgs() <<
360           "  Won't unroll loop: address of header block is taken.\n");
361     return LoopUnrollResult::Unmodified;
362   }
363 
364   if (TripCount != 0)
365     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
366   if (TripMultiple != 1)
367     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
368 
369   // Effectively "DCE" unrolled iterations that are beyond the tripcount
370   // and will never be executed.
371   if (TripCount != 0 && Count > TripCount)
372     Count = TripCount;
373 
374   // Don't enter the unroll code if there is nothing to do.
375   if (TripCount == 0 && Count < 2 && PeelCount == 0) {
376     DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
377     return LoopUnrollResult::Unmodified;
378   }
379 
380   assert(Count > 0);
381   assert(TripMultiple > 0);
382   assert(TripCount == 0 || TripCount % TripMultiple == 0);
383 
384   // Are we eliminating the loop control altogether?
385   bool CompletelyUnroll = Count == TripCount;
386   SmallVector<BasicBlock *, 4> ExitBlocks;
387   L->getExitBlocks(ExitBlocks);
388   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
389 
390   // Go through all exits of L and see if there are any phi-nodes there. We just
391   // conservatively assume that they're inserted to preserve LCSSA form, which
392   // means that complete unrolling might break this form. We need to either fix
393   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
394   // now we just recompute LCSSA for the outer loop, but it should be possible
395   // to fix it in-place.
396   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
397                         any_of(ExitBlocks, [](const BasicBlock *BB) {
398                           return isa<PHINode>(BB->begin());
399                         });
400 
401   // We assume a run-time trip count if the compiler cannot
402   // figure out the loop trip count and the unroll-runtime
403   // flag is specified.
404   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
405 
406   assert((!RuntimeTripCount || !PeelCount) &&
407          "Did not expect runtime trip-count unrolling "
408          "and peeling for the same loop");
409 
410   if (PeelCount) {
411     bool Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
412 
413     // Successful peeling may result in a change in the loop preheader/trip
414     // counts. If we later unroll the loop, we want these to be updated.
415     if (Peeled) {
416       BasicBlock *ExitingBlock = L->getExitingBlock();
417       assert(ExitingBlock && "Loop without exiting block?");
418       Preheader = L->getLoopPreheader();
419       TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
420       TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
421     }
422   }
423 
424   // Loops containing convergent instructions must have a count that divides
425   // their TripMultiple.
426   DEBUG(
427       {
428         bool HasConvergent = false;
429         for (auto &BB : L->blocks())
430           for (auto &I : *BB)
431             if (auto CS = CallSite(&I))
432               HasConvergent |= CS.isConvergent();
433         assert((!HasConvergent || TripMultiple % Count == 0) &&
434                "Unroll count must divide trip multiple if loop contains a "
435                "convergent operation.");
436       });
437 
438   bool EpilogProfitability =
439       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
440                                               : isEpilogProfitable(L);
441 
442   if (RuntimeTripCount && TripMultiple % Count != 0 &&
443       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
444                                   EpilogProfitability, UnrollRemainder, LI, SE,
445                                   DT, AC, PreserveLCSSA)) {
446     if (Force)
447       RuntimeTripCount = false;
448     else {
449       DEBUG(
450           dbgs() << "Wont unroll; remainder loop could not be generated"
451                     "when assuming runtime trip count\n");
452       return LoopUnrollResult::Unmodified;
453     }
454   }
455 
456   // Notify ScalarEvolution that the loop will be substantially changed,
457   // if not outright eliminated.
458   if (SE)
459     SE->forgetLoop(L);
460 
461   // If we know the trip count, we know the multiple...
462   unsigned BreakoutTrip = 0;
463   if (TripCount != 0) {
464     BreakoutTrip = TripCount % Count;
465     TripMultiple = 0;
466   } else {
467     // Figure out what multiple to use.
468     BreakoutTrip = TripMultiple =
469       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
470   }
471 
472   using namespace ore;
473   // Report the unrolling decision.
474   if (CompletelyUnroll) {
475     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
476                  << " with trip count " << TripCount << "!\n");
477     if (ORE)
478       ORE->emit([&]() {
479         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
480                                   L->getHeader())
481                << "completely unrolled loop with "
482                << NV("UnrollCount", TripCount) << " iterations";
483       });
484   } else if (PeelCount) {
485     DEBUG(dbgs() << "PEELING loop %" << Header->getName()
486                  << " with iteration count " << PeelCount << "!\n");
487     if (ORE)
488       ORE->emit([&]() {
489         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
490                                   L->getHeader())
491                << " peeled loop by " << NV("PeelCount", PeelCount)
492                << " iterations";
493       });
494   } else {
495     auto DiagBuilder = [&]() {
496       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
497                               L->getHeader());
498       return Diag << "unrolled loop by a factor of "
499                   << NV("UnrollCount", Count);
500     };
501 
502     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
503           << " by " << Count);
504     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
505       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
506       if (ORE)
507         ORE->emit([&]() {
508           return DiagBuilder() << " with a breakout at trip "
509                                << NV("BreakoutTrip", BreakoutTrip);
510         });
511     } else if (TripMultiple != 1) {
512       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
513       if (ORE)
514         ORE->emit([&]() {
515           return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
516                                << " trips per branch";
517         });
518     } else if (RuntimeTripCount) {
519       DEBUG(dbgs() << " with run-time trip count");
520       if (ORE)
521         ORE->emit(
522             [&]() { return DiagBuilder() << " with run-time trip count"; });
523     }
524     DEBUG(dbgs() << "!\n");
525   }
526 
527   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
528   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
529 
530   // For the first iteration of the loop, we should use the precloned values for
531   // PHI nodes.  Insert associations now.
532   ValueToValueMapTy LastValueMap;
533   std::vector<PHINode*> OrigPHINode;
534   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
535     OrigPHINode.push_back(cast<PHINode>(I));
536   }
537 
538   std::vector<BasicBlock*> Headers;
539   std::vector<BasicBlock*> Latches;
540   Headers.push_back(Header);
541   Latches.push_back(LatchBlock);
542 
543   // The current on-the-fly SSA update requires blocks to be processed in
544   // reverse postorder so that LastValueMap contains the correct value at each
545   // exit.
546   LoopBlocksDFS DFS(L);
547   DFS.perform(LI);
548 
549   // Stash the DFS iterators before adding blocks to the loop.
550   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
551   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
552 
553   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
554 
555   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
556   // might break loop-simplified form for these loops (as they, e.g., would
557   // share the same exit blocks). We'll keep track of loops for which we can
558   // break this so that later we can re-simplify them.
559   SmallSetVector<Loop *, 4> LoopsToSimplify;
560   for (Loop *SubLoop : *L)
561     LoopsToSimplify.insert(SubLoop);
562 
563   if (Header->getParent()->isDebugInfoForProfiling())
564     for (BasicBlock *BB : L->getBlocks())
565       for (Instruction &I : *BB)
566         if (!isa<DbgInfoIntrinsic>(&I))
567           if (const DILocation *DIL = I.getDebugLoc())
568             I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
569 
570   for (unsigned It = 1; It != Count; ++It) {
571     std::vector<BasicBlock*> NewBlocks;
572     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
573     NewLoops[L] = L;
574 
575     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
576       ValueToValueMapTy VMap;
577       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
578       Header->getParent()->getBasicBlockList().push_back(New);
579 
580       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
581              "Header should not be in a sub-loop");
582       // Tell LI about New.
583       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
584       if (OldLoop) {
585         LoopsToSimplify.insert(NewLoops[OldLoop]);
586 
587         // Forget the old loop, since its inputs may have changed.
588         if (SE)
589           SE->forgetLoop(OldLoop);
590       }
591 
592       if (*BB == Header)
593         // Loop over all of the PHI nodes in the block, changing them to use
594         // the incoming values from the previous block.
595         for (PHINode *OrigPHI : OrigPHINode) {
596           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
597           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
598           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
599             if (It > 1 && L->contains(InValI))
600               InVal = LastValueMap[InValI];
601           VMap[OrigPHI] = InVal;
602           New->getInstList().erase(NewPHI);
603         }
604 
605       // Update our running map of newest clones
606       LastValueMap[*BB] = New;
607       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
608            VI != VE; ++VI)
609         LastValueMap[VI->first] = VI->second;
610 
611       // Add phi entries for newly created values to all exit blocks.
612       for (BasicBlock *Succ : successors(*BB)) {
613         if (L->contains(Succ))
614           continue;
615         for (BasicBlock::iterator BBI = Succ->begin();
616              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
617           Value *Incoming = phi->getIncomingValueForBlock(*BB);
618           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
619           if (It != LastValueMap.end())
620             Incoming = It->second;
621           phi->addIncoming(Incoming, New);
622         }
623       }
624       // Keep track of new headers and latches as we create them, so that
625       // we can insert the proper branches later.
626       if (*BB == Header)
627         Headers.push_back(New);
628       if (*BB == LatchBlock)
629         Latches.push_back(New);
630 
631       NewBlocks.push_back(New);
632       UnrolledLoopBlocks.push_back(New);
633 
634       // Update DomTree: since we just copy the loop body, and each copy has a
635       // dedicated entry block (copy of the header block), this header's copy
636       // dominates all copied blocks. That means, dominance relations in the
637       // copied body are the same as in the original body.
638       if (DT) {
639         if (*BB == Header)
640           DT->addNewBlock(New, Latches[It - 1]);
641         else {
642           auto BBDomNode = DT->getNode(*BB);
643           auto BBIDom = BBDomNode->getIDom();
644           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
645           DT->addNewBlock(
646               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
647         }
648       }
649     }
650 
651     // Remap all instructions in the most recent iteration
652     for (BasicBlock *NewBlock : NewBlocks) {
653       for (Instruction &I : *NewBlock) {
654         ::remapInstruction(&I, LastValueMap);
655         if (auto *II = dyn_cast<IntrinsicInst>(&I))
656           if (II->getIntrinsicID() == Intrinsic::assume)
657             AC->registerAssumption(II);
658       }
659     }
660   }
661 
662   // Loop over the PHI nodes in the original block, setting incoming values.
663   for (PHINode *PN : OrigPHINode) {
664     if (CompletelyUnroll) {
665       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
666       Header->getInstList().erase(PN);
667     }
668     else if (Count > 1) {
669       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
670       // If this value was defined in the loop, take the value defined by the
671       // last iteration of the loop.
672       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
673         if (L->contains(InValI))
674           InVal = LastValueMap[InVal];
675       }
676       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
677       PN->addIncoming(InVal, Latches.back());
678     }
679   }
680 
681   // Now that all the basic blocks for the unrolled iterations are in place,
682   // set up the branches to connect them.
683   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
684     // The original branch was replicated in each unrolled iteration.
685     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
686 
687     // The branch destination.
688     unsigned j = (i + 1) % e;
689     BasicBlock *Dest = Headers[j];
690     bool NeedConditional = true;
691 
692     if (RuntimeTripCount && j != 0) {
693       NeedConditional = false;
694     }
695 
696     // For a complete unroll, make the last iteration end with a branch
697     // to the exit block.
698     if (CompletelyUnroll) {
699       if (j == 0)
700         Dest = LoopExit;
701       // If using trip count upper bound to completely unroll, we need to keep
702       // the conditional branch except the last one because the loop may exit
703       // after any iteration.
704       assert(NeedConditional &&
705              "NeedCondition cannot be modified by both complete "
706              "unrolling and runtime unrolling");
707       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
708     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
709       // If we know the trip count or a multiple of it, we can safely use an
710       // unconditional branch for some iterations.
711       NeedConditional = false;
712     }
713 
714     if (NeedConditional) {
715       // Update the conditional branch's successor for the following
716       // iteration.
717       Term->setSuccessor(!ContinueOnTrue, Dest);
718     } else {
719       // Remove phi operands at this loop exit
720       if (Dest != LoopExit) {
721         BasicBlock *BB = Latches[i];
722         for (BasicBlock *Succ: successors(BB)) {
723           if (Succ == Headers[i])
724             continue;
725           for (BasicBlock::iterator BBI = Succ->begin();
726                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
727             Phi->removeIncomingValue(BB, false);
728           }
729         }
730       }
731       // Replace the conditional branch with an unconditional one.
732       BranchInst::Create(Dest, Term);
733       Term->eraseFromParent();
734     }
735   }
736 
737   // Update dominators of blocks we might reach through exits.
738   // Immediate dominator of such block might change, because we add more
739   // routes which can lead to the exit: we can now reach it from the copied
740   // iterations too.
741   if (DT && Count > 1) {
742     for (auto *BB : OriginalLoopBlocks) {
743       auto *BBDomNode = DT->getNode(BB);
744       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
745       for (auto *ChildDomNode : BBDomNode->getChildren()) {
746         auto *ChildBB = ChildDomNode->getBlock();
747         if (!L->contains(ChildBB))
748           ChildrenToUpdate.push_back(ChildBB);
749       }
750       BasicBlock *NewIDom;
751       if (BB == LatchBlock) {
752         // The latch is special because we emit unconditional branches in
753         // some cases where the original loop contained a conditional branch.
754         // Since the latch is always at the bottom of the loop, if the latch
755         // dominated an exit before unrolling, the new dominator of that exit
756         // must also be a latch.  Specifically, the dominator is the first
757         // latch which ends in a conditional branch, or the last latch if
758         // there is no such latch.
759         NewIDom = Latches.back();
760         for (BasicBlock *IterLatch : Latches) {
761           TerminatorInst *Term = IterLatch->getTerminator();
762           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
763             NewIDom = IterLatch;
764             break;
765           }
766         }
767       } else {
768         // The new idom of the block will be the nearest common dominator
769         // of all copies of the previous idom. This is equivalent to the
770         // nearest common dominator of the previous idom and the first latch,
771         // which dominates all copies of the previous idom.
772         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
773       }
774       for (auto *ChildBB : ChildrenToUpdate)
775         DT->changeImmediateDominator(ChildBB, NewIDom);
776     }
777   }
778 
779   if (DT && UnrollVerifyDomtree)
780     DT->verifyDomTree();
781 
782   // Merge adjacent basic blocks, if possible.
783   SmallPtrSet<Loop *, 4> ForgottenLoops;
784   for (BasicBlock *Latch : Latches) {
785     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
786     if (Term->isUnconditional()) {
787       BasicBlock *Dest = Term->getSuccessor(0);
788       if (BasicBlock *Fold =
789               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
790         // Dest has been folded into Fold. Update our worklists accordingly.
791         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
792         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
793                                              UnrolledLoopBlocks.end(), Dest),
794                                  UnrolledLoopBlocks.end());
795       }
796     }
797   }
798 
799   // Simplify any new induction variables in the partially unrolled loop.
800   if (SE && !CompletelyUnroll && Count > 1) {
801     SmallVector<WeakTrackingVH, 16> DeadInsts;
802     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
803 
804     // Aggressively clean up dead instructions that simplifyLoopIVs already
805     // identified. Any remaining should be cleaned up below.
806     while (!DeadInsts.empty())
807       if (Instruction *Inst =
808               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
809         RecursivelyDeleteTriviallyDeadInstructions(Inst);
810   }
811 
812   // At this point, the code is well formed.  We now do a quick sweep over the
813   // inserted code, doing constant propagation and dead code elimination as we
814   // go.
815   const DataLayout &DL = Header->getModule()->getDataLayout();
816   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
817   for (BasicBlock *BB : NewLoopBlocks) {
818     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
819       Instruction *Inst = &*I++;
820 
821       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
822         if (LI->replacementPreservesLCSSAForm(Inst, V))
823           Inst->replaceAllUsesWith(V);
824       if (isInstructionTriviallyDead(Inst))
825         BB->getInstList().erase(Inst);
826     }
827   }
828 
829   // TODO: after peeling or unrolling, previously loop variant conditions are
830   // likely to fold to constants, eagerly propagating those here will require
831   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
832   // appropriate.
833 
834   NumCompletelyUnrolled += CompletelyUnroll;
835   ++NumUnrolled;
836 
837   Loop *OuterL = L->getParentLoop();
838   // Update LoopInfo if the loop is completely removed.
839   if (CompletelyUnroll)
840     LI->erase(L);
841 
842   // After complete unrolling most of the blocks should be contained in OuterL.
843   // However, some of them might happen to be out of OuterL (e.g. if they
844   // precede a loop exit). In this case we might need to insert PHI nodes in
845   // order to preserve LCSSA form.
846   // We don't need to check this if we already know that we need to fix LCSSA
847   // form.
848   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
849   // it should be possible to fix it in-place.
850   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
851     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
852 
853   // If we have a pass and a DominatorTree we should re-simplify impacted loops
854   // to ensure subsequent analyses can rely on this form. We want to simplify
855   // at least one layer outside of the loop that was unrolled so that any
856   // changes to the parent loop exposed by the unrolling are considered.
857   if (DT) {
858     if (OuterL) {
859       // OuterL includes all loops for which we can break loop-simplify, so
860       // it's sufficient to simplify only it (it'll recursively simplify inner
861       // loops too).
862       if (NeedToFixLCSSA) {
863         // LCSSA must be performed on the outermost affected loop. The unrolled
864         // loop's last loop latch is guaranteed to be in the outermost loop
865         // after LoopInfo's been updated by LoopInfo::erase.
866         Loop *LatchLoop = LI->getLoopFor(Latches.back());
867         Loop *FixLCSSALoop = OuterL;
868         if (!FixLCSSALoop->contains(LatchLoop))
869           while (FixLCSSALoop->getParentLoop() != LatchLoop)
870             FixLCSSALoop = FixLCSSALoop->getParentLoop();
871 
872         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
873       } else if (PreserveLCSSA) {
874         assert(OuterL->isLCSSAForm(*DT) &&
875                "Loops should be in LCSSA form after loop-unroll.");
876       }
877 
878       // TODO: That potentially might be compile-time expensive. We should try
879       // to fix the loop-simplified form incrementally.
880       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
881     } else {
882       // Simplify loops for which we might've broken loop-simplify form.
883       for (Loop *SubLoop : LoopsToSimplify)
884         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
885     }
886   }
887 
888   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
889                           : LoopUnrollResult::PartiallyUnrolled;
890 }
891 
892 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
893 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
894 /// such metadata node exists, then nullptr is returned.
895 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
896   // First operand should refer to the loop id itself.
897   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
898   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
899 
900   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
901     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
902     if (!MD)
903       continue;
904 
905     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
906     if (!S)
907       continue;
908 
909     if (Name.equals(S->getString()))
910       return MD;
911   }
912   return nullptr;
913 }
914