1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // It works best when loops have been canonicalized by the -indvars pass, 15 // allowing it to determine the trip counts of loops easily. 16 // 17 // The process of unrolling can produce extraneous basic blocks linked with 18 // unconditional branches. This will be corrected in the future. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #define DEBUG_TYPE "loop-unroll" 23 #include "llvm/Transforms/Utils/UnrollLoop.h" 24 #include "llvm/BasicBlock.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 using namespace llvm; 35 36 // TODO: Should these be here or in LoopUnroll? 37 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 38 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 39 40 /// RemapInstruction - Convert the instruction operands from referencing the 41 /// current values into those specified by VMap. 42 static inline void RemapInstruction(Instruction *I, 43 ValueToValueMapTy &VMap) { 44 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 45 Value *Op = I->getOperand(op); 46 ValueToValueMapTy::iterator It = VMap.find(Op); 47 if (It != VMap.end()) 48 I->setOperand(op, It->second); 49 } 50 51 if (PHINode *PN = dyn_cast<PHINode>(I)) { 52 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 53 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 54 if (It != VMap.end()) 55 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 56 } 57 } 58 } 59 60 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 61 /// only has one predecessor, and that predecessor only has one successor. 62 /// The LoopInfo Analysis that is passed will be kept consistent. 63 /// Returns the new combined block. 64 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) { 65 // Merge basic blocks into their predecessor if there is only one distinct 66 // pred, and if there is only one distinct successor of the predecessor, and 67 // if there are no PHI nodes. 68 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 69 if (!OnlyPred) return 0; 70 71 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 72 return 0; 73 74 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 75 76 // Resolve any PHI nodes at the start of the block. They are all 77 // guaranteed to have exactly one entry if they exist, unless there are 78 // multiple duplicate (but guaranteed to be equal) entries for the 79 // incoming edges. This occurs when there are multiple edges from 80 // OnlyPred to OnlySucc. 81 FoldSingleEntryPHINodes(BB); 82 83 // Delete the unconditional branch from the predecessor... 84 OnlyPred->getInstList().pop_back(); 85 86 // Make all PHI nodes that referred to BB now refer to Pred as their 87 // source... 88 BB->replaceAllUsesWith(OnlyPred); 89 90 // Move all definitions in the successor to the predecessor... 91 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 92 93 std::string OldName = BB->getName(); 94 95 // Erase basic block from the function... 96 LI->removeBlock(BB); 97 BB->eraseFromParent(); 98 99 // Inherit predecessor's name if it exists... 100 if (!OldName.empty() && !OnlyPred->hasName()) 101 OnlyPred->setName(OldName); 102 103 return OnlyPred; 104 } 105 106 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 107 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 108 /// can only fail when the loop's latch block is not terminated by a conditional 109 /// branch instruction. However, if the trip count (and multiple) are not known, 110 /// loop unrolling will mostly produce more code that is no faster. 111 /// 112 /// The LoopInfo Analysis that is passed will be kept consistent. 113 /// 114 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 115 /// removed from the LoopPassManager as well. LPM can also be NULL. 116 bool llvm::UnrollLoop(Loop *L, unsigned Count, 117 LoopInfo *LI, LPPassManager *LPM) { 118 BasicBlock *Preheader = L->getLoopPreheader(); 119 if (!Preheader) { 120 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 121 return false; 122 } 123 124 BasicBlock *LatchBlock = L->getLoopLatch(); 125 if (!LatchBlock) { 126 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 127 return false; 128 } 129 130 BasicBlock *Header = L->getHeader(); 131 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 132 133 if (!BI || BI->isUnconditional()) { 134 // The loop-rotate pass can be helpful to avoid this in many cases. 135 DEBUG(dbgs() << 136 " Can't unroll; loop not terminated by a conditional branch.\n"); 137 return false; 138 } 139 140 if (Header->hasAddressTaken()) { 141 // The loop-rotate pass can be helpful to avoid this in many cases. 142 DEBUG(dbgs() << 143 " Won't unroll loop: address of header block is taken.\n"); 144 return false; 145 } 146 147 // Notify ScalarEvolution that the loop will be substantially changed, 148 // if not outright eliminated. 149 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) 150 SE->forgetLoop(L); 151 152 // Find trip count 153 unsigned TripCount = L->getSmallConstantTripCount(); 154 // Find trip multiple if count is not available 155 unsigned TripMultiple = 1; 156 if (TripCount == 0) 157 TripMultiple = L->getSmallConstantTripMultiple(); 158 159 if (TripCount != 0) 160 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 161 if (TripMultiple != 1) 162 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 163 164 // Effectively "DCE" unrolled iterations that are beyond the tripcount 165 // and will never be executed. 166 if (TripCount != 0 && Count > TripCount) 167 Count = TripCount; 168 169 assert(Count > 0); 170 assert(TripMultiple > 0); 171 assert(TripCount == 0 || TripCount % TripMultiple == 0); 172 173 // Are we eliminating the loop control altogether? 174 bool CompletelyUnroll = Count == TripCount; 175 176 // If we know the trip count, we know the multiple... 177 unsigned BreakoutTrip = 0; 178 if (TripCount != 0) { 179 BreakoutTrip = TripCount % Count; 180 TripMultiple = 0; 181 } else { 182 // Figure out what multiple to use. 183 BreakoutTrip = TripMultiple = 184 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 185 } 186 187 if (CompletelyUnroll) { 188 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 189 << " with trip count " << TripCount << "!\n"); 190 } else { 191 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 192 << " by " << Count); 193 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 194 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 195 } else if (TripMultiple != 1) { 196 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 197 } 198 DEBUG(dbgs() << "!\n"); 199 } 200 201 std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); 202 203 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 204 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 205 206 // For the first iteration of the loop, we should use the precloned values for 207 // PHI nodes. Insert associations now. 208 ValueToValueMapTy LastValueMap; 209 std::vector<PHINode*> OrigPHINode; 210 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 211 PHINode *PN = cast<PHINode>(I); 212 OrigPHINode.push_back(PN); 213 if (Instruction *I = 214 dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock))) 215 if (L->contains(I)) 216 LastValueMap[I] = I; 217 } 218 219 std::vector<BasicBlock*> Headers; 220 std::vector<BasicBlock*> Latches; 221 Headers.push_back(Header); 222 Latches.push_back(LatchBlock); 223 224 for (unsigned It = 1; It != Count; ++It) { 225 std::vector<BasicBlock*> NewBlocks; 226 227 for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(), 228 E = LoopBlocks.end(); BB != E; ++BB) { 229 ValueToValueMapTy VMap; 230 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 231 Header->getParent()->getBasicBlockList().push_back(New); 232 233 // Loop over all of the PHI nodes in the block, changing them to use the 234 // incoming values from the previous block. 235 if (*BB == Header) 236 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 237 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 238 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 239 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 240 if (It > 1 && L->contains(InValI)) 241 InVal = LastValueMap[InValI]; 242 VMap[OrigPHINode[i]] = InVal; 243 New->getInstList().erase(NewPHI); 244 } 245 246 // Update our running map of newest clones 247 LastValueMap[*BB] = New; 248 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 249 VI != VE; ++VI) 250 LastValueMap[VI->first] = VI->second; 251 252 L->addBasicBlockToLoop(New, LI->getBase()); 253 254 // Add phi entries for newly created values to all exit blocks except 255 // the successor of the latch block. The successor of the exit block will 256 // be updated specially after unrolling all the way. 257 if (*BB != LatchBlock) 258 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); SI != SE; 259 ++SI) 260 if (!L->contains(*SI)) 261 for (BasicBlock::iterator BBI = (*SI)->begin(); 262 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 263 Value *Incoming = phi->getIncomingValueForBlock(*BB); 264 phi->addIncoming(Incoming, New); 265 } 266 267 // Keep track of new headers and latches as we create them, so that 268 // we can insert the proper branches later. 269 if (*BB == Header) 270 Headers.push_back(New); 271 if (*BB == LatchBlock) { 272 Latches.push_back(New); 273 274 // Also, clear out the new latch's back edge so that it doesn't look 275 // like a new loop, so that it's amenable to being merged with adjacent 276 // blocks later on. 277 TerminatorInst *Term = New->getTerminator(); 278 assert(L->contains(Term->getSuccessor(!ContinueOnTrue))); 279 assert(Term->getSuccessor(ContinueOnTrue) == LoopExit); 280 Term->setSuccessor(!ContinueOnTrue, NULL); 281 } 282 283 NewBlocks.push_back(New); 284 } 285 286 // Remap all instructions in the most recent iteration 287 for (unsigned i = 0; i < NewBlocks.size(); ++i) 288 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 289 E = NewBlocks[i]->end(); I != E; ++I) 290 ::RemapInstruction(I, LastValueMap); 291 } 292 293 // The latch block exits the loop. If there are any PHI nodes in the 294 // successor blocks, update them to use the appropriate values computed as the 295 // last iteration of the loop. 296 if (Count != 1) { 297 BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]); 298 for (succ_iterator SI = succ_begin(LatchBlock), SE = succ_end(LatchBlock); 299 SI != SE; ++SI) { 300 for (BasicBlock::iterator BBI = (*SI)->begin(); 301 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) { 302 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 303 // If this value was defined in the loop, take the value defined by the 304 // last iteration of the loop. 305 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 306 if (L->contains(InValI)) 307 InVal = LastValueMap[InVal]; 308 } 309 PN->addIncoming(InVal, LastIterationBB); 310 } 311 } 312 } 313 314 // Now, if we're doing complete unrolling, loop over the PHI nodes in the 315 // original block, setting them to their incoming values. 316 if (CompletelyUnroll) { 317 BasicBlock *Preheader = L->getLoopPreheader(); 318 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 319 PHINode *PN = OrigPHINode[i]; 320 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 321 Header->getInstList().erase(PN); 322 } 323 } 324 325 // Now that all the basic blocks for the unrolled iterations are in place, 326 // set up the branches to connect them. 327 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 328 // The original branch was replicated in each unrolled iteration. 329 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 330 331 // The branch destination. 332 unsigned j = (i + 1) % e; 333 BasicBlock *Dest = Headers[j]; 334 bool NeedConditional = true; 335 336 // For a complete unroll, make the last iteration end with a branch 337 // to the exit block. 338 if (CompletelyUnroll && j == 0) { 339 Dest = LoopExit; 340 NeedConditional = false; 341 } 342 343 // If we know the trip count or a multiple of it, we can safely use an 344 // unconditional branch for some iterations. 345 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 346 NeedConditional = false; 347 } 348 349 if (NeedConditional) { 350 // Update the conditional branch's successor for the following 351 // iteration. 352 Term->setSuccessor(!ContinueOnTrue, Dest); 353 } else { 354 // Replace the conditional branch with an unconditional one. 355 BranchInst::Create(Dest, Term); 356 Term->eraseFromParent(); 357 } 358 } 359 360 // Merge adjacent basic blocks, if possible. 361 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 362 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 363 if (Term->isUnconditional()) { 364 BasicBlock *Dest = Term->getSuccessor(0); 365 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) 366 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 367 } 368 } 369 370 // At this point, the code is well formed. We now do a quick sweep over the 371 // inserted code, doing constant propagation and dead code elimination as we 372 // go. 373 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 374 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 375 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 376 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 377 Instruction *Inst = I++; 378 379 if (isInstructionTriviallyDead(Inst)) 380 (*BB)->getInstList().erase(Inst); 381 else if (Value *V = SimplifyInstruction(Inst)) 382 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 383 Inst->replaceAllUsesWith(V); 384 (*BB)->getInstList().erase(Inst); 385 } 386 } 387 388 NumCompletelyUnrolled += CompletelyUnroll; 389 ++NumUnrolled; 390 // Remove the loop from the LoopPassManager if it's completely removed. 391 if (CompletelyUnroll && LPM != NULL) 392 LPM->deleteLoopFromQueue(L); 393 394 return true; 395 } 396