1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Transforms/Utils/Local.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/LoopSimplify.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 #include "llvm/Transforms/Utils/UnrollLoop.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-unroll" 43 44 // TODO: Should these be here or in LoopUnroll? 45 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 46 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 47 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a " 48 "conditional latch (completely or otherwise)"); 49 50 static cl::opt<bool> 51 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 52 cl::desc("Allow runtime unrolled loops to be unrolled " 53 "with epilog instead of prolog.")); 54 55 static cl::opt<bool> 56 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 57 cl::desc("Verify domtree after unrolling"), 58 #ifdef EXPENSIVE_CHECKS 59 cl::init(true) 60 #else 61 cl::init(false) 62 #endif 63 ); 64 65 /// Convert the instruction operands from referencing the current values into 66 /// those specified by VMap. 67 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) { 68 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 69 Value *Op = I->getOperand(op); 70 71 // Unwrap arguments of dbg.value intrinsics. 72 bool Wrapped = false; 73 if (auto *V = dyn_cast<MetadataAsValue>(Op)) 74 if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) { 75 Op = Unwrapped->getValue(); 76 Wrapped = true; 77 } 78 79 auto wrap = [&](Value *V) { 80 auto &C = I->getContext(); 81 return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V; 82 }; 83 84 ValueToValueMapTy::iterator It = VMap.find(Op); 85 if (It != VMap.end()) 86 I->setOperand(op, wrap(It->second)); 87 } 88 89 if (PHINode *PN = dyn_cast<PHINode>(I)) { 90 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 91 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 92 if (It != VMap.end()) 93 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 94 } 95 } 96 } 97 98 /// Check if unrolling created a situation where we need to insert phi nodes to 99 /// preserve LCSSA form. 100 /// \param Blocks is a vector of basic blocks representing unrolled loop. 101 /// \param L is the outer loop. 102 /// It's possible that some of the blocks are in L, and some are not. In this 103 /// case, if there is a use is outside L, and definition is inside L, we need to 104 /// insert a phi-node, otherwise LCSSA will be broken. 105 /// The function is just a helper function for llvm::UnrollLoop that returns 106 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 107 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 108 LoopInfo *LI) { 109 for (BasicBlock *BB : Blocks) { 110 if (LI->getLoopFor(BB) == L) 111 continue; 112 for (Instruction &I : *BB) { 113 for (Use &U : I.operands()) { 114 if (auto Def = dyn_cast<Instruction>(U)) { 115 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 116 if (!DefLoop) 117 continue; 118 if (DefLoop->contains(L)) 119 return true; 120 } 121 } 122 } 123 } 124 return false; 125 } 126 127 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 128 /// and adds a mapping from the original loop to the new loop to NewLoops. 129 /// Returns nullptr if no new loop was created and a pointer to the 130 /// original loop OriginalBB was part of otherwise. 131 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 132 BasicBlock *ClonedBB, LoopInfo *LI, 133 NewLoopsMap &NewLoops) { 134 // Figure out which loop New is in. 135 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 136 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 137 138 Loop *&NewLoop = NewLoops[OldLoop]; 139 if (!NewLoop) { 140 // Found a new sub-loop. 141 assert(OriginalBB == OldLoop->getHeader() && 142 "Header should be first in RPO"); 143 144 NewLoop = LI->AllocateLoop(); 145 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 146 147 if (NewLoopParent) 148 NewLoopParent->addChildLoop(NewLoop); 149 else 150 LI->addTopLevelLoop(NewLoop); 151 152 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 153 return OldLoop; 154 } else { 155 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 156 return nullptr; 157 } 158 } 159 160 /// The function chooses which type of unroll (epilog or prolog) is more 161 /// profitabale. 162 /// Epilog unroll is more profitable when there is PHI that starts from 163 /// constant. In this case epilog will leave PHI start from constant, 164 /// but prolog will convert it to non-constant. 165 /// 166 /// loop: 167 /// PN = PHI [I, Latch], [CI, PreHeader] 168 /// I = foo(PN) 169 /// ... 170 /// 171 /// Epilog unroll case. 172 /// loop: 173 /// PN = PHI [I2, Latch], [CI, PreHeader] 174 /// I1 = foo(PN) 175 /// I2 = foo(I1) 176 /// ... 177 /// Prolog unroll case. 178 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 179 /// loop: 180 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 181 /// I1 = foo(PN) 182 /// I2 = foo(I1) 183 /// ... 184 /// 185 static bool isEpilogProfitable(Loop *L) { 186 BasicBlock *PreHeader = L->getLoopPreheader(); 187 BasicBlock *Header = L->getHeader(); 188 assert(PreHeader && Header); 189 for (const PHINode &PN : Header->phis()) { 190 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 191 return true; 192 } 193 return false; 194 } 195 196 /// Perform some cleanup and simplifications on loops after unrolling. It is 197 /// useful to simplify the IV's in the new loop, as well as do a quick 198 /// simplify/dce pass of the instructions. 199 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 200 ScalarEvolution *SE, DominatorTree *DT, 201 AssumptionCache *AC) { 202 // Simplify any new induction variables in the partially unrolled loop. 203 if (SE && SimplifyIVs) { 204 SmallVector<WeakTrackingVH, 16> DeadInsts; 205 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 206 207 // Aggressively clean up dead instructions that simplifyLoopIVs already 208 // identified. Any remaining should be cleaned up below. 209 while (!DeadInsts.empty()) 210 if (Instruction *Inst = 211 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 212 RecursivelyDeleteTriviallyDeadInstructions(Inst); 213 } 214 215 // At this point, the code is well formed. We now do a quick sweep over the 216 // inserted code, doing constant propagation and dead code elimination as we 217 // go. 218 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 219 for (BasicBlock *BB : L->getBlocks()) { 220 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 221 Instruction *Inst = &*I++; 222 223 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 224 if (LI->replacementPreservesLCSSAForm(Inst, V)) 225 Inst->replaceAllUsesWith(V); 226 if (isInstructionTriviallyDead(Inst)) 227 BB->getInstList().erase(Inst); 228 } 229 } 230 231 // TODO: after peeling or unrolling, previously loop variant conditions are 232 // likely to fold to constants, eagerly propagating those here will require 233 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 234 // appropriate. 235 } 236 237 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 238 /// can only fail when the loop's latch block is not terminated by a conditional 239 /// branch instruction. However, if the trip count (and multiple) are not known, 240 /// loop unrolling will mostly produce more code that is no faster. 241 /// 242 /// TripCount is the upper bound of the iteration on which control exits 243 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 244 /// via an early branch in other loop block or via LatchBlock terminator. This 245 /// is relaxed from the general definition of trip count which is the number of 246 /// times the loop header executes. Note that UnrollLoop assumes that the loop 247 /// counter test is in LatchBlock in order to remove unnecesssary instances of 248 /// the test. If control can exit the loop from the LatchBlock's terminator 249 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 250 /// 251 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 252 /// needs to be preserved. It is needed when we use trip count upper bound to 253 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 254 /// conditional branch needs to be preserved. 255 /// 256 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 257 /// execute without exiting the loop. 258 /// 259 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 260 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 261 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 262 /// iterations before branching into the unrolled loop. UnrollLoop will not 263 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 264 /// AllowExpensiveTripCount is false. 265 /// 266 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 267 /// number of iterations we want to peel off. 268 /// 269 /// The LoopInfo Analysis that is passed will be kept consistent. 270 /// 271 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 272 /// DominatorTree if they are non-null. 273 /// 274 /// If RemainderLoop is non-null, it will receive the remainder loop (if 275 /// required and not fully unrolled). 276 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 277 ScalarEvolution *SE, DominatorTree *DT, 278 AssumptionCache *AC, 279 OptimizationRemarkEmitter *ORE, 280 bool PreserveLCSSA, Loop **RemainderLoop) { 281 282 BasicBlock *Preheader = L->getLoopPreheader(); 283 if (!Preheader) { 284 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 285 return LoopUnrollResult::Unmodified; 286 } 287 288 BasicBlock *LatchBlock = L->getLoopLatch(); 289 if (!LatchBlock) { 290 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 291 return LoopUnrollResult::Unmodified; 292 } 293 294 // Loops with indirectbr cannot be cloned. 295 if (!L->isSafeToClone()) { 296 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 297 return LoopUnrollResult::Unmodified; 298 } 299 300 // The current loop unroll pass can unroll loops with a single latch or header 301 // that's a conditional branch exiting the loop. 302 // FIXME: The implementation can be extended to work with more complicated 303 // cases, e.g. loops with multiple latches. 304 BasicBlock *Header = L->getHeader(); 305 BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator()); 306 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 307 308 // FIXME: Support loops without conditional latch and multiple exiting blocks. 309 if (!BI || 310 (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() || 311 L->getExitingBlock() != Header))) { 312 LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional " 313 "branch in the latch or header.\n"); 314 return LoopUnrollResult::Unmodified; 315 } 316 317 auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) { 318 return BI->isConditional() && BI->getSuccessor(S1) == Header && 319 !L->contains(BI->getSuccessor(S2)); 320 }; 321 322 // If we have a conditional latch, it must exit the loop. 323 if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) && 324 !CheckLatchSuccessors(1, 0)) { 325 LLVM_DEBUG( 326 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 327 return LoopUnrollResult::Unmodified; 328 } 329 330 auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) { 331 return HeaderBI && HeaderBI->isConditional() && 332 L->contains(HeaderBI->getSuccessor(S1)) && 333 !L->contains(HeaderBI->getSuccessor(S2)); 334 }; 335 336 // If we do not have a conditional latch, the header must exit the loop. 337 if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() && 338 !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) { 339 LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop"); 340 return LoopUnrollResult::Unmodified; 341 } 342 343 if (Header->hasAddressTaken()) { 344 // The loop-rotate pass can be helpful to avoid this in many cases. 345 LLVM_DEBUG( 346 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 347 return LoopUnrollResult::Unmodified; 348 } 349 350 if (ULO.TripCount != 0) 351 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 352 if (ULO.TripMultiple != 1) 353 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 354 355 // Effectively "DCE" unrolled iterations that are beyond the tripcount 356 // and will never be executed. 357 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 358 ULO.Count = ULO.TripCount; 359 360 // Don't enter the unroll code if there is nothing to do. 361 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 362 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 363 return LoopUnrollResult::Unmodified; 364 } 365 366 assert(ULO.Count > 0); 367 assert(ULO.TripMultiple > 0); 368 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 369 370 // Are we eliminating the loop control altogether? 371 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 372 SmallVector<BasicBlock *, 4> ExitBlocks; 373 L->getExitBlocks(ExitBlocks); 374 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 375 376 // Go through all exits of L and see if there are any phi-nodes there. We just 377 // conservatively assume that they're inserted to preserve LCSSA form, which 378 // means that complete unrolling might break this form. We need to either fix 379 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 380 // now we just recompute LCSSA for the outer loop, but it should be possible 381 // to fix it in-place. 382 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 383 any_of(ExitBlocks, [](const BasicBlock *BB) { 384 return isa<PHINode>(BB->begin()); 385 }); 386 387 // We assume a run-time trip count if the compiler cannot 388 // figure out the loop trip count and the unroll-runtime 389 // flag is specified. 390 bool RuntimeTripCount = 391 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 392 393 assert((!RuntimeTripCount || !ULO.PeelCount) && 394 "Did not expect runtime trip-count unrolling " 395 "and peeling for the same loop"); 396 397 bool Peeled = false; 398 if (ULO.PeelCount) { 399 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 400 401 // Successful peeling may result in a change in the loop preheader/trip 402 // counts. If we later unroll the loop, we want these to be updated. 403 if (Peeled) { 404 BasicBlock *ExitingBlock = L->getExitingBlock(); 405 assert(ExitingBlock && "Loop without exiting block?"); 406 Preheader = L->getLoopPreheader(); 407 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 408 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 409 } 410 } 411 412 // Loops containing convergent instructions must have a count that divides 413 // their TripMultiple. 414 LLVM_DEBUG( 415 { 416 bool HasConvergent = false; 417 for (auto &BB : L->blocks()) 418 for (auto &I : *BB) 419 if (auto CS = CallSite(&I)) 420 HasConvergent |= CS.isConvergent(); 421 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 422 "Unroll count must divide trip multiple if loop contains a " 423 "convergent operation."); 424 }); 425 426 bool EpilogProfitability = 427 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 428 : isEpilogProfitable(L); 429 430 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 431 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 432 EpilogProfitability, ULO.UnrollRemainder, 433 ULO.ForgetAllSCEV, LI, SE, DT, AC, 434 PreserveLCSSA, RemainderLoop)) { 435 if (ULO.Force) 436 RuntimeTripCount = false; 437 else { 438 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 439 "generated when assuming runtime trip count\n"); 440 return LoopUnrollResult::Unmodified; 441 } 442 } 443 444 // If we know the trip count, we know the multiple... 445 unsigned BreakoutTrip = 0; 446 if (ULO.TripCount != 0) { 447 BreakoutTrip = ULO.TripCount % ULO.Count; 448 ULO.TripMultiple = 0; 449 } else { 450 // Figure out what multiple to use. 451 BreakoutTrip = ULO.TripMultiple = 452 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 453 } 454 455 using namespace ore; 456 // Report the unrolling decision. 457 if (CompletelyUnroll) { 458 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 459 << " with trip count " << ULO.TripCount << "!\n"); 460 if (ORE) 461 ORE->emit([&]() { 462 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 463 L->getHeader()) 464 << "completely unrolled loop with " 465 << NV("UnrollCount", ULO.TripCount) << " iterations"; 466 }); 467 } else if (ULO.PeelCount) { 468 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 469 << " with iteration count " << ULO.PeelCount << "!\n"); 470 if (ORE) 471 ORE->emit([&]() { 472 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 473 L->getHeader()) 474 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 475 << " iterations"; 476 }); 477 } else { 478 auto DiagBuilder = [&]() { 479 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 480 L->getHeader()); 481 return Diag << "unrolled loop by a factor of " 482 << NV("UnrollCount", ULO.Count); 483 }; 484 485 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 486 << ULO.Count); 487 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 488 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 489 if (ORE) 490 ORE->emit([&]() { 491 return DiagBuilder() << " with a breakout at trip " 492 << NV("BreakoutTrip", BreakoutTrip); 493 }); 494 } else if (ULO.TripMultiple != 1) { 495 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 496 if (ORE) 497 ORE->emit([&]() { 498 return DiagBuilder() 499 << " with " << NV("TripMultiple", ULO.TripMultiple) 500 << " trips per branch"; 501 }); 502 } else if (RuntimeTripCount) { 503 LLVM_DEBUG(dbgs() << " with run-time trip count"); 504 if (ORE) 505 ORE->emit( 506 [&]() { return DiagBuilder() << " with run-time trip count"; }); 507 } 508 LLVM_DEBUG(dbgs() << "!\n"); 509 } 510 511 // We are going to make changes to this loop. SCEV may be keeping cached info 512 // about it, in particular about backedge taken count. The changes we make 513 // are guaranteed to invalidate this information for our loop. It is tempting 514 // to only invalidate the loop being unrolled, but it is incorrect as long as 515 // all exiting branches from all inner loops have impact on the outer loops, 516 // and if something changes inside them then any of outer loops may also 517 // change. When we forget outermost loop, we also forget all contained loops 518 // and this is what we need here. 519 if (SE) { 520 if (ULO.ForgetAllSCEV) 521 SE->forgetAllLoops(); 522 else 523 SE->forgetTopmostLoop(L); 524 } 525 526 bool ContinueOnTrue; 527 bool LatchIsExiting = BI->isConditional(); 528 BasicBlock *LoopExit = nullptr; 529 if (LatchIsExiting) { 530 ContinueOnTrue = L->contains(BI->getSuccessor(0)); 531 LoopExit = BI->getSuccessor(ContinueOnTrue); 532 } else { 533 NumUnrolledWithHeader++; 534 ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0)); 535 LoopExit = HeaderBI->getSuccessor(ContinueOnTrue); 536 } 537 538 // For the first iteration of the loop, we should use the precloned values for 539 // PHI nodes. Insert associations now. 540 ValueToValueMapTy LastValueMap; 541 std::vector<PHINode*> OrigPHINode; 542 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 543 OrigPHINode.push_back(cast<PHINode>(I)); 544 } 545 546 std::vector<BasicBlock *> Headers; 547 std::vector<BasicBlock *> HeaderSucc; 548 std::vector<BasicBlock *> Latches; 549 Headers.push_back(Header); 550 Latches.push_back(LatchBlock); 551 552 if (!LatchIsExiting) { 553 auto *Term = cast<BranchInst>(Header->getTerminator()); 554 if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) { 555 assert(L->contains(Term->getSuccessor(0))); 556 HeaderSucc.push_back(Term->getSuccessor(0)); 557 } else { 558 assert(L->contains(Term->getSuccessor(1))); 559 HeaderSucc.push_back(Term->getSuccessor(1)); 560 } 561 } 562 563 // The current on-the-fly SSA update requires blocks to be processed in 564 // reverse postorder so that LastValueMap contains the correct value at each 565 // exit. 566 LoopBlocksDFS DFS(L); 567 DFS.perform(LI); 568 569 // Stash the DFS iterators before adding blocks to the loop. 570 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 571 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 572 573 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 574 575 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 576 // might break loop-simplified form for these loops (as they, e.g., would 577 // share the same exit blocks). We'll keep track of loops for which we can 578 // break this so that later we can re-simplify them. 579 SmallSetVector<Loop *, 4> LoopsToSimplify; 580 for (Loop *SubLoop : *L) 581 LoopsToSimplify.insert(SubLoop); 582 583 if (Header->getParent()->isDebugInfoForProfiling()) 584 for (BasicBlock *BB : L->getBlocks()) 585 for (Instruction &I : *BB) 586 if (!isa<DbgInfoIntrinsic>(&I)) 587 if (const DILocation *DIL = I.getDebugLoc()) { 588 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 589 if (NewDIL) 590 I.setDebugLoc(NewDIL.getValue()); 591 else 592 LLVM_DEBUG(dbgs() 593 << "Failed to create new discriminator: " 594 << DIL->getFilename() << " Line: " << DIL->getLine()); 595 } 596 597 for (unsigned It = 1; It != ULO.Count; ++It) { 598 std::vector<BasicBlock*> NewBlocks; 599 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 600 NewLoops[L] = L; 601 602 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 603 ValueToValueMapTy VMap; 604 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 605 Header->getParent()->getBasicBlockList().push_back(New); 606 607 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 608 "Header should not be in a sub-loop"); 609 // Tell LI about New. 610 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 611 if (OldLoop) 612 LoopsToSimplify.insert(NewLoops[OldLoop]); 613 614 if (*BB == Header) 615 // Loop over all of the PHI nodes in the block, changing them to use 616 // the incoming values from the previous block. 617 for (PHINode *OrigPHI : OrigPHINode) { 618 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 619 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 620 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 621 if (It > 1 && L->contains(InValI)) 622 InVal = LastValueMap[InValI]; 623 VMap[OrigPHI] = InVal; 624 New->getInstList().erase(NewPHI); 625 } 626 627 // Update our running map of newest clones 628 LastValueMap[*BB] = New; 629 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 630 VI != VE; ++VI) 631 LastValueMap[VI->first] = VI->second; 632 633 // Add phi entries for newly created values to all exit blocks. 634 for (BasicBlock *Succ : successors(*BB)) { 635 if (L->contains(Succ)) 636 continue; 637 for (PHINode &PHI : Succ->phis()) { 638 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 639 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 640 if (It != LastValueMap.end()) 641 Incoming = It->second; 642 PHI.addIncoming(Incoming, New); 643 } 644 } 645 // Keep track of new headers and latches as we create them, so that 646 // we can insert the proper branches later. 647 if (*BB == Header) 648 Headers.push_back(New); 649 if (*BB == LatchBlock) 650 Latches.push_back(New); 651 652 // Keep track of the successor of the new header in the current iteration. 653 for (auto *Pred : predecessors(*BB)) 654 if (Pred == Header) { 655 HeaderSucc.push_back(New); 656 break; 657 } 658 659 NewBlocks.push_back(New); 660 UnrolledLoopBlocks.push_back(New); 661 662 // Update DomTree: since we just copy the loop body, and each copy has a 663 // dedicated entry block (copy of the header block), this header's copy 664 // dominates all copied blocks. That means, dominance relations in the 665 // copied body are the same as in the original body. 666 if (DT) { 667 if (*BB == Header) 668 DT->addNewBlock(New, Latches[It - 1]); 669 else { 670 auto BBDomNode = DT->getNode(*BB); 671 auto BBIDom = BBDomNode->getIDom(); 672 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 673 DT->addNewBlock( 674 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 675 } 676 } 677 } 678 679 // Remap all instructions in the most recent iteration 680 for (BasicBlock *NewBlock : NewBlocks) { 681 for (Instruction &I : *NewBlock) { 682 ::remapInstruction(&I, LastValueMap); 683 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 684 if (II->getIntrinsicID() == Intrinsic::assume) 685 AC->registerAssumption(II); 686 } 687 } 688 } 689 690 // Loop over the PHI nodes in the original block, setting incoming values. 691 for (PHINode *PN : OrigPHINode) { 692 if (CompletelyUnroll) { 693 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 694 Header->getInstList().erase(PN); 695 } else if (ULO.Count > 1) { 696 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 697 // If this value was defined in the loop, take the value defined by the 698 // last iteration of the loop. 699 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 700 if (L->contains(InValI)) 701 InVal = LastValueMap[InVal]; 702 } 703 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 704 PN->addIncoming(InVal, Latches.back()); 705 } 706 } 707 708 auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest, 709 ArrayRef<BasicBlock *> NextBlocks, 710 BasicBlock *CurrentHeader, 711 bool NeedConditional) { 712 auto *Term = cast<BranchInst>(Src->getTerminator()); 713 if (NeedConditional) { 714 // Update the conditional branch's successor for the following 715 // iteration. 716 Term->setSuccessor(!ContinueOnTrue, Dest); 717 } else { 718 // Remove phi operands at this loop exit 719 if (Dest != LoopExit) { 720 BasicBlock *BB = Src; 721 for (BasicBlock *Succ : successors(BB)) { 722 if (Succ == CurrentHeader) 723 continue; 724 for (PHINode &Phi : Succ->phis()) 725 Phi.removeIncomingValue(BB, false); 726 } 727 } 728 // Replace the conditional branch with an unconditional one. 729 BranchInst::Create(Dest, Term); 730 Term->eraseFromParent(); 731 } 732 }; 733 734 // Now that all the basic blocks for the unrolled iterations are in place, 735 // set up the branches to connect them. 736 if (LatchIsExiting) { 737 // Set up latches to branch to the new header in the unrolled iterations or 738 // the loop exit for the last latch in a fully unrolled loop. 739 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 740 // The branch destination. 741 unsigned j = (i + 1) % e; 742 BasicBlock *Dest = Headers[j]; 743 bool NeedConditional = true; 744 745 if (RuntimeTripCount && j != 0) { 746 NeedConditional = false; 747 } 748 749 // For a complete unroll, make the last iteration end with a branch 750 // to the exit block. 751 if (CompletelyUnroll) { 752 if (j == 0) 753 Dest = LoopExit; 754 // If using trip count upper bound to completely unroll, we need to keep 755 // the conditional branch except the last one because the loop may exit 756 // after any iteration. 757 assert(NeedConditional && 758 "NeedCondition cannot be modified by both complete " 759 "unrolling and runtime unrolling"); 760 NeedConditional = 761 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 762 } else if (j != BreakoutTrip && 763 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 764 // If we know the trip count or a multiple of it, we can safely use an 765 // unconditional branch for some iterations. 766 NeedConditional = false; 767 } 768 769 setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional); 770 } 771 } else { 772 // Setup headers to branch to their new successors in the unrolled 773 // iterations. 774 for (unsigned i = 0, e = Headers.size(); i != e; ++i) { 775 // The branch destination. 776 unsigned j = (i + 1) % e; 777 BasicBlock *Dest = HeaderSucc[i]; 778 bool NeedConditional = true; 779 780 if (RuntimeTripCount && j != 0) 781 NeedConditional = false; 782 783 if (CompletelyUnroll) 784 // We cannot drop the conditional branch for the last condition, as we 785 // may have to execute the loop body depending on the condition. 786 NeedConditional = j == 0 || ULO.PreserveCondBr; 787 else if (j != BreakoutTrip && 788 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 789 // If we know the trip count or a multiple of it, we can safely use an 790 // unconditional branch for some iterations. 791 NeedConditional = false; 792 793 setDest(Headers[i], Dest, Headers, Headers[i], NeedConditional); 794 } 795 796 // Set up latches to branch to the new header in the unrolled iterations or 797 // the loop exit for the last latch in a fully unrolled loop. 798 799 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 800 // The original branch was replicated in each unrolled iteration. 801 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 802 803 // The branch destination. 804 unsigned j = (i + 1) % e; 805 BasicBlock *Dest = Headers[j]; 806 807 // When completely unrolling, the last latch becomes unreachable. 808 if (CompletelyUnroll && j == 0) 809 new UnreachableInst(Term->getContext(), Term); 810 else 811 // Replace the conditional branch with an unconditional one. 812 BranchInst::Create(Dest, Term); 813 814 Term->eraseFromParent(); 815 } 816 } 817 818 // Update dominators of blocks we might reach through exits. 819 // Immediate dominator of such block might change, because we add more 820 // routes which can lead to the exit: we can now reach it from the copied 821 // iterations too. 822 if (DT && ULO.Count > 1) { 823 for (auto *BB : OriginalLoopBlocks) { 824 auto *BBDomNode = DT->getNode(BB); 825 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 826 for (auto *ChildDomNode : BBDomNode->getChildren()) { 827 auto *ChildBB = ChildDomNode->getBlock(); 828 if (!L->contains(ChildBB)) 829 ChildrenToUpdate.push_back(ChildBB); 830 } 831 BasicBlock *NewIDom; 832 BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header; 833 auto &TermBlocks = LatchIsExiting ? Latches : Headers; 834 if (BB == TermBlock) { 835 // The latch is special because we emit unconditional branches in 836 // some cases where the original loop contained a conditional branch. 837 // Since the latch is always at the bottom of the loop, if the latch 838 // dominated an exit before unrolling, the new dominator of that exit 839 // must also be a latch. Specifically, the dominator is the first 840 // latch which ends in a conditional branch, or the last latch if 841 // there is no such latch. 842 // For loops exiting from the header, we limit the supported loops 843 // to have a single exiting block. 844 NewIDom = TermBlocks.back(); 845 for (BasicBlock *Iter : TermBlocks) { 846 Instruction *Term = Iter->getTerminator(); 847 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 848 NewIDom = Iter; 849 break; 850 } 851 } 852 } else { 853 // The new idom of the block will be the nearest common dominator 854 // of all copies of the previous idom. This is equivalent to the 855 // nearest common dominator of the previous idom and the first latch, 856 // which dominates all copies of the previous idom. 857 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 858 } 859 for (auto *ChildBB : ChildrenToUpdate) 860 DT->changeImmediateDominator(ChildBB, NewIDom); 861 } 862 } 863 864 assert(!DT || !UnrollVerifyDomtree || 865 DT->verify(DominatorTree::VerificationLevel::Fast)); 866 867 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 868 // Merge adjacent basic blocks, if possible. 869 for (BasicBlock *Latch : Latches) { 870 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 871 assert((Term || 872 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 873 "Need a branch as terminator, except when fully unrolling with " 874 "unconditional latch"); 875 if (Term && Term->isUnconditional()) { 876 BasicBlock *Dest = Term->getSuccessor(0); 877 BasicBlock *Fold = Dest->getUniquePredecessor(); 878 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 879 // Dest has been folded into Fold. Update our worklists accordingly. 880 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 881 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 882 UnrolledLoopBlocks.end(), Dest), 883 UnrolledLoopBlocks.end()); 884 } 885 } 886 } 887 888 // At this point, the code is well formed. We now simplify the unrolled loop, 889 // doing constant propagation and dead code elimination as we go. 890 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 891 SE, DT, AC); 892 893 NumCompletelyUnrolled += CompletelyUnroll; 894 ++NumUnrolled; 895 896 Loop *OuterL = L->getParentLoop(); 897 // Update LoopInfo if the loop is completely removed. 898 if (CompletelyUnroll) 899 LI->erase(L); 900 901 // After complete unrolling most of the blocks should be contained in OuterL. 902 // However, some of them might happen to be out of OuterL (e.g. if they 903 // precede a loop exit). In this case we might need to insert PHI nodes in 904 // order to preserve LCSSA form. 905 // We don't need to check this if we already know that we need to fix LCSSA 906 // form. 907 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 908 // it should be possible to fix it in-place. 909 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 910 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 911 912 // If we have a pass and a DominatorTree we should re-simplify impacted loops 913 // to ensure subsequent analyses can rely on this form. We want to simplify 914 // at least one layer outside of the loop that was unrolled so that any 915 // changes to the parent loop exposed by the unrolling are considered. 916 if (DT) { 917 if (OuterL) { 918 // OuterL includes all loops for which we can break loop-simplify, so 919 // it's sufficient to simplify only it (it'll recursively simplify inner 920 // loops too). 921 if (NeedToFixLCSSA) { 922 // LCSSA must be performed on the outermost affected loop. The unrolled 923 // loop's last loop latch is guaranteed to be in the outermost loop 924 // after LoopInfo's been updated by LoopInfo::erase. 925 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 926 Loop *FixLCSSALoop = OuterL; 927 if (!FixLCSSALoop->contains(LatchLoop)) 928 while (FixLCSSALoop->getParentLoop() != LatchLoop) 929 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 930 931 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 932 } else if (PreserveLCSSA) { 933 assert(OuterL->isLCSSAForm(*DT) && 934 "Loops should be in LCSSA form after loop-unroll."); 935 } 936 937 // TODO: That potentially might be compile-time expensive. We should try 938 // to fix the loop-simplified form incrementally. 939 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 940 } else { 941 // Simplify loops for which we might've broken loop-simplify form. 942 for (Loop *SubLoop : LoopsToSimplify) 943 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 944 } 945 } 946 947 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 948 : LoopUnrollResult::PartiallyUnrolled; 949 } 950 951 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 952 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 953 /// such metadata node exists, then nullptr is returned. 954 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 955 // First operand should refer to the loop id itself. 956 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 957 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 958 959 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 960 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 961 if (!MD) 962 continue; 963 964 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 965 if (!S) 966 continue; 967 968 if (Name.equals(S->getString())) 969 return MD; 970 } 971 return nullptr; 972 } 973