1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopSimplify.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a " 49 "conditional latch (completely or otherwise)"); 50 51 static cl::opt<bool> 52 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 53 cl::desc("Allow runtime unrolled loops to be unrolled " 54 "with epilog instead of prolog.")); 55 56 static cl::opt<bool> 57 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 58 cl::desc("Verify domtree after unrolling"), 59 #ifdef EXPENSIVE_CHECKS 60 cl::init(true) 61 #else 62 cl::init(false) 63 #endif 64 ); 65 66 /// Check if unrolling created a situation where we need to insert phi nodes to 67 /// preserve LCSSA form. 68 /// \param Blocks is a vector of basic blocks representing unrolled loop. 69 /// \param L is the outer loop. 70 /// It's possible that some of the blocks are in L, and some are not. In this 71 /// case, if there is a use is outside L, and definition is inside L, we need to 72 /// insert a phi-node, otherwise LCSSA will be broken. 73 /// The function is just a helper function for llvm::UnrollLoop that returns 74 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 75 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 76 LoopInfo *LI) { 77 for (BasicBlock *BB : Blocks) { 78 if (LI->getLoopFor(BB) == L) 79 continue; 80 for (Instruction &I : *BB) { 81 for (Use &U : I.operands()) { 82 if (auto Def = dyn_cast<Instruction>(U)) { 83 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 84 if (!DefLoop) 85 continue; 86 if (DefLoop->contains(L)) 87 return true; 88 } 89 } 90 } 91 } 92 return false; 93 } 94 95 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 96 /// and adds a mapping from the original loop to the new loop to NewLoops. 97 /// Returns nullptr if no new loop was created and a pointer to the 98 /// original loop OriginalBB was part of otherwise. 99 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 100 BasicBlock *ClonedBB, LoopInfo *LI, 101 NewLoopsMap &NewLoops) { 102 // Figure out which loop New is in. 103 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 104 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 105 106 Loop *&NewLoop = NewLoops[OldLoop]; 107 if (!NewLoop) { 108 // Found a new sub-loop. 109 assert(OriginalBB == OldLoop->getHeader() && 110 "Header should be first in RPO"); 111 112 NewLoop = LI->AllocateLoop(); 113 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 114 115 if (NewLoopParent) 116 NewLoopParent->addChildLoop(NewLoop); 117 else 118 LI->addTopLevelLoop(NewLoop); 119 120 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 121 return OldLoop; 122 } else { 123 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 124 return nullptr; 125 } 126 } 127 128 /// The function chooses which type of unroll (epilog or prolog) is more 129 /// profitabale. 130 /// Epilog unroll is more profitable when there is PHI that starts from 131 /// constant. In this case epilog will leave PHI start from constant, 132 /// but prolog will convert it to non-constant. 133 /// 134 /// loop: 135 /// PN = PHI [I, Latch], [CI, PreHeader] 136 /// I = foo(PN) 137 /// ... 138 /// 139 /// Epilog unroll case. 140 /// loop: 141 /// PN = PHI [I2, Latch], [CI, PreHeader] 142 /// I1 = foo(PN) 143 /// I2 = foo(I1) 144 /// ... 145 /// Prolog unroll case. 146 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 147 /// loop: 148 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 149 /// I1 = foo(PN) 150 /// I2 = foo(I1) 151 /// ... 152 /// 153 static bool isEpilogProfitable(Loop *L) { 154 BasicBlock *PreHeader = L->getLoopPreheader(); 155 BasicBlock *Header = L->getHeader(); 156 assert(PreHeader && Header); 157 for (const PHINode &PN : Header->phis()) { 158 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 159 return true; 160 } 161 return false; 162 } 163 164 /// Perform some cleanup and simplifications on loops after unrolling. It is 165 /// useful to simplify the IV's in the new loop, as well as do a quick 166 /// simplify/dce pass of the instructions. 167 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 168 ScalarEvolution *SE, DominatorTree *DT, 169 AssumptionCache *AC) { 170 // Simplify any new induction variables in the partially unrolled loop. 171 if (SE && SimplifyIVs) { 172 SmallVector<WeakTrackingVH, 16> DeadInsts; 173 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 174 175 // Aggressively clean up dead instructions that simplifyLoopIVs already 176 // identified. Any remaining should be cleaned up below. 177 while (!DeadInsts.empty()) { 178 Value *V = DeadInsts.pop_back_val(); 179 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 180 RecursivelyDeleteTriviallyDeadInstructions(Inst); 181 } 182 } 183 184 // At this point, the code is well formed. We now do a quick sweep over the 185 // inserted code, doing constant propagation and dead code elimination as we 186 // go. 187 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 188 for (BasicBlock *BB : L->getBlocks()) { 189 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 190 Instruction *Inst = &*I++; 191 192 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 193 if (LI->replacementPreservesLCSSAForm(Inst, V)) 194 Inst->replaceAllUsesWith(V); 195 if (isInstructionTriviallyDead(Inst)) 196 BB->getInstList().erase(Inst); 197 } 198 } 199 200 // TODO: after peeling or unrolling, previously loop variant conditions are 201 // likely to fold to constants, eagerly propagating those here will require 202 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 203 // appropriate. 204 } 205 206 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 207 /// can only fail when the loop's latch block is not terminated by a conditional 208 /// branch instruction. However, if the trip count (and multiple) are not known, 209 /// loop unrolling will mostly produce more code that is no faster. 210 /// 211 /// TripCount is the upper bound of the iteration on which control exits 212 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 213 /// via an early branch in other loop block or via LatchBlock terminator. This 214 /// is relaxed from the general definition of trip count which is the number of 215 /// times the loop header executes. Note that UnrollLoop assumes that the loop 216 /// counter test is in LatchBlock in order to remove unnecesssary instances of 217 /// the test. If control can exit the loop from the LatchBlock's terminator 218 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 219 /// 220 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 221 /// needs to be preserved. It is needed when we use trip count upper bound to 222 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 223 /// conditional branch needs to be preserved. 224 /// 225 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 226 /// execute without exiting the loop. 227 /// 228 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 229 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 230 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 231 /// iterations before branching into the unrolled loop. UnrollLoop will not 232 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 233 /// AllowExpensiveTripCount is false. 234 /// 235 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 236 /// number of iterations we want to peel off. 237 /// 238 /// The LoopInfo Analysis that is passed will be kept consistent. 239 /// 240 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 241 /// DominatorTree if they are non-null. 242 /// 243 /// If RemainderLoop is non-null, it will receive the remainder loop (if 244 /// required and not fully unrolled). 245 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 246 ScalarEvolution *SE, DominatorTree *DT, 247 AssumptionCache *AC, 248 OptimizationRemarkEmitter *ORE, 249 bool PreserveLCSSA, Loop **RemainderLoop) { 250 251 BasicBlock *Preheader = L->getLoopPreheader(); 252 if (!Preheader) { 253 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 254 return LoopUnrollResult::Unmodified; 255 } 256 257 BasicBlock *LatchBlock = L->getLoopLatch(); 258 if (!LatchBlock) { 259 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 260 return LoopUnrollResult::Unmodified; 261 } 262 263 // Loops with indirectbr cannot be cloned. 264 if (!L->isSafeToClone()) { 265 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 266 return LoopUnrollResult::Unmodified; 267 } 268 269 // The current loop unroll pass can unroll loops with a single latch or header 270 // that's a conditional branch exiting the loop. 271 // FIXME: The implementation can be extended to work with more complicated 272 // cases, e.g. loops with multiple latches. 273 BasicBlock *Header = L->getHeader(); 274 BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator()); 275 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 276 277 // FIXME: Support loops without conditional latch and multiple exiting blocks. 278 if (!BI || 279 (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() || 280 L->getExitingBlock() != Header))) { 281 LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional " 282 "branch in the latch or header.\n"); 283 return LoopUnrollResult::Unmodified; 284 } 285 286 auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) { 287 return BI->isConditional() && BI->getSuccessor(S1) == Header && 288 !L->contains(BI->getSuccessor(S2)); 289 }; 290 291 // If we have a conditional latch, it must exit the loop. 292 if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) && 293 !CheckLatchSuccessors(1, 0)) { 294 LLVM_DEBUG( 295 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 296 return LoopUnrollResult::Unmodified; 297 } 298 299 auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) { 300 return HeaderBI && HeaderBI->isConditional() && 301 L->contains(HeaderBI->getSuccessor(S1)) && 302 !L->contains(HeaderBI->getSuccessor(S2)); 303 }; 304 305 // If we do not have a conditional latch, the header must exit the loop. 306 if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() && 307 !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) { 308 LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop"); 309 return LoopUnrollResult::Unmodified; 310 } 311 312 if (Header->hasAddressTaken()) { 313 // The loop-rotate pass can be helpful to avoid this in many cases. 314 LLVM_DEBUG( 315 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 316 return LoopUnrollResult::Unmodified; 317 } 318 319 if (ULO.TripCount != 0) 320 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 321 if (ULO.TripMultiple != 1) 322 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 323 324 // Effectively "DCE" unrolled iterations that are beyond the tripcount 325 // and will never be executed. 326 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 327 ULO.Count = ULO.TripCount; 328 329 // Don't enter the unroll code if there is nothing to do. 330 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 331 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 332 return LoopUnrollResult::Unmodified; 333 } 334 335 assert(ULO.Count > 0); 336 assert(ULO.TripMultiple > 0); 337 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 338 339 // Are we eliminating the loop control altogether? 340 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 341 SmallVector<BasicBlock *, 4> ExitBlocks; 342 L->getExitBlocks(ExitBlocks); 343 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 344 345 // Go through all exits of L and see if there are any phi-nodes there. We just 346 // conservatively assume that they're inserted to preserve LCSSA form, which 347 // means that complete unrolling might break this form. We need to either fix 348 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 349 // now we just recompute LCSSA for the outer loop, but it should be possible 350 // to fix it in-place. 351 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 352 any_of(ExitBlocks, [](const BasicBlock *BB) { 353 return isa<PHINode>(BB->begin()); 354 }); 355 356 // We assume a run-time trip count if the compiler cannot 357 // figure out the loop trip count and the unroll-runtime 358 // flag is specified. 359 bool RuntimeTripCount = 360 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 361 362 assert((!RuntimeTripCount || !ULO.PeelCount) && 363 "Did not expect runtime trip-count unrolling " 364 "and peeling for the same loop"); 365 366 bool Peeled = false; 367 if (ULO.PeelCount) { 368 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 369 370 // Successful peeling may result in a change in the loop preheader/trip 371 // counts. If we later unroll the loop, we want these to be updated. 372 if (Peeled) { 373 // According to our guards and profitability checks the only 374 // meaningful exit should be latch block. Other exits go to deopt, 375 // so we do not worry about them. 376 BasicBlock *ExitingBlock = L->getLoopLatch(); 377 assert(ExitingBlock && "Loop without exiting block?"); 378 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 379 Preheader = L->getLoopPreheader(); 380 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 381 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 382 } 383 } 384 385 // Loops containing convergent instructions must have a count that divides 386 // their TripMultiple. 387 LLVM_DEBUG( 388 { 389 bool HasConvergent = false; 390 for (auto &BB : L->blocks()) 391 for (auto &I : *BB) 392 if (auto CS = CallSite(&I)) 393 HasConvergent |= CS.isConvergent(); 394 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 395 "Unroll count must divide trip multiple if loop contains a " 396 "convergent operation."); 397 }); 398 399 bool EpilogProfitability = 400 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 401 : isEpilogProfitable(L); 402 403 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 404 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 405 EpilogProfitability, ULO.UnrollRemainder, 406 ULO.ForgetAllSCEV, LI, SE, DT, AC, 407 PreserveLCSSA, RemainderLoop)) { 408 if (ULO.Force) 409 RuntimeTripCount = false; 410 else { 411 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 412 "generated when assuming runtime trip count\n"); 413 return LoopUnrollResult::Unmodified; 414 } 415 } 416 417 // If we know the trip count, we know the multiple... 418 unsigned BreakoutTrip = 0; 419 if (ULO.TripCount != 0) { 420 BreakoutTrip = ULO.TripCount % ULO.Count; 421 ULO.TripMultiple = 0; 422 } else { 423 // Figure out what multiple to use. 424 BreakoutTrip = ULO.TripMultiple = 425 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 426 } 427 428 using namespace ore; 429 // Report the unrolling decision. 430 if (CompletelyUnroll) { 431 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 432 << " with trip count " << ULO.TripCount << "!\n"); 433 if (ORE) 434 ORE->emit([&]() { 435 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 436 L->getHeader()) 437 << "completely unrolled loop with " 438 << NV("UnrollCount", ULO.TripCount) << " iterations"; 439 }); 440 } else if (ULO.PeelCount) { 441 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 442 << " with iteration count " << ULO.PeelCount << "!\n"); 443 if (ORE) 444 ORE->emit([&]() { 445 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 446 L->getHeader()) 447 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 448 << " iterations"; 449 }); 450 } else { 451 auto DiagBuilder = [&]() { 452 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 453 L->getHeader()); 454 return Diag << "unrolled loop by a factor of " 455 << NV("UnrollCount", ULO.Count); 456 }; 457 458 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 459 << ULO.Count); 460 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 461 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 462 if (ORE) 463 ORE->emit([&]() { 464 return DiagBuilder() << " with a breakout at trip " 465 << NV("BreakoutTrip", BreakoutTrip); 466 }); 467 } else if (ULO.TripMultiple != 1) { 468 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 469 if (ORE) 470 ORE->emit([&]() { 471 return DiagBuilder() 472 << " with " << NV("TripMultiple", ULO.TripMultiple) 473 << " trips per branch"; 474 }); 475 } else if (RuntimeTripCount) { 476 LLVM_DEBUG(dbgs() << " with run-time trip count"); 477 if (ORE) 478 ORE->emit( 479 [&]() { return DiagBuilder() << " with run-time trip count"; }); 480 } 481 LLVM_DEBUG(dbgs() << "!\n"); 482 } 483 484 // We are going to make changes to this loop. SCEV may be keeping cached info 485 // about it, in particular about backedge taken count. The changes we make 486 // are guaranteed to invalidate this information for our loop. It is tempting 487 // to only invalidate the loop being unrolled, but it is incorrect as long as 488 // all exiting branches from all inner loops have impact on the outer loops, 489 // and if something changes inside them then any of outer loops may also 490 // change. When we forget outermost loop, we also forget all contained loops 491 // and this is what we need here. 492 if (SE) { 493 if (ULO.ForgetAllSCEV) 494 SE->forgetAllLoops(); 495 else 496 SE->forgetTopmostLoop(L); 497 } 498 499 bool ContinueOnTrue; 500 bool LatchIsExiting = BI->isConditional(); 501 BasicBlock *LoopExit = nullptr; 502 if (LatchIsExiting) { 503 ContinueOnTrue = L->contains(BI->getSuccessor(0)); 504 LoopExit = BI->getSuccessor(ContinueOnTrue); 505 } else { 506 NumUnrolledWithHeader++; 507 ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0)); 508 LoopExit = HeaderBI->getSuccessor(ContinueOnTrue); 509 } 510 511 // For the first iteration of the loop, we should use the precloned values for 512 // PHI nodes. Insert associations now. 513 ValueToValueMapTy LastValueMap; 514 std::vector<PHINode*> OrigPHINode; 515 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 516 OrigPHINode.push_back(cast<PHINode>(I)); 517 } 518 519 std::vector<BasicBlock *> Headers; 520 std::vector<BasicBlock *> HeaderSucc; 521 std::vector<BasicBlock *> Latches; 522 Headers.push_back(Header); 523 Latches.push_back(LatchBlock); 524 525 if (!LatchIsExiting) { 526 auto *Term = cast<BranchInst>(Header->getTerminator()); 527 if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) { 528 assert(L->contains(Term->getSuccessor(0))); 529 HeaderSucc.push_back(Term->getSuccessor(0)); 530 } else { 531 assert(L->contains(Term->getSuccessor(1))); 532 HeaderSucc.push_back(Term->getSuccessor(1)); 533 } 534 } 535 536 // The current on-the-fly SSA update requires blocks to be processed in 537 // reverse postorder so that LastValueMap contains the correct value at each 538 // exit. 539 LoopBlocksDFS DFS(L); 540 DFS.perform(LI); 541 542 // Stash the DFS iterators before adding blocks to the loop. 543 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 544 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 545 546 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 547 548 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 549 // might break loop-simplified form for these loops (as they, e.g., would 550 // share the same exit blocks). We'll keep track of loops for which we can 551 // break this so that later we can re-simplify them. 552 SmallSetVector<Loop *, 4> LoopsToSimplify; 553 for (Loop *SubLoop : *L) 554 LoopsToSimplify.insert(SubLoop); 555 556 if (Header->getParent()->isDebugInfoForProfiling()) 557 for (BasicBlock *BB : L->getBlocks()) 558 for (Instruction &I : *BB) 559 if (!isa<DbgInfoIntrinsic>(&I)) 560 if (const DILocation *DIL = I.getDebugLoc()) { 561 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 562 if (NewDIL) 563 I.setDebugLoc(NewDIL.getValue()); 564 else 565 LLVM_DEBUG(dbgs() 566 << "Failed to create new discriminator: " 567 << DIL->getFilename() << " Line: " << DIL->getLine()); 568 } 569 570 for (unsigned It = 1; It != ULO.Count; ++It) { 571 SmallVector<BasicBlock *, 8> NewBlocks; 572 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 573 NewLoops[L] = L; 574 575 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 576 ValueToValueMapTy VMap; 577 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 578 Header->getParent()->getBasicBlockList().push_back(New); 579 580 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 581 "Header should not be in a sub-loop"); 582 // Tell LI about New. 583 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 584 if (OldLoop) 585 LoopsToSimplify.insert(NewLoops[OldLoop]); 586 587 if (*BB == Header) 588 // Loop over all of the PHI nodes in the block, changing them to use 589 // the incoming values from the previous block. 590 for (PHINode *OrigPHI : OrigPHINode) { 591 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 592 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 593 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 594 if (It > 1 && L->contains(InValI)) 595 InVal = LastValueMap[InValI]; 596 VMap[OrigPHI] = InVal; 597 New->getInstList().erase(NewPHI); 598 } 599 600 // Update our running map of newest clones 601 LastValueMap[*BB] = New; 602 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 603 VI != VE; ++VI) 604 LastValueMap[VI->first] = VI->second; 605 606 // Add phi entries for newly created values to all exit blocks. 607 for (BasicBlock *Succ : successors(*BB)) { 608 if (L->contains(Succ)) 609 continue; 610 for (PHINode &PHI : Succ->phis()) { 611 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 612 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 613 if (It != LastValueMap.end()) 614 Incoming = It->second; 615 PHI.addIncoming(Incoming, New); 616 } 617 } 618 // Keep track of new headers and latches as we create them, so that 619 // we can insert the proper branches later. 620 if (*BB == Header) 621 Headers.push_back(New); 622 if (*BB == LatchBlock) 623 Latches.push_back(New); 624 625 // Keep track of the successor of the new header in the current iteration. 626 for (auto *Pred : predecessors(*BB)) 627 if (Pred == Header) { 628 HeaderSucc.push_back(New); 629 break; 630 } 631 632 NewBlocks.push_back(New); 633 UnrolledLoopBlocks.push_back(New); 634 635 // Update DomTree: since we just copy the loop body, and each copy has a 636 // dedicated entry block (copy of the header block), this header's copy 637 // dominates all copied blocks. That means, dominance relations in the 638 // copied body are the same as in the original body. 639 if (DT) { 640 if (*BB == Header) 641 DT->addNewBlock(New, Latches[It - 1]); 642 else { 643 auto BBDomNode = DT->getNode(*BB); 644 auto BBIDom = BBDomNode->getIDom(); 645 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 646 DT->addNewBlock( 647 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 648 } 649 } 650 } 651 652 // Remap all instructions in the most recent iteration 653 remapInstructionsInBlocks(NewBlocks, LastValueMap); 654 for (BasicBlock *NewBlock : NewBlocks) { 655 for (Instruction &I : *NewBlock) { 656 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 657 if (II->getIntrinsicID() == Intrinsic::assume) 658 AC->registerAssumption(II); 659 } 660 } 661 } 662 663 // Loop over the PHI nodes in the original block, setting incoming values. 664 for (PHINode *PN : OrigPHINode) { 665 if (CompletelyUnroll) { 666 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 667 Header->getInstList().erase(PN); 668 } else if (ULO.Count > 1) { 669 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 670 // If this value was defined in the loop, take the value defined by the 671 // last iteration of the loop. 672 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 673 if (L->contains(InValI)) 674 InVal = LastValueMap[InVal]; 675 } 676 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 677 PN->addIncoming(InVal, Latches.back()); 678 } 679 } 680 681 auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest, 682 ArrayRef<BasicBlock *> NextBlocks, 683 BasicBlock *BlockInLoop, 684 bool NeedConditional) { 685 auto *Term = cast<BranchInst>(Src->getTerminator()); 686 if (NeedConditional) { 687 // Update the conditional branch's successor for the following 688 // iteration. 689 Term->setSuccessor(!ContinueOnTrue, Dest); 690 } else { 691 // Remove phi operands at this loop exit 692 if (Dest != LoopExit) { 693 BasicBlock *BB = Src; 694 for (BasicBlock *Succ : successors(BB)) { 695 // Preserve the incoming value from BB if we are jumping to the block 696 // in the current loop. 697 if (Succ == BlockInLoop) 698 continue; 699 for (PHINode &Phi : Succ->phis()) 700 Phi.removeIncomingValue(BB, false); 701 } 702 } 703 // Replace the conditional branch with an unconditional one. 704 BranchInst::Create(Dest, Term); 705 Term->eraseFromParent(); 706 } 707 }; 708 709 // Now that all the basic blocks for the unrolled iterations are in place, 710 // set up the branches to connect them. 711 if (LatchIsExiting) { 712 // Set up latches to branch to the new header in the unrolled iterations or 713 // the loop exit for the last latch in a fully unrolled loop. 714 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 715 // The branch destination. 716 unsigned j = (i + 1) % e; 717 BasicBlock *Dest = Headers[j]; 718 bool NeedConditional = true; 719 720 if (RuntimeTripCount && j != 0) { 721 NeedConditional = false; 722 } 723 724 // For a complete unroll, make the last iteration end with a branch 725 // to the exit block. 726 if (CompletelyUnroll) { 727 if (j == 0) 728 Dest = LoopExit; 729 // If using trip count upper bound to completely unroll, we need to keep 730 // the conditional branch except the last one because the loop may exit 731 // after any iteration. 732 assert(NeedConditional && 733 "NeedCondition cannot be modified by both complete " 734 "unrolling and runtime unrolling"); 735 NeedConditional = 736 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 737 } else if (j != BreakoutTrip && 738 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 739 // If we know the trip count or a multiple of it, we can safely use an 740 // unconditional branch for some iterations. 741 NeedConditional = false; 742 } 743 744 setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional); 745 } 746 } else { 747 // Setup headers to branch to their new successors in the unrolled 748 // iterations. 749 for (unsigned i = 0, e = Headers.size(); i != e; ++i) { 750 // The branch destination. 751 unsigned j = (i + 1) % e; 752 BasicBlock *Dest = HeaderSucc[i]; 753 bool NeedConditional = true; 754 755 if (RuntimeTripCount && j != 0) 756 NeedConditional = false; 757 758 if (CompletelyUnroll) 759 // We cannot drop the conditional branch for the last condition, as we 760 // may have to execute the loop body depending on the condition. 761 NeedConditional = j == 0 || ULO.PreserveCondBr; 762 else if (j != BreakoutTrip && 763 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 764 // If we know the trip count or a multiple of it, we can safely use an 765 // unconditional branch for some iterations. 766 NeedConditional = false; 767 768 setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional); 769 } 770 771 // Set up latches to branch to the new header in the unrolled iterations or 772 // the loop exit for the last latch in a fully unrolled loop. 773 774 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 775 // The original branch was replicated in each unrolled iteration. 776 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 777 778 // The branch destination. 779 unsigned j = (i + 1) % e; 780 BasicBlock *Dest = Headers[j]; 781 782 // When completely unrolling, the last latch becomes unreachable. 783 if (CompletelyUnroll && j == 0) 784 new UnreachableInst(Term->getContext(), Term); 785 else 786 // Replace the conditional branch with an unconditional one. 787 BranchInst::Create(Dest, Term); 788 789 Term->eraseFromParent(); 790 } 791 } 792 793 // Update dominators of blocks we might reach through exits. 794 // Immediate dominator of such block might change, because we add more 795 // routes which can lead to the exit: we can now reach it from the copied 796 // iterations too. 797 if (DT && ULO.Count > 1) { 798 for (auto *BB : OriginalLoopBlocks) { 799 auto *BBDomNode = DT->getNode(BB); 800 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 801 for (auto *ChildDomNode : BBDomNode->getChildren()) { 802 auto *ChildBB = ChildDomNode->getBlock(); 803 if (!L->contains(ChildBB)) 804 ChildrenToUpdate.push_back(ChildBB); 805 } 806 BasicBlock *NewIDom; 807 BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header; 808 auto &TermBlocks = LatchIsExiting ? Latches : Headers; 809 if (BB == TermBlock) { 810 // The latch is special because we emit unconditional branches in 811 // some cases where the original loop contained a conditional branch. 812 // Since the latch is always at the bottom of the loop, if the latch 813 // dominated an exit before unrolling, the new dominator of that exit 814 // must also be a latch. Specifically, the dominator is the first 815 // latch which ends in a conditional branch, or the last latch if 816 // there is no such latch. 817 // For loops exiting from the header, we limit the supported loops 818 // to have a single exiting block. 819 NewIDom = TermBlocks.back(); 820 for (BasicBlock *Iter : TermBlocks) { 821 Instruction *Term = Iter->getTerminator(); 822 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 823 NewIDom = Iter; 824 break; 825 } 826 } 827 } else { 828 // The new idom of the block will be the nearest common dominator 829 // of all copies of the previous idom. This is equivalent to the 830 // nearest common dominator of the previous idom and the first latch, 831 // which dominates all copies of the previous idom. 832 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 833 } 834 for (auto *ChildBB : ChildrenToUpdate) 835 DT->changeImmediateDominator(ChildBB, NewIDom); 836 } 837 } 838 839 assert(!DT || !UnrollVerifyDomtree || 840 DT->verify(DominatorTree::VerificationLevel::Fast)); 841 842 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 843 // Merge adjacent basic blocks, if possible. 844 for (BasicBlock *Latch : Latches) { 845 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 846 assert((Term || 847 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 848 "Need a branch as terminator, except when fully unrolling with " 849 "unconditional latch"); 850 if (Term && Term->isUnconditional()) { 851 BasicBlock *Dest = Term->getSuccessor(0); 852 BasicBlock *Fold = Dest->getUniquePredecessor(); 853 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 854 // Dest has been folded into Fold. Update our worklists accordingly. 855 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 856 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 857 UnrolledLoopBlocks.end(), Dest), 858 UnrolledLoopBlocks.end()); 859 } 860 } 861 } 862 // Apply updates to the DomTree. 863 DT = &DTU.getDomTree(); 864 865 // At this point, the code is well formed. We now simplify the unrolled loop, 866 // doing constant propagation and dead code elimination as we go. 867 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 868 SE, DT, AC); 869 870 NumCompletelyUnrolled += CompletelyUnroll; 871 ++NumUnrolled; 872 873 Loop *OuterL = L->getParentLoop(); 874 // Update LoopInfo if the loop is completely removed. 875 if (CompletelyUnroll) 876 LI->erase(L); 877 878 // After complete unrolling most of the blocks should be contained in OuterL. 879 // However, some of them might happen to be out of OuterL (e.g. if they 880 // precede a loop exit). In this case we might need to insert PHI nodes in 881 // order to preserve LCSSA form. 882 // We don't need to check this if we already know that we need to fix LCSSA 883 // form. 884 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 885 // it should be possible to fix it in-place. 886 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 887 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 888 889 // If we have a pass and a DominatorTree we should re-simplify impacted loops 890 // to ensure subsequent analyses can rely on this form. We want to simplify 891 // at least one layer outside of the loop that was unrolled so that any 892 // changes to the parent loop exposed by the unrolling are considered. 893 if (DT) { 894 if (OuterL) { 895 // OuterL includes all loops for which we can break loop-simplify, so 896 // it's sufficient to simplify only it (it'll recursively simplify inner 897 // loops too). 898 if (NeedToFixLCSSA) { 899 // LCSSA must be performed on the outermost affected loop. The unrolled 900 // loop's last loop latch is guaranteed to be in the outermost loop 901 // after LoopInfo's been updated by LoopInfo::erase. 902 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 903 Loop *FixLCSSALoop = OuterL; 904 if (!FixLCSSALoop->contains(LatchLoop)) 905 while (FixLCSSALoop->getParentLoop() != LatchLoop) 906 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 907 908 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 909 } else if (PreserveLCSSA) { 910 assert(OuterL->isLCSSAForm(*DT) && 911 "Loops should be in LCSSA form after loop-unroll."); 912 } 913 914 // TODO: That potentially might be compile-time expensive. We should try 915 // to fix the loop-simplified form incrementally. 916 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 917 } else { 918 // Simplify loops for which we might've broken loop-simplify form. 919 for (Loop *SubLoop : LoopsToSimplify) 920 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 921 } 922 } 923 924 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 925 : LoopUnrollResult::PartiallyUnrolled; 926 } 927 928 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 929 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 930 /// such metadata node exists, then nullptr is returned. 931 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 932 // First operand should refer to the loop id itself. 933 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 934 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 935 936 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 937 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 938 if (!MD) 939 continue; 940 941 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 942 if (!S) 943 continue; 944 945 if (Name.equals(S->getString())) 946 return MD; 947 } 948 return nullptr; 949 } 950