1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/LoopSimplify.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 // TODO: Should these be here or in LoopUnroll?
47 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
48 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
49 
50 static cl::opt<bool>
51 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
52                     cl::desc("Allow runtime unrolled loops to be unrolled "
53                              "with epilog instead of prolog."));
54 
55 static cl::opt<bool>
56 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
57                     cl::desc("Verify domtree after unrolling"),
58 #ifdef NDEBUG
59     cl::init(false)
60 #else
61     cl::init(true)
62 #endif
63                     );
64 
65 /// Convert the instruction operands from referencing the current values into
66 /// those specified by VMap.
67 static inline void remapInstruction(Instruction *I,
68                                     ValueToValueMapTy &VMap) {
69   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
70     Value *Op = I->getOperand(op);
71     ValueToValueMapTy::iterator It = VMap.find(Op);
72     if (It != VMap.end())
73       I->setOperand(op, It->second);
74   }
75 
76   if (PHINode *PN = dyn_cast<PHINode>(I)) {
77     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
78       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
79       if (It != VMap.end())
80         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
81     }
82   }
83 }
84 
85 /// Folds a basic block into its predecessor if it only has one predecessor, and
86 /// that predecessor only has one successor.
87 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
88 /// successful references to the containing loop must be removed from
89 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
90 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
91 /// of loops that have already been forgotten to prevent redundant, expensive
92 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
93 static BasicBlock *
94 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
95                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
96                          DominatorTree *DT) {
97   // Merge basic blocks into their predecessor if there is only one distinct
98   // pred, and if there is only one distinct successor of the predecessor, and
99   // if there are no PHI nodes.
100   BasicBlock *OnlyPred = BB->getSinglePredecessor();
101   if (!OnlyPred) return nullptr;
102 
103   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
104     return nullptr;
105 
106   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
107 
108   // Resolve any PHI nodes at the start of the block.  They are all
109   // guaranteed to have exactly one entry if they exist, unless there are
110   // multiple duplicate (but guaranteed to be equal) entries for the
111   // incoming edges.  This occurs when there are multiple edges from
112   // OnlyPred to OnlySucc.
113   FoldSingleEntryPHINodes(BB);
114 
115   // Delete the unconditional branch from the predecessor...
116   OnlyPred->getInstList().pop_back();
117 
118   // Make all PHI nodes that referred to BB now refer to Pred as their
119   // source...
120   BB->replaceAllUsesWith(OnlyPred);
121 
122   // Move all definitions in the successor to the predecessor...
123   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
124 
125   // OldName will be valid until erased.
126   StringRef OldName = BB->getName();
127 
128   // Erase the old block and update dominator info.
129   if (DT)
130     if (DomTreeNode *DTN = DT->getNode(BB)) {
131       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
132       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
133       for (auto *DI : Children)
134         DT->changeImmediateDominator(DI, PredDTN);
135 
136       DT->eraseNode(BB);
137     }
138 
139   // ScalarEvolution holds references to loop exit blocks.
140   if (SE) {
141     if (Loop *L = LI->getLoopFor(BB)) {
142       if (ForgottenLoops.insert(L).second)
143         SE->forgetLoop(L);
144     }
145   }
146   LI->removeBlock(BB);
147 
148   // Inherit predecessor's name if it exists...
149   if (!OldName.empty() && !OnlyPred->hasName())
150     OnlyPred->setName(OldName);
151 
152   BB->eraseFromParent();
153 
154   return OnlyPred;
155 }
156 
157 /// Check if unrolling created a situation where we need to insert phi nodes to
158 /// preserve LCSSA form.
159 /// \param Blocks is a vector of basic blocks representing unrolled loop.
160 /// \param L is the outer loop.
161 /// It's possible that some of the blocks are in L, and some are not. In this
162 /// case, if there is a use is outside L, and definition is inside L, we need to
163 /// insert a phi-node, otherwise LCSSA will be broken.
164 /// The function is just a helper function for llvm::UnrollLoop that returns
165 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
167                                      LoopInfo *LI) {
168   for (BasicBlock *BB : Blocks) {
169     if (LI->getLoopFor(BB) == L)
170       continue;
171     for (Instruction &I : *BB) {
172       for (Use &U : I.operands()) {
173         if (auto Def = dyn_cast<Instruction>(U)) {
174           Loop *DefLoop = LI->getLoopFor(Def->getParent());
175           if (!DefLoop)
176             continue;
177           if (DefLoop->contains(L))
178             return true;
179         }
180       }
181     }
182   }
183   return false;
184 }
185 
186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
187 /// and adds a mapping from the original loop to the new loop to NewLoops.
188 /// Returns nullptr if no new loop was created and a pointer to the
189 /// original loop OriginalBB was part of otherwise.
190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
191                                            BasicBlock *ClonedBB, LoopInfo *LI,
192                                            NewLoopsMap &NewLoops) {
193   // Figure out which loop New is in.
194   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
195   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
196 
197   Loop *&NewLoop = NewLoops[OldLoop];
198   if (!NewLoop) {
199     // Found a new sub-loop.
200     assert(OriginalBB == OldLoop->getHeader() &&
201            "Header should be first in RPO");
202 
203     NewLoop = new Loop();
204     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
205 
206     if (NewLoopParent)
207       NewLoopParent->addChildLoop(NewLoop);
208     else
209       LI->addTopLevelLoop(NewLoop);
210 
211     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
212     return OldLoop;
213   } else {
214     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
215     return nullptr;
216   }
217 }
218 
219 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
220 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
221 /// can only fail when the loop's latch block is not terminated by a conditional
222 /// branch instruction. However, if the trip count (and multiple) are not known,
223 /// loop unrolling will mostly produce more code that is no faster.
224 ///
225 /// TripCount is the upper bound of the iteration on which control exits
226 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
227 /// via an early branch in other loop block or via LatchBlock terminator. This
228 /// is relaxed from the general definition of trip count which is the number of
229 /// times the loop header executes. Note that UnrollLoop assumes that the loop
230 /// counter test is in LatchBlock in order to remove unnecesssary instances of
231 /// the test.  If control can exit the loop from the LatchBlock's terminator
232 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
233 ///
234 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
235 /// needs to be preserved.  It is needed when we use trip count upper bound to
236 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
237 /// conditional branch needs to be preserved.
238 ///
239 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
240 /// execute without exiting the loop.
241 ///
242 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
243 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
244 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
245 /// iterations before branching into the unrolled loop.  UnrollLoop will not
246 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
247 /// AllowExpensiveTripCount is false.
248 ///
249 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
250 /// number of iterations we want to peel off.
251 ///
252 /// The LoopInfo Analysis that is passed will be kept consistent.
253 ///
254 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
255 /// DominatorTree if they are non-null.
256 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
257                       bool AllowRuntime, bool AllowExpensiveTripCount,
258                       bool PreserveCondBr, bool PreserveOnlyFirst,
259                       unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI,
260                       ScalarEvolution *SE, DominatorTree *DT,
261                       AssumptionCache *AC, OptimizationRemarkEmitter *ORE,
262                       bool PreserveLCSSA) {
263 
264   BasicBlock *Preheader = L->getLoopPreheader();
265   if (!Preheader) {
266     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
267     return false;
268   }
269 
270   BasicBlock *LatchBlock = L->getLoopLatch();
271   if (!LatchBlock) {
272     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
273     return false;
274   }
275 
276   // Loops with indirectbr cannot be cloned.
277   if (!L->isSafeToClone()) {
278     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
279     return false;
280   }
281 
282   BasicBlock *Header = L->getHeader();
283   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
284 
285   if (!BI || BI->isUnconditional()) {
286     // The loop-rotate pass can be helpful to avoid this in many cases.
287     DEBUG(dbgs() <<
288              "  Can't unroll; loop not terminated by a conditional branch.\n");
289     return false;
290   }
291 
292   if (Header->hasAddressTaken()) {
293     // The loop-rotate pass can be helpful to avoid this in many cases.
294     DEBUG(dbgs() <<
295           "  Won't unroll loop: address of header block is taken.\n");
296     return false;
297   }
298 
299   if (TripCount != 0)
300     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
301   if (TripMultiple != 1)
302     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
303 
304   // Effectively "DCE" unrolled iterations that are beyond the tripcount
305   // and will never be executed.
306   if (TripCount != 0 && Count > TripCount)
307     Count = TripCount;
308 
309   // Don't enter the unroll code if there is nothing to do.
310   if (TripCount == 0 && Count < 2 && PeelCount == 0) {
311     DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
312     return false;
313   }
314 
315   assert(Count > 0);
316   assert(TripMultiple > 0);
317   assert(TripCount == 0 || TripCount % TripMultiple == 0);
318 
319   // Are we eliminating the loop control altogether?
320   bool CompletelyUnroll = Count == TripCount;
321   SmallVector<BasicBlock *, 4> ExitBlocks;
322   L->getExitBlocks(ExitBlocks);
323   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
324 
325   // Go through all exits of L and see if there are any phi-nodes there. We just
326   // conservatively assume that they're inserted to preserve LCSSA form, which
327   // means that complete unrolling might break this form. We need to either fix
328   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
329   // now we just recompute LCSSA for the outer loop, but it should be possible
330   // to fix it in-place.
331   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
332                         any_of(ExitBlocks, [](const BasicBlock *BB) {
333                           return isa<PHINode>(BB->begin());
334                         });
335 
336   // We assume a run-time trip count if the compiler cannot
337   // figure out the loop trip count and the unroll-runtime
338   // flag is specified.
339   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
340 
341   assert((!RuntimeTripCount || !PeelCount) &&
342          "Did not expect runtime trip-count unrolling "
343          "and peeling for the same loop");
344 
345   if (PeelCount)
346     peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
347 
348   // Loops containing convergent instructions must have a count that divides
349   // their TripMultiple.
350   DEBUG(
351       {
352         bool HasConvergent = false;
353         for (auto &BB : L->blocks())
354           for (auto &I : *BB)
355             if (auto CS = CallSite(&I))
356               HasConvergent |= CS.isConvergent();
357         assert((!HasConvergent || TripMultiple % Count == 0) &&
358                "Unroll count must divide trip multiple if loop contains a "
359                "convergent operation.");
360       });
361 
362   if (RuntimeTripCount && TripMultiple % Count != 0 &&
363       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
364                                   UnrollRuntimeEpilog, LI, SE, DT,
365                                   PreserveLCSSA)) {
366     if (Force)
367       RuntimeTripCount = false;
368     else {
369       DEBUG(
370           dbgs() << "Wont unroll; remainder loop could not be generated"
371                     "when assuming runtime trip count\n");
372       return false;
373     }
374   }
375 
376   // Notify ScalarEvolution that the loop will be substantially changed,
377   // if not outright eliminated.
378   if (SE)
379     SE->forgetLoop(L);
380 
381   // If we know the trip count, we know the multiple...
382   unsigned BreakoutTrip = 0;
383   if (TripCount != 0) {
384     BreakoutTrip = TripCount % Count;
385     TripMultiple = 0;
386   } else {
387     // Figure out what multiple to use.
388     BreakoutTrip = TripMultiple =
389       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
390   }
391 
392   using namespace ore;
393   // Report the unrolling decision.
394   if (CompletelyUnroll) {
395     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
396           << " with trip count " << TripCount << "!\n");
397     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
398                                  L->getHeader())
399               << "completely unrolled loop with "
400               << NV("UnrollCount", TripCount) << " iterations");
401   } else if (PeelCount) {
402     DEBUG(dbgs() << "PEELING loop %" << Header->getName()
403                  << " with iteration count " << PeelCount << "!\n");
404     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
405                                  L->getHeader())
406               << " peeled loop by " << NV("PeelCount", PeelCount)
407               << " iterations");
408   } else {
409     OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
410                             L->getHeader());
411     Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count);
412 
413     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
414           << " by " << Count);
415     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
416       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
417       ORE->emit(Diag << " with a breakout at trip "
418                      << NV("BreakoutTrip", BreakoutTrip));
419     } else if (TripMultiple != 1) {
420       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
421       ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple)
422                      << " trips per branch");
423     } else if (RuntimeTripCount) {
424       DEBUG(dbgs() << " with run-time trip count");
425       ORE->emit(Diag << " with run-time trip count");
426     }
427     DEBUG(dbgs() << "!\n");
428   }
429 
430   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
431   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
432 
433   // For the first iteration of the loop, we should use the precloned values for
434   // PHI nodes.  Insert associations now.
435   ValueToValueMapTy LastValueMap;
436   std::vector<PHINode*> OrigPHINode;
437   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
438     OrigPHINode.push_back(cast<PHINode>(I));
439   }
440 
441   std::vector<BasicBlock*> Headers;
442   std::vector<BasicBlock*> Latches;
443   Headers.push_back(Header);
444   Latches.push_back(LatchBlock);
445 
446   // The current on-the-fly SSA update requires blocks to be processed in
447   // reverse postorder so that LastValueMap contains the correct value at each
448   // exit.
449   LoopBlocksDFS DFS(L);
450   DFS.perform(LI);
451 
452   // Stash the DFS iterators before adding blocks to the loop.
453   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
454   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
455 
456   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
457 
458   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
459   // might break loop-simplified form for these loops (as they, e.g., would
460   // share the same exit blocks). We'll keep track of loops for which we can
461   // break this so that later we can re-simplify them.
462   SmallSetVector<Loop *, 4> LoopsToSimplify;
463   for (Loop *SubLoop : *L)
464     LoopsToSimplify.insert(SubLoop);
465 
466   if (Header->getParent()->isDebugInfoForProfiling())
467     for (BasicBlock *BB : L->getBlocks())
468       for (Instruction &I : *BB)
469         if (const DILocation *DIL = I.getDebugLoc())
470           I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
471 
472   for (unsigned It = 1; It != Count; ++It) {
473     std::vector<BasicBlock*> NewBlocks;
474     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
475     NewLoops[L] = L;
476 
477     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
478       ValueToValueMapTy VMap;
479       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
480       Header->getParent()->getBasicBlockList().push_back(New);
481 
482       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
483              "Header should not be in a sub-loop");
484       // Tell LI about New.
485       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
486       if (OldLoop) {
487         LoopsToSimplify.insert(NewLoops[OldLoop]);
488 
489         // Forget the old loop, since its inputs may have changed.
490         if (SE)
491           SE->forgetLoop(OldLoop);
492       }
493 
494       if (*BB == Header)
495         // Loop over all of the PHI nodes in the block, changing them to use
496         // the incoming values from the previous block.
497         for (PHINode *OrigPHI : OrigPHINode) {
498           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
499           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
500           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
501             if (It > 1 && L->contains(InValI))
502               InVal = LastValueMap[InValI];
503           VMap[OrigPHI] = InVal;
504           New->getInstList().erase(NewPHI);
505         }
506 
507       // Update our running map of newest clones
508       LastValueMap[*BB] = New;
509       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
510            VI != VE; ++VI)
511         LastValueMap[VI->first] = VI->second;
512 
513       // Add phi entries for newly created values to all exit blocks.
514       for (BasicBlock *Succ : successors(*BB)) {
515         if (L->contains(Succ))
516           continue;
517         for (BasicBlock::iterator BBI = Succ->begin();
518              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
519           Value *Incoming = phi->getIncomingValueForBlock(*BB);
520           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
521           if (It != LastValueMap.end())
522             Incoming = It->second;
523           phi->addIncoming(Incoming, New);
524         }
525       }
526       // Keep track of new headers and latches as we create them, so that
527       // we can insert the proper branches later.
528       if (*BB == Header)
529         Headers.push_back(New);
530       if (*BB == LatchBlock)
531         Latches.push_back(New);
532 
533       NewBlocks.push_back(New);
534       UnrolledLoopBlocks.push_back(New);
535 
536       // Update DomTree: since we just copy the loop body, and each copy has a
537       // dedicated entry block (copy of the header block), this header's copy
538       // dominates all copied blocks. That means, dominance relations in the
539       // copied body are the same as in the original body.
540       if (DT) {
541         if (*BB == Header)
542           DT->addNewBlock(New, Latches[It - 1]);
543         else {
544           auto BBDomNode = DT->getNode(*BB);
545           auto BBIDom = BBDomNode->getIDom();
546           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
547           DT->addNewBlock(
548               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
549         }
550       }
551     }
552 
553     // Remap all instructions in the most recent iteration
554     for (BasicBlock *NewBlock : NewBlocks) {
555       for (Instruction &I : *NewBlock) {
556         ::remapInstruction(&I, LastValueMap);
557         if (auto *II = dyn_cast<IntrinsicInst>(&I))
558           if (II->getIntrinsicID() == Intrinsic::assume)
559             AC->registerAssumption(II);
560       }
561     }
562   }
563 
564   // Loop over the PHI nodes in the original block, setting incoming values.
565   for (PHINode *PN : OrigPHINode) {
566     if (CompletelyUnroll) {
567       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
568       Header->getInstList().erase(PN);
569     }
570     else if (Count > 1) {
571       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
572       // If this value was defined in the loop, take the value defined by the
573       // last iteration of the loop.
574       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
575         if (L->contains(InValI))
576           InVal = LastValueMap[InVal];
577       }
578       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
579       PN->addIncoming(InVal, Latches.back());
580     }
581   }
582 
583   // Now that all the basic blocks for the unrolled iterations are in place,
584   // set up the branches to connect them.
585   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
586     // The original branch was replicated in each unrolled iteration.
587     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
588 
589     // The branch destination.
590     unsigned j = (i + 1) % e;
591     BasicBlock *Dest = Headers[j];
592     bool NeedConditional = true;
593 
594     if (RuntimeTripCount && j != 0) {
595       NeedConditional = false;
596     }
597 
598     // For a complete unroll, make the last iteration end with a branch
599     // to the exit block.
600     if (CompletelyUnroll) {
601       if (j == 0)
602         Dest = LoopExit;
603       // If using trip count upper bound to completely unroll, we need to keep
604       // the conditional branch except the last one because the loop may exit
605       // after any iteration.
606       assert(NeedConditional &&
607              "NeedCondition cannot be modified by both complete "
608              "unrolling and runtime unrolling");
609       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
610     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
611       // If we know the trip count or a multiple of it, we can safely use an
612       // unconditional branch for some iterations.
613       NeedConditional = false;
614     }
615 
616     if (NeedConditional) {
617       // Update the conditional branch's successor for the following
618       // iteration.
619       Term->setSuccessor(!ContinueOnTrue, Dest);
620     } else {
621       // Remove phi operands at this loop exit
622       if (Dest != LoopExit) {
623         BasicBlock *BB = Latches[i];
624         for (BasicBlock *Succ: successors(BB)) {
625           if (Succ == Headers[i])
626             continue;
627           for (BasicBlock::iterator BBI = Succ->begin();
628                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
629             Phi->removeIncomingValue(BB, false);
630           }
631         }
632       }
633       // Replace the conditional branch with an unconditional one.
634       BranchInst::Create(Dest, Term);
635       Term->eraseFromParent();
636     }
637   }
638 
639   // Update dominators of blocks we might reach through exits.
640   // Immediate dominator of such block might change, because we add more
641   // routes which can lead to the exit: we can now reach it from the copied
642   // iterations too.
643   if (DT && Count > 1) {
644     for (auto *BB : OriginalLoopBlocks) {
645       auto *BBDomNode = DT->getNode(BB);
646       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
647       for (auto *ChildDomNode : BBDomNode->getChildren()) {
648         auto *ChildBB = ChildDomNode->getBlock();
649         if (!L->contains(ChildBB))
650           ChildrenToUpdate.push_back(ChildBB);
651       }
652       BasicBlock *NewIDom;
653       if (BB == LatchBlock) {
654         // The latch is special because we emit unconditional branches in
655         // some cases where the original loop contained a conditional branch.
656         // Since the latch is always at the bottom of the loop, if the latch
657         // dominated an exit before unrolling, the new dominator of that exit
658         // must also be a latch.  Specifically, the dominator is the first
659         // latch which ends in a conditional branch, or the last latch if
660         // there is no such latch.
661         NewIDom = Latches.back();
662         for (BasicBlock *IterLatch : Latches) {
663           TerminatorInst *Term = IterLatch->getTerminator();
664           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
665             NewIDom = IterLatch;
666             break;
667           }
668         }
669       } else {
670         // The new idom of the block will be the nearest common dominator
671         // of all copies of the previous idom. This is equivalent to the
672         // nearest common dominator of the previous idom and the first latch,
673         // which dominates all copies of the previous idom.
674         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
675       }
676       for (auto *ChildBB : ChildrenToUpdate)
677         DT->changeImmediateDominator(ChildBB, NewIDom);
678     }
679   }
680 
681   if (DT && UnrollVerifyDomtree)
682     DT->verifyDomTree();
683 
684   // Merge adjacent basic blocks, if possible.
685   SmallPtrSet<Loop *, 4> ForgottenLoops;
686   for (BasicBlock *Latch : Latches) {
687     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
688     if (Term->isUnconditional()) {
689       BasicBlock *Dest = Term->getSuccessor(0);
690       if (BasicBlock *Fold =
691               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
692         // Dest has been folded into Fold. Update our worklists accordingly.
693         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
694         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
695                                              UnrolledLoopBlocks.end(), Dest),
696                                  UnrolledLoopBlocks.end());
697       }
698     }
699   }
700 
701   // Simplify any new induction variables in the partially unrolled loop.
702   if (SE && !CompletelyUnroll && Count > 1) {
703     SmallVector<WeakVH, 16> DeadInsts;
704     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
705 
706     // Aggressively clean up dead instructions that simplifyLoopIVs already
707     // identified. Any remaining should be cleaned up below.
708     while (!DeadInsts.empty())
709       if (Instruction *Inst =
710               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
711         RecursivelyDeleteTriviallyDeadInstructions(Inst);
712   }
713 
714   // At this point, the code is well formed.  We now do a quick sweep over the
715   // inserted code, doing constant propagation and dead code elimination as we
716   // go.
717   const DataLayout &DL = Header->getModule()->getDataLayout();
718   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
719   for (BasicBlock *BB : NewLoopBlocks) {
720     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
721       Instruction *Inst = &*I++;
722 
723       if (Value *V = SimplifyInstruction(Inst, DL))
724         if (LI->replacementPreservesLCSSAForm(Inst, V))
725           Inst->replaceAllUsesWith(V);
726       if (isInstructionTriviallyDead(Inst))
727         BB->getInstList().erase(Inst);
728     }
729   }
730 
731   // TODO: after peeling or unrolling, previously loop variant conditions are
732   // likely to fold to constants, eagerly propagating those here will require
733   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
734   // appropriate.
735 
736   NumCompletelyUnrolled += CompletelyUnroll;
737   ++NumUnrolled;
738 
739   Loop *OuterL = L->getParentLoop();
740   // Update LoopInfo if the loop is completely removed.
741   if (CompletelyUnroll)
742     LI->markAsRemoved(L);
743 
744   // After complete unrolling most of the blocks should be contained in OuterL.
745   // However, some of them might happen to be out of OuterL (e.g. if they
746   // precede a loop exit). In this case we might need to insert PHI nodes in
747   // order to preserve LCSSA form.
748   // We don't need to check this if we already know that we need to fix LCSSA
749   // form.
750   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
751   // it should be possible to fix it in-place.
752   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
753     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
754 
755   // If we have a pass and a DominatorTree we should re-simplify impacted loops
756   // to ensure subsequent analyses can rely on this form. We want to simplify
757   // at least one layer outside of the loop that was unrolled so that any
758   // changes to the parent loop exposed by the unrolling are considered.
759   if (DT) {
760     if (OuterL) {
761       // OuterL includes all loops for which we can break loop-simplify, so
762       // it's sufficient to simplify only it (it'll recursively simplify inner
763       // loops too).
764       if (NeedToFixLCSSA) {
765         // LCSSA must be performed on the outermost affected loop. The unrolled
766         // loop's last loop latch is guaranteed to be in the outermost loop
767         // after LoopInfo's been updated by markAsRemoved.
768         Loop *LatchLoop = LI->getLoopFor(Latches.back());
769         Loop *FixLCSSALoop = OuterL;
770         if (!FixLCSSALoop->contains(LatchLoop))
771           while (FixLCSSALoop->getParentLoop() != LatchLoop)
772             FixLCSSALoop = FixLCSSALoop->getParentLoop();
773 
774         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
775       } else if (PreserveLCSSA) {
776         assert(OuterL->isLCSSAForm(*DT) &&
777                "Loops should be in LCSSA form after loop-unroll.");
778       }
779 
780       // TODO: That potentially might be compile-time expensive. We should try
781       // to fix the loop-simplified form incrementally.
782       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
783     } else {
784       // Simplify loops for which we might've broken loop-simplify form.
785       for (Loop *SubLoop : LoopsToSimplify)
786         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
787     }
788   }
789 
790   return true;
791 }
792 
793 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
794 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
795 /// such metadata node exists, then nullptr is returned.
796 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
797   // First operand should refer to the loop id itself.
798   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
799   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
800 
801   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
802     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
803     if (!MD)
804       continue;
805 
806     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
807     if (!S)
808       continue;
809 
810     if (Name.equals(S->getString()))
811       return MD;
812   }
813   return nullptr;
814 }
815