1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/LoopUtils.h" 35 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "loop-unroll" 39 40 // TODO: Should these be here or in LoopUnroll? 41 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 42 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 43 44 /// RemapInstruction - Convert the instruction operands from referencing the 45 /// current values into those specified by VMap. 46 static inline void RemapInstruction(Instruction *I, 47 ValueToValueMapTy &VMap) { 48 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 49 Value *Op = I->getOperand(op); 50 ValueToValueMapTy::iterator It = VMap.find(Op); 51 if (It != VMap.end()) 52 I->setOperand(op, It->second); 53 } 54 55 if (PHINode *PN = dyn_cast<PHINode>(I)) { 56 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 57 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 58 if (It != VMap.end()) 59 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 60 } 61 } 62 } 63 64 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 65 /// only has one predecessor, and that predecessor only has one successor. 66 /// The LoopInfo Analysis that is passed will be kept consistent. 67 /// Returns the new combined block. 68 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, 69 LPPassManager *LPM) { 70 // Merge basic blocks into their predecessor if there is only one distinct 71 // pred, and if there is only one distinct successor of the predecessor, and 72 // if there are no PHI nodes. 73 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 74 if (!OnlyPred) return nullptr; 75 76 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 77 return nullptr; 78 79 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 80 81 // Resolve any PHI nodes at the start of the block. They are all 82 // guaranteed to have exactly one entry if they exist, unless there are 83 // multiple duplicate (but guaranteed to be equal) entries for the 84 // incoming edges. This occurs when there are multiple edges from 85 // OnlyPred to OnlySucc. 86 FoldSingleEntryPHINodes(BB); 87 88 // Delete the unconditional branch from the predecessor... 89 OnlyPred->getInstList().pop_back(); 90 91 // Make all PHI nodes that referred to BB now refer to Pred as their 92 // source... 93 BB->replaceAllUsesWith(OnlyPred); 94 95 // Move all definitions in the successor to the predecessor... 96 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 97 98 // OldName will be valid until erased. 99 StringRef OldName = BB->getName(); 100 101 // Erase basic block from the function... 102 103 // ScalarEvolution holds references to loop exit blocks. 104 if (LPM) { 105 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { 106 if (Loop *L = LI->getLoopFor(BB)) 107 SE->forgetLoop(L); 108 } 109 } 110 LI->removeBlock(BB); 111 112 // Inherit predecessor's name if it exists... 113 if (!OldName.empty() && !OnlyPred->hasName()) 114 OnlyPred->setName(OldName); 115 116 BB->eraseFromParent(); 117 118 return OnlyPred; 119 } 120 121 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 122 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 123 /// can only fail when the loop's latch block is not terminated by a conditional 124 /// branch instruction. However, if the trip count (and multiple) are not known, 125 /// loop unrolling will mostly produce more code that is no faster. 126 /// 127 /// TripCount is generally defined as the number of times the loop header 128 /// executes. UnrollLoop relaxes the definition to permit early exits: here 129 /// TripCount is the iteration on which control exits LatchBlock if no early 130 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 131 /// terminates LatchBlock in order to remove unnecesssary instances of the 132 /// test. In other words, control may exit the loop prior to TripCount 133 /// iterations via an early branch, but control may not exit the loop from the 134 /// LatchBlock's terminator prior to TripCount iterations. 135 /// 136 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 137 /// execute without exiting the loop. 138 /// 139 /// The LoopInfo Analysis that is passed will be kept consistent. 140 /// 141 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 142 /// removed from the LoopPassManager as well. LPM can also be NULL. 143 /// 144 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are 145 /// available from the Pass it must also preserve those analyses. 146 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 147 bool AllowRuntime, unsigned TripMultiple, 148 LoopInfo *LI, Pass *PP, LPPassManager *LPM) { 149 BasicBlock *Preheader = L->getLoopPreheader(); 150 if (!Preheader) { 151 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 152 return false; 153 } 154 155 BasicBlock *LatchBlock = L->getLoopLatch(); 156 if (!LatchBlock) { 157 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 158 return false; 159 } 160 161 // Loops with indirectbr cannot be cloned. 162 if (!L->isSafeToClone()) { 163 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 164 return false; 165 } 166 167 BasicBlock *Header = L->getHeader(); 168 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 169 170 if (!BI || BI->isUnconditional()) { 171 // The loop-rotate pass can be helpful to avoid this in many cases. 172 DEBUG(dbgs() << 173 " Can't unroll; loop not terminated by a conditional branch.\n"); 174 return false; 175 } 176 177 if (Header->hasAddressTaken()) { 178 // The loop-rotate pass can be helpful to avoid this in many cases. 179 DEBUG(dbgs() << 180 " Won't unroll loop: address of header block is taken.\n"); 181 return false; 182 } 183 184 if (TripCount != 0) 185 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 186 if (TripMultiple != 1) 187 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 188 189 // Effectively "DCE" unrolled iterations that are beyond the tripcount 190 // and will never be executed. 191 if (TripCount != 0 && Count > TripCount) 192 Count = TripCount; 193 194 // Don't enter the unroll code if there is nothing to do. This way we don't 195 // need to support "partial unrolling by 1". 196 if (TripCount == 0 && Count < 2) 197 return false; 198 199 assert(Count > 0); 200 assert(TripMultiple > 0); 201 assert(TripCount == 0 || TripCount % TripMultiple == 0); 202 203 // Are we eliminating the loop control altogether? 204 bool CompletelyUnroll = Count == TripCount; 205 206 // We assume a run-time trip count if the compiler cannot 207 // figure out the loop trip count and the unroll-runtime 208 // flag is specified. 209 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 210 211 if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) 212 return false; 213 214 // Notify ScalarEvolution that the loop will be substantially changed, 215 // if not outright eliminated. 216 if (PP) { 217 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 218 if (SE) 219 SE->forgetLoop(L); 220 } 221 222 // If we know the trip count, we know the multiple... 223 unsigned BreakoutTrip = 0; 224 if (TripCount != 0) { 225 BreakoutTrip = TripCount % Count; 226 TripMultiple = 0; 227 } else { 228 // Figure out what multiple to use. 229 BreakoutTrip = TripMultiple = 230 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 231 } 232 233 // Report the unrolling decision. 234 DebugLoc LoopLoc = L->getStartLoc(); 235 Function *F = Header->getParent(); 236 LLVMContext &Ctx = F->getContext(); 237 238 if (CompletelyUnroll) { 239 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 240 << " with trip count " << TripCount << "!\n"); 241 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 242 Twine("completely unrolled loop with ") + 243 Twine(TripCount) + " iterations"); 244 } else { 245 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 246 << " by " << Count); 247 Twine DiagMsg("unrolled loop by a factor of " + Twine(Count)); 248 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 249 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 250 DiagMsg.concat(" with a breakout at trip " + Twine(BreakoutTrip)); 251 } else if (TripMultiple != 1) { 252 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 253 DiagMsg.concat(" with " + Twine(TripMultiple) + " trips per branch"); 254 } else if (RuntimeTripCount) { 255 DEBUG(dbgs() << " with run-time trip count"); 256 DiagMsg.concat(" with run-time trip count"); 257 } 258 DEBUG(dbgs() << "!\n"); 259 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, DiagMsg); 260 } 261 262 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 263 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 264 265 // For the first iteration of the loop, we should use the precloned values for 266 // PHI nodes. Insert associations now. 267 ValueToValueMapTy LastValueMap; 268 std::vector<PHINode*> OrigPHINode; 269 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 270 OrigPHINode.push_back(cast<PHINode>(I)); 271 } 272 273 std::vector<BasicBlock*> Headers; 274 std::vector<BasicBlock*> Latches; 275 Headers.push_back(Header); 276 Latches.push_back(LatchBlock); 277 278 // The current on-the-fly SSA update requires blocks to be processed in 279 // reverse postorder so that LastValueMap contains the correct value at each 280 // exit. 281 LoopBlocksDFS DFS(L); 282 DFS.perform(LI); 283 284 // Stash the DFS iterators before adding blocks to the loop. 285 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 286 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 287 288 for (unsigned It = 1; It != Count; ++It) { 289 std::vector<BasicBlock*> NewBlocks; 290 291 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 292 ValueToValueMapTy VMap; 293 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 294 Header->getParent()->getBasicBlockList().push_back(New); 295 296 // Loop over all of the PHI nodes in the block, changing them to use the 297 // incoming values from the previous block. 298 if (*BB == Header) 299 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 300 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 301 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 302 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 303 if (It > 1 && L->contains(InValI)) 304 InVal = LastValueMap[InValI]; 305 VMap[OrigPHINode[i]] = InVal; 306 New->getInstList().erase(NewPHI); 307 } 308 309 // Update our running map of newest clones 310 LastValueMap[*BB] = New; 311 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 312 VI != VE; ++VI) 313 LastValueMap[VI->first] = VI->second; 314 315 L->addBasicBlockToLoop(New, LI->getBase()); 316 317 // Add phi entries for newly created values to all exit blocks. 318 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 319 SI != SE; ++SI) { 320 if (L->contains(*SI)) 321 continue; 322 for (BasicBlock::iterator BBI = (*SI)->begin(); 323 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 324 Value *Incoming = phi->getIncomingValueForBlock(*BB); 325 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 326 if (It != LastValueMap.end()) 327 Incoming = It->second; 328 phi->addIncoming(Incoming, New); 329 } 330 } 331 // Keep track of new headers and latches as we create them, so that 332 // we can insert the proper branches later. 333 if (*BB == Header) 334 Headers.push_back(New); 335 if (*BB == LatchBlock) 336 Latches.push_back(New); 337 338 NewBlocks.push_back(New); 339 } 340 341 // Remap all instructions in the most recent iteration 342 for (unsigned i = 0; i < NewBlocks.size(); ++i) 343 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 344 E = NewBlocks[i]->end(); I != E; ++I) 345 ::RemapInstruction(I, LastValueMap); 346 } 347 348 // Loop over the PHI nodes in the original block, setting incoming values. 349 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 350 PHINode *PN = OrigPHINode[i]; 351 if (CompletelyUnroll) { 352 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 353 Header->getInstList().erase(PN); 354 } 355 else if (Count > 1) { 356 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 357 // If this value was defined in the loop, take the value defined by the 358 // last iteration of the loop. 359 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 360 if (L->contains(InValI)) 361 InVal = LastValueMap[InVal]; 362 } 363 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 364 PN->addIncoming(InVal, Latches.back()); 365 } 366 } 367 368 // Now that all the basic blocks for the unrolled iterations are in place, 369 // set up the branches to connect them. 370 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 371 // The original branch was replicated in each unrolled iteration. 372 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 373 374 // The branch destination. 375 unsigned j = (i + 1) % e; 376 BasicBlock *Dest = Headers[j]; 377 bool NeedConditional = true; 378 379 if (RuntimeTripCount && j != 0) { 380 NeedConditional = false; 381 } 382 383 // For a complete unroll, make the last iteration end with a branch 384 // to the exit block. 385 if (CompletelyUnroll && j == 0) { 386 Dest = LoopExit; 387 NeedConditional = false; 388 } 389 390 // If we know the trip count or a multiple of it, we can safely use an 391 // unconditional branch for some iterations. 392 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 393 NeedConditional = false; 394 } 395 396 if (NeedConditional) { 397 // Update the conditional branch's successor for the following 398 // iteration. 399 Term->setSuccessor(!ContinueOnTrue, Dest); 400 } else { 401 // Remove phi operands at this loop exit 402 if (Dest != LoopExit) { 403 BasicBlock *BB = Latches[i]; 404 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 405 SI != SE; ++SI) { 406 if (*SI == Headers[i]) 407 continue; 408 for (BasicBlock::iterator BBI = (*SI)->begin(); 409 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 410 Phi->removeIncomingValue(BB, false); 411 } 412 } 413 } 414 // Replace the conditional branch with an unconditional one. 415 BranchInst::Create(Dest, Term); 416 Term->eraseFromParent(); 417 } 418 } 419 420 // Merge adjacent basic blocks, if possible. 421 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 422 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 423 if (Term->isUnconditional()) { 424 BasicBlock *Dest = Term->getSuccessor(0); 425 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM)) 426 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 427 } 428 } 429 430 DominatorTree *DT = nullptr; 431 if (PP) { 432 // FIXME: Reconstruct dom info, because it is not preserved properly. 433 // Incrementally updating domtree after loop unrolling would be easy. 434 if (DominatorTreeWrapperPass *DTWP = 435 PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 436 DT = &DTWP->getDomTree(); 437 DT->recalculate(*L->getHeader()->getParent()); 438 } 439 440 // Simplify any new induction variables in the partially unrolled loop. 441 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 442 if (SE && !CompletelyUnroll) { 443 SmallVector<WeakVH, 16> DeadInsts; 444 simplifyLoopIVs(L, SE, LPM, DeadInsts); 445 446 // Aggressively clean up dead instructions that simplifyLoopIVs already 447 // identified. Any remaining should be cleaned up below. 448 while (!DeadInsts.empty()) 449 if (Instruction *Inst = 450 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 451 RecursivelyDeleteTriviallyDeadInstructions(Inst); 452 } 453 } 454 // At this point, the code is well formed. We now do a quick sweep over the 455 // inserted code, doing constant propagation and dead code elimination as we 456 // go. 457 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 458 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 459 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 460 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 461 Instruction *Inst = I++; 462 463 if (isInstructionTriviallyDead(Inst)) 464 (*BB)->getInstList().erase(Inst); 465 else if (Value *V = SimplifyInstruction(Inst)) 466 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 467 Inst->replaceAllUsesWith(V); 468 (*BB)->getInstList().erase(Inst); 469 } 470 } 471 472 NumCompletelyUnrolled += CompletelyUnroll; 473 ++NumUnrolled; 474 475 Loop *OuterL = L->getParentLoop(); 476 // Remove the loop from the LoopPassManager if it's completely removed. 477 if (CompletelyUnroll && LPM != nullptr) 478 LPM->deleteLoopFromQueue(L); 479 480 // If we have a pass and a DominatorTree we should re-simplify impacted loops 481 // to ensure subsequent analyses can rely on this form. We want to simplify 482 // at least one layer outside of the loop that was unrolled so that any 483 // changes to the parent loop exposed by the unrolling are considered. 484 if (PP && DT) { 485 if (!OuterL && !CompletelyUnroll) 486 OuterL = L; 487 if (OuterL) { 488 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 489 simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE); 490 491 // LCSSA must be performed on the outermost affected loop. The unrolled 492 // loop's last loop latch is guaranteed to be in the outermost loop after 493 // deleteLoopFromQueue updates LoopInfo. 494 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 495 if (!OuterL->contains(LatchLoop)) 496 while (OuterL->getParentLoop() != LatchLoop) 497 OuterL = OuterL->getParentLoop(); 498 499 formLCSSARecursively(*OuterL, *DT, SE); 500 } 501 } 502 503 return true; 504 } 505