1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 65 #include "llvm/Transforms/Utils/UnrollLoop.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <assert.h> 69 #include <type_traits> 70 #include <vector> 71 72 namespace llvm { 73 class DataLayout; 74 class Value; 75 } // namespace llvm 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-unroll" 80 81 // TODO: Should these be here or in LoopUnroll? 82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 84 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a " 85 "conditional latch (completely or otherwise)"); 86 87 static cl::opt<bool> 88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 89 cl::desc("Allow runtime unrolled loops to be unrolled " 90 "with epilog instead of prolog.")); 91 92 static cl::opt<bool> 93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 94 cl::desc("Verify domtree after unrolling"), 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true) 97 #else 98 cl::init(false) 99 #endif 100 ); 101 102 /// Check if unrolling created a situation where we need to insert phi nodes to 103 /// preserve LCSSA form. 104 /// \param Blocks is a vector of basic blocks representing unrolled loop. 105 /// \param L is the outer loop. 106 /// It's possible that some of the blocks are in L, and some are not. In this 107 /// case, if there is a use is outside L, and definition is inside L, we need to 108 /// insert a phi-node, otherwise LCSSA will be broken. 109 /// The function is just a helper function for llvm::UnrollLoop that returns 110 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 111 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 112 LoopInfo *LI) { 113 for (BasicBlock *BB : Blocks) { 114 if (LI->getLoopFor(BB) == L) 115 continue; 116 for (Instruction &I : *BB) { 117 for (Use &U : I.operands()) { 118 if (auto Def = dyn_cast<Instruction>(U)) { 119 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 120 if (!DefLoop) 121 continue; 122 if (DefLoop->contains(L)) 123 return true; 124 } 125 } 126 } 127 } 128 return false; 129 } 130 131 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 132 /// and adds a mapping from the original loop to the new loop to NewLoops. 133 /// Returns nullptr if no new loop was created and a pointer to the 134 /// original loop OriginalBB was part of otherwise. 135 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 136 BasicBlock *ClonedBB, LoopInfo *LI, 137 NewLoopsMap &NewLoops) { 138 // Figure out which loop New is in. 139 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 140 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 141 142 Loop *&NewLoop = NewLoops[OldLoop]; 143 if (!NewLoop) { 144 // Found a new sub-loop. 145 assert(OriginalBB == OldLoop->getHeader() && 146 "Header should be first in RPO"); 147 148 NewLoop = LI->AllocateLoop(); 149 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 150 151 if (NewLoopParent) 152 NewLoopParent->addChildLoop(NewLoop); 153 else 154 LI->addTopLevelLoop(NewLoop); 155 156 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 157 return OldLoop; 158 } else { 159 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 160 return nullptr; 161 } 162 } 163 164 /// The function chooses which type of unroll (epilog or prolog) is more 165 /// profitabale. 166 /// Epilog unroll is more profitable when there is PHI that starts from 167 /// constant. In this case epilog will leave PHI start from constant, 168 /// but prolog will convert it to non-constant. 169 /// 170 /// loop: 171 /// PN = PHI [I, Latch], [CI, PreHeader] 172 /// I = foo(PN) 173 /// ... 174 /// 175 /// Epilog unroll case. 176 /// loop: 177 /// PN = PHI [I2, Latch], [CI, PreHeader] 178 /// I1 = foo(PN) 179 /// I2 = foo(I1) 180 /// ... 181 /// Prolog unroll case. 182 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 183 /// loop: 184 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 185 /// I1 = foo(PN) 186 /// I2 = foo(I1) 187 /// ... 188 /// 189 static bool isEpilogProfitable(Loop *L) { 190 BasicBlock *PreHeader = L->getLoopPreheader(); 191 BasicBlock *Header = L->getHeader(); 192 assert(PreHeader && Header); 193 for (const PHINode &PN : Header->phis()) { 194 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 195 return true; 196 } 197 return false; 198 } 199 200 /// Perform some cleanup and simplifications on loops after unrolling. It is 201 /// useful to simplify the IV's in the new loop, as well as do a quick 202 /// simplify/dce pass of the instructions. 203 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 204 ScalarEvolution *SE, DominatorTree *DT, 205 AssumptionCache *AC, 206 const TargetTransformInfo *TTI) { 207 // Simplify any new induction variables in the partially unrolled loop. 208 if (SE && SimplifyIVs) { 209 SmallVector<WeakTrackingVH, 16> DeadInsts; 210 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 211 212 // Aggressively clean up dead instructions that simplifyLoopIVs already 213 // identified. Any remaining should be cleaned up below. 214 while (!DeadInsts.empty()) { 215 Value *V = DeadInsts.pop_back_val(); 216 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 217 RecursivelyDeleteTriviallyDeadInstructions(Inst); 218 } 219 } 220 221 // At this point, the code is well formed. We now do a quick sweep over the 222 // inserted code, doing constant propagation and dead code elimination as we 223 // go. 224 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 225 for (BasicBlock *BB : L->getBlocks()) { 226 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 227 Instruction *Inst = &*I++; 228 229 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 230 if (LI->replacementPreservesLCSSAForm(Inst, V)) 231 Inst->replaceAllUsesWith(V); 232 if (isInstructionTriviallyDead(Inst)) 233 BB->getInstList().erase(Inst); 234 } 235 } 236 237 // TODO: after peeling or unrolling, previously loop variant conditions are 238 // likely to fold to constants, eagerly propagating those here will require 239 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 240 // appropriate. 241 } 242 243 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 244 /// can only fail when the loop's latch block is not terminated by a conditional 245 /// branch instruction. However, if the trip count (and multiple) are not known, 246 /// loop unrolling will mostly produce more code that is no faster. 247 /// 248 /// TripCount is the upper bound of the iteration on which control exits 249 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 250 /// via an early branch in other loop block or via LatchBlock terminator. This 251 /// is relaxed from the general definition of trip count which is the number of 252 /// times the loop header executes. Note that UnrollLoop assumes that the loop 253 /// counter test is in LatchBlock in order to remove unnecesssary instances of 254 /// the test. If control can exit the loop from the LatchBlock's terminator 255 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 256 /// 257 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 258 /// needs to be preserved. It is needed when we use trip count upper bound to 259 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 260 /// conditional branch needs to be preserved. 261 /// 262 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 263 /// execute without exiting the loop. 264 /// 265 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 266 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 267 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 268 /// iterations before branching into the unrolled loop. UnrollLoop will not 269 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 270 /// AllowExpensiveTripCount is false. 271 /// 272 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 273 /// number of iterations we want to peel off. 274 /// 275 /// The LoopInfo Analysis that is passed will be kept consistent. 276 /// 277 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 278 /// DominatorTree if they are non-null. 279 /// 280 /// If RemainderLoop is non-null, it will receive the remainder loop (if 281 /// required and not fully unrolled). 282 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 283 ScalarEvolution *SE, DominatorTree *DT, 284 AssumptionCache *AC, 285 const TargetTransformInfo *TTI, 286 OptimizationRemarkEmitter *ORE, 287 bool PreserveLCSSA, Loop **RemainderLoop) { 288 289 BasicBlock *Preheader = L->getLoopPreheader(); 290 if (!Preheader) { 291 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 292 return LoopUnrollResult::Unmodified; 293 } 294 295 BasicBlock *LatchBlock = L->getLoopLatch(); 296 if (!LatchBlock) { 297 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 298 return LoopUnrollResult::Unmodified; 299 } 300 301 // Loops with indirectbr cannot be cloned. 302 if (!L->isSafeToClone()) { 303 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 304 return LoopUnrollResult::Unmodified; 305 } 306 307 // The current loop unroll pass can unroll loops with a single latch or header 308 // that's a conditional branch exiting the loop. 309 // FIXME: The implementation can be extended to work with more complicated 310 // cases, e.g. loops with multiple latches. 311 BasicBlock *Header = L->getHeader(); 312 BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator()); 313 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 314 315 // FIXME: Support loops without conditional latch and multiple exiting blocks. 316 if (!BI || 317 (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() || 318 L->getExitingBlock() != Header))) { 319 LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional " 320 "branch in the latch or header.\n"); 321 return LoopUnrollResult::Unmodified; 322 } 323 324 auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) { 325 return BI->isConditional() && BI->getSuccessor(S1) == Header && 326 !L->contains(BI->getSuccessor(S2)); 327 }; 328 329 // If we have a conditional latch, it must exit the loop. 330 if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) && 331 !CheckLatchSuccessors(1, 0)) { 332 LLVM_DEBUG( 333 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 334 return LoopUnrollResult::Unmodified; 335 } 336 337 auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) { 338 return HeaderBI && HeaderBI->isConditional() && 339 L->contains(HeaderBI->getSuccessor(S1)) && 340 !L->contains(HeaderBI->getSuccessor(S2)); 341 }; 342 343 // If we do not have a conditional latch, the header must exit the loop. 344 if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() && 345 !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) { 346 LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop"); 347 return LoopUnrollResult::Unmodified; 348 } 349 350 if (Header->hasAddressTaken()) { 351 // The loop-rotate pass can be helpful to avoid this in many cases. 352 LLVM_DEBUG( 353 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 354 return LoopUnrollResult::Unmodified; 355 } 356 357 if (ULO.TripCount != 0) 358 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 359 if (ULO.TripMultiple != 1) 360 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 361 362 // Effectively "DCE" unrolled iterations that are beyond the tripcount 363 // and will never be executed. 364 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 365 ULO.Count = ULO.TripCount; 366 367 // Don't enter the unroll code if there is nothing to do. 368 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 369 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 370 return LoopUnrollResult::Unmodified; 371 } 372 373 assert(ULO.Count > 0); 374 assert(ULO.TripMultiple > 0); 375 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 376 377 // Are we eliminating the loop control altogether? 378 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 379 SmallVector<BasicBlock *, 4> ExitBlocks; 380 L->getExitBlocks(ExitBlocks); 381 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 382 383 // Go through all exits of L and see if there are any phi-nodes there. We just 384 // conservatively assume that they're inserted to preserve LCSSA form, which 385 // means that complete unrolling might break this form. We need to either fix 386 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 387 // now we just recompute LCSSA for the outer loop, but it should be possible 388 // to fix it in-place. 389 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 390 any_of(ExitBlocks, [](const BasicBlock *BB) { 391 return isa<PHINode>(BB->begin()); 392 }); 393 394 // We assume a run-time trip count if the compiler cannot 395 // figure out the loop trip count and the unroll-runtime 396 // flag is specified. 397 bool RuntimeTripCount = 398 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 399 400 assert((!RuntimeTripCount || !ULO.PeelCount) && 401 "Did not expect runtime trip-count unrolling " 402 "and peeling for the same loop"); 403 404 bool Peeled = false; 405 if (ULO.PeelCount) { 406 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 407 408 // Successful peeling may result in a change in the loop preheader/trip 409 // counts. If we later unroll the loop, we want these to be updated. 410 if (Peeled) { 411 // According to our guards and profitability checks the only 412 // meaningful exit should be latch block. Other exits go to deopt, 413 // so we do not worry about them. 414 BasicBlock *ExitingBlock = L->getLoopLatch(); 415 assert(ExitingBlock && "Loop without exiting block?"); 416 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 417 Preheader = L->getLoopPreheader(); 418 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 419 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 420 } 421 } 422 423 // Loops containing convergent instructions must have a count that divides 424 // their TripMultiple. 425 LLVM_DEBUG( 426 { 427 bool HasConvergent = false; 428 for (auto &BB : L->blocks()) 429 for (auto &I : *BB) 430 if (auto *CB = dyn_cast<CallBase>(&I)) 431 HasConvergent |= CB->isConvergent(); 432 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 433 "Unroll count must divide trip multiple if loop contains a " 434 "convergent operation."); 435 }); 436 437 bool EpilogProfitability = 438 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 439 : isEpilogProfitable(L); 440 441 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 442 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 443 EpilogProfitability, ULO.UnrollRemainder, 444 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 445 PreserveLCSSA, RemainderLoop)) { 446 if (ULO.Force) 447 RuntimeTripCount = false; 448 else { 449 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 450 "generated when assuming runtime trip count\n"); 451 return LoopUnrollResult::Unmodified; 452 } 453 } 454 455 // If we know the trip count, we know the multiple... 456 unsigned BreakoutTrip = 0; 457 if (ULO.TripCount != 0) { 458 BreakoutTrip = ULO.TripCount % ULO.Count; 459 ULO.TripMultiple = 0; 460 } else { 461 // Figure out what multiple to use. 462 BreakoutTrip = ULO.TripMultiple = 463 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 464 } 465 466 using namespace ore; 467 // Report the unrolling decision. 468 if (CompletelyUnroll) { 469 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 470 << " with trip count " << ULO.TripCount << "!\n"); 471 if (ORE) 472 ORE->emit([&]() { 473 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 474 L->getHeader()) 475 << "completely unrolled loop with " 476 << NV("UnrollCount", ULO.TripCount) << " iterations"; 477 }); 478 } else if (ULO.PeelCount) { 479 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 480 << " with iteration count " << ULO.PeelCount << "!\n"); 481 if (ORE) 482 ORE->emit([&]() { 483 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 484 L->getHeader()) 485 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 486 << " iterations"; 487 }); 488 } else { 489 auto DiagBuilder = [&]() { 490 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 491 L->getHeader()); 492 return Diag << "unrolled loop by a factor of " 493 << NV("UnrollCount", ULO.Count); 494 }; 495 496 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 497 << ULO.Count); 498 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 499 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 500 if (ORE) 501 ORE->emit([&]() { 502 return DiagBuilder() << " with a breakout at trip " 503 << NV("BreakoutTrip", BreakoutTrip); 504 }); 505 } else if (ULO.TripMultiple != 1) { 506 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 507 if (ORE) 508 ORE->emit([&]() { 509 return DiagBuilder() 510 << " with " << NV("TripMultiple", ULO.TripMultiple) 511 << " trips per branch"; 512 }); 513 } else if (RuntimeTripCount) { 514 LLVM_DEBUG(dbgs() << " with run-time trip count"); 515 if (ORE) 516 ORE->emit( 517 [&]() { return DiagBuilder() << " with run-time trip count"; }); 518 } 519 LLVM_DEBUG(dbgs() << "!\n"); 520 } 521 522 // We are going to make changes to this loop. SCEV may be keeping cached info 523 // about it, in particular about backedge taken count. The changes we make 524 // are guaranteed to invalidate this information for our loop. It is tempting 525 // to only invalidate the loop being unrolled, but it is incorrect as long as 526 // all exiting branches from all inner loops have impact on the outer loops, 527 // and if something changes inside them then any of outer loops may also 528 // change. When we forget outermost loop, we also forget all contained loops 529 // and this is what we need here. 530 if (SE) { 531 if (ULO.ForgetAllSCEV) 532 SE->forgetAllLoops(); 533 else 534 SE->forgetTopmostLoop(L); 535 } 536 537 bool ContinueOnTrue; 538 bool LatchIsExiting = BI->isConditional(); 539 BasicBlock *LoopExit = nullptr; 540 if (LatchIsExiting) { 541 ContinueOnTrue = L->contains(BI->getSuccessor(0)); 542 LoopExit = BI->getSuccessor(ContinueOnTrue); 543 } else { 544 NumUnrolledWithHeader++; 545 ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0)); 546 LoopExit = HeaderBI->getSuccessor(ContinueOnTrue); 547 } 548 549 // For the first iteration of the loop, we should use the precloned values for 550 // PHI nodes. Insert associations now. 551 ValueToValueMapTy LastValueMap; 552 std::vector<PHINode*> OrigPHINode; 553 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 554 OrigPHINode.push_back(cast<PHINode>(I)); 555 } 556 557 std::vector<BasicBlock *> Headers; 558 std::vector<BasicBlock *> HeaderSucc; 559 std::vector<BasicBlock *> Latches; 560 Headers.push_back(Header); 561 Latches.push_back(LatchBlock); 562 563 if (!LatchIsExiting) { 564 auto *Term = cast<BranchInst>(Header->getTerminator()); 565 if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) { 566 assert(L->contains(Term->getSuccessor(0))); 567 HeaderSucc.push_back(Term->getSuccessor(0)); 568 } else { 569 assert(L->contains(Term->getSuccessor(1))); 570 HeaderSucc.push_back(Term->getSuccessor(1)); 571 } 572 } 573 574 // The current on-the-fly SSA update requires blocks to be processed in 575 // reverse postorder so that LastValueMap contains the correct value at each 576 // exit. 577 LoopBlocksDFS DFS(L); 578 DFS.perform(LI); 579 580 // Stash the DFS iterators before adding blocks to the loop. 581 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 582 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 583 584 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 585 586 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 587 // might break loop-simplified form for these loops (as they, e.g., would 588 // share the same exit blocks). We'll keep track of loops for which we can 589 // break this so that later we can re-simplify them. 590 SmallSetVector<Loop *, 4> LoopsToSimplify; 591 for (Loop *SubLoop : *L) 592 LoopsToSimplify.insert(SubLoop); 593 594 if (Header->getParent()->isDebugInfoForProfiling()) 595 for (BasicBlock *BB : L->getBlocks()) 596 for (Instruction &I : *BB) 597 if (!isa<DbgInfoIntrinsic>(&I)) 598 if (const DILocation *DIL = I.getDebugLoc()) { 599 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 600 if (NewDIL) 601 I.setDebugLoc(NewDIL.getValue()); 602 else 603 LLVM_DEBUG(dbgs() 604 << "Failed to create new discriminator: " 605 << DIL->getFilename() << " Line: " << DIL->getLine()); 606 } 607 608 for (unsigned It = 1; It != ULO.Count; ++It) { 609 SmallVector<BasicBlock *, 8> NewBlocks; 610 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 611 NewLoops[L] = L; 612 613 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 614 ValueToValueMapTy VMap; 615 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 616 Header->getParent()->getBasicBlockList().push_back(New); 617 618 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 619 "Header should not be in a sub-loop"); 620 // Tell LI about New. 621 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 622 if (OldLoop) 623 LoopsToSimplify.insert(NewLoops[OldLoop]); 624 625 if (*BB == Header) 626 // Loop over all of the PHI nodes in the block, changing them to use 627 // the incoming values from the previous block. 628 for (PHINode *OrigPHI : OrigPHINode) { 629 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 630 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 631 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 632 if (It > 1 && L->contains(InValI)) 633 InVal = LastValueMap[InValI]; 634 VMap[OrigPHI] = InVal; 635 New->getInstList().erase(NewPHI); 636 } 637 638 // Update our running map of newest clones 639 LastValueMap[*BB] = New; 640 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 641 VI != VE; ++VI) 642 LastValueMap[VI->first] = VI->second; 643 644 // Add phi entries for newly created values to all exit blocks. 645 for (BasicBlock *Succ : successors(*BB)) { 646 if (L->contains(Succ)) 647 continue; 648 for (PHINode &PHI : Succ->phis()) { 649 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 650 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 651 if (It != LastValueMap.end()) 652 Incoming = It->second; 653 PHI.addIncoming(Incoming, New); 654 } 655 } 656 // Keep track of new headers and latches as we create them, so that 657 // we can insert the proper branches later. 658 if (*BB == Header) 659 Headers.push_back(New); 660 if (*BB == LatchBlock) 661 Latches.push_back(New); 662 663 // Keep track of the successor of the new header in the current iteration. 664 for (auto *Pred : predecessors(*BB)) 665 if (Pred == Header) { 666 HeaderSucc.push_back(New); 667 break; 668 } 669 670 NewBlocks.push_back(New); 671 UnrolledLoopBlocks.push_back(New); 672 673 // Update DomTree: since we just copy the loop body, and each copy has a 674 // dedicated entry block (copy of the header block), this header's copy 675 // dominates all copied blocks. That means, dominance relations in the 676 // copied body are the same as in the original body. 677 if (DT) { 678 if (*BB == Header) 679 DT->addNewBlock(New, Latches[It - 1]); 680 else { 681 auto BBDomNode = DT->getNode(*BB); 682 auto BBIDom = BBDomNode->getIDom(); 683 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 684 DT->addNewBlock( 685 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 686 } 687 } 688 } 689 690 // Remap all instructions in the most recent iteration 691 remapInstructionsInBlocks(NewBlocks, LastValueMap); 692 for (BasicBlock *NewBlock : NewBlocks) { 693 for (Instruction &I : *NewBlock) { 694 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 695 if (II->getIntrinsicID() == Intrinsic::assume) 696 AC->registerAssumption(II); 697 } 698 } 699 } 700 701 // Loop over the PHI nodes in the original block, setting incoming values. 702 for (PHINode *PN : OrigPHINode) { 703 if (CompletelyUnroll) { 704 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 705 Header->getInstList().erase(PN); 706 } else if (ULO.Count > 1) { 707 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 708 // If this value was defined in the loop, take the value defined by the 709 // last iteration of the loop. 710 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 711 if (L->contains(InValI)) 712 InVal = LastValueMap[InVal]; 713 } 714 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 715 PN->addIncoming(InVal, Latches.back()); 716 } 717 } 718 719 auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest, 720 ArrayRef<BasicBlock *> NextBlocks, 721 BasicBlock *BlockInLoop, 722 bool NeedConditional) { 723 auto *Term = cast<BranchInst>(Src->getTerminator()); 724 if (NeedConditional) { 725 // Update the conditional branch's successor for the following 726 // iteration. 727 Term->setSuccessor(!ContinueOnTrue, Dest); 728 } else { 729 // Remove phi operands at this loop exit 730 if (Dest != LoopExit) { 731 BasicBlock *BB = Src; 732 for (BasicBlock *Succ : successors(BB)) { 733 // Preserve the incoming value from BB if we are jumping to the block 734 // in the current loop. 735 if (Succ == BlockInLoop) 736 continue; 737 for (PHINode &Phi : Succ->phis()) 738 Phi.removeIncomingValue(BB, false); 739 } 740 } 741 // Replace the conditional branch with an unconditional one. 742 BranchInst::Create(Dest, Term); 743 Term->eraseFromParent(); 744 } 745 }; 746 747 // Now that all the basic blocks for the unrolled iterations are in place, 748 // set up the branches to connect them. 749 if (LatchIsExiting) { 750 // Set up latches to branch to the new header in the unrolled iterations or 751 // the loop exit for the last latch in a fully unrolled loop. 752 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 753 // The branch destination. 754 unsigned j = (i + 1) % e; 755 BasicBlock *Dest = Headers[j]; 756 bool NeedConditional = true; 757 758 if (RuntimeTripCount && j != 0) { 759 NeedConditional = false; 760 } 761 762 // For a complete unroll, make the last iteration end with a branch 763 // to the exit block. 764 if (CompletelyUnroll) { 765 if (j == 0) 766 Dest = LoopExit; 767 // If using trip count upper bound to completely unroll, we need to keep 768 // the conditional branch except the last one because the loop may exit 769 // after any iteration. 770 assert(NeedConditional && 771 "NeedCondition cannot be modified by both complete " 772 "unrolling and runtime unrolling"); 773 NeedConditional = 774 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 775 } else if (j != BreakoutTrip && 776 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 777 // If we know the trip count or a multiple of it, we can safely use an 778 // unconditional branch for some iterations. 779 NeedConditional = false; 780 } 781 782 setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional); 783 } 784 } else { 785 // Setup headers to branch to their new successors in the unrolled 786 // iterations. 787 for (unsigned i = 0, e = Headers.size(); i != e; ++i) { 788 // The branch destination. 789 unsigned j = (i + 1) % e; 790 BasicBlock *Dest = HeaderSucc[i]; 791 bool NeedConditional = true; 792 793 if (RuntimeTripCount && j != 0) 794 NeedConditional = false; 795 796 if (CompletelyUnroll) 797 // We cannot drop the conditional branch for the last condition, as we 798 // may have to execute the loop body depending on the condition. 799 NeedConditional = j == 0 || ULO.PreserveCondBr; 800 else if (j != BreakoutTrip && 801 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 802 // If we know the trip count or a multiple of it, we can safely use an 803 // unconditional branch for some iterations. 804 NeedConditional = false; 805 806 setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional); 807 } 808 809 // Set up latches to branch to the new header in the unrolled iterations or 810 // the loop exit for the last latch in a fully unrolled loop. 811 812 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 813 // The original branch was replicated in each unrolled iteration. 814 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 815 816 // The branch destination. 817 unsigned j = (i + 1) % e; 818 BasicBlock *Dest = Headers[j]; 819 820 // When completely unrolling, the last latch becomes unreachable. 821 if (CompletelyUnroll && j == 0) 822 new UnreachableInst(Term->getContext(), Term); 823 else 824 // Replace the conditional branch with an unconditional one. 825 BranchInst::Create(Dest, Term); 826 827 Term->eraseFromParent(); 828 } 829 } 830 831 // Update dominators of blocks we might reach through exits. 832 // Immediate dominator of such block might change, because we add more 833 // routes which can lead to the exit: we can now reach it from the copied 834 // iterations too. 835 if (DT && ULO.Count > 1) { 836 for (auto *BB : OriginalLoopBlocks) { 837 auto *BBDomNode = DT->getNode(BB); 838 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 839 for (auto *ChildDomNode : BBDomNode->getChildren()) { 840 auto *ChildBB = ChildDomNode->getBlock(); 841 if (!L->contains(ChildBB)) 842 ChildrenToUpdate.push_back(ChildBB); 843 } 844 BasicBlock *NewIDom; 845 BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header; 846 auto &TermBlocks = LatchIsExiting ? Latches : Headers; 847 if (BB == TermBlock) { 848 // The latch is special because we emit unconditional branches in 849 // some cases where the original loop contained a conditional branch. 850 // Since the latch is always at the bottom of the loop, if the latch 851 // dominated an exit before unrolling, the new dominator of that exit 852 // must also be a latch. Specifically, the dominator is the first 853 // latch which ends in a conditional branch, or the last latch if 854 // there is no such latch. 855 // For loops exiting from the header, we limit the supported loops 856 // to have a single exiting block. 857 NewIDom = TermBlocks.back(); 858 for (BasicBlock *Iter : TermBlocks) { 859 Instruction *Term = Iter->getTerminator(); 860 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 861 NewIDom = Iter; 862 break; 863 } 864 } 865 } else { 866 // The new idom of the block will be the nearest common dominator 867 // of all copies of the previous idom. This is equivalent to the 868 // nearest common dominator of the previous idom and the first latch, 869 // which dominates all copies of the previous idom. 870 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 871 } 872 for (auto *ChildBB : ChildrenToUpdate) 873 DT->changeImmediateDominator(ChildBB, NewIDom); 874 } 875 } 876 877 assert(!DT || !UnrollVerifyDomtree || 878 DT->verify(DominatorTree::VerificationLevel::Fast)); 879 880 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 881 // Merge adjacent basic blocks, if possible. 882 for (BasicBlock *Latch : Latches) { 883 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 884 assert((Term || 885 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 886 "Need a branch as terminator, except when fully unrolling with " 887 "unconditional latch"); 888 if (Term && Term->isUnconditional()) { 889 BasicBlock *Dest = Term->getSuccessor(0); 890 BasicBlock *Fold = Dest->getUniquePredecessor(); 891 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 892 // Dest has been folded into Fold. Update our worklists accordingly. 893 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 894 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 895 UnrolledLoopBlocks.end(), Dest), 896 UnrolledLoopBlocks.end()); 897 } 898 } 899 } 900 // Apply updates to the DomTree. 901 DT = &DTU.getDomTree(); 902 903 // At this point, the code is well formed. We now simplify the unrolled loop, 904 // doing constant propagation and dead code elimination as we go. 905 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 906 SE, DT, AC, TTI); 907 908 NumCompletelyUnrolled += CompletelyUnroll; 909 ++NumUnrolled; 910 911 Loop *OuterL = L->getParentLoop(); 912 // Update LoopInfo if the loop is completely removed. 913 if (CompletelyUnroll) 914 LI->erase(L); 915 916 // After complete unrolling most of the blocks should be contained in OuterL. 917 // However, some of them might happen to be out of OuterL (e.g. if they 918 // precede a loop exit). In this case we might need to insert PHI nodes in 919 // order to preserve LCSSA form. 920 // We don't need to check this if we already know that we need to fix LCSSA 921 // form. 922 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 923 // it should be possible to fix it in-place. 924 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 925 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 926 927 // If we have a pass and a DominatorTree we should re-simplify impacted loops 928 // to ensure subsequent analyses can rely on this form. We want to simplify 929 // at least one layer outside of the loop that was unrolled so that any 930 // changes to the parent loop exposed by the unrolling are considered. 931 if (DT) { 932 if (OuterL) { 933 // OuterL includes all loops for which we can break loop-simplify, so 934 // it's sufficient to simplify only it (it'll recursively simplify inner 935 // loops too). 936 if (NeedToFixLCSSA) { 937 // LCSSA must be performed on the outermost affected loop. The unrolled 938 // loop's last loop latch is guaranteed to be in the outermost loop 939 // after LoopInfo's been updated by LoopInfo::erase. 940 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 941 Loop *FixLCSSALoop = OuterL; 942 if (!FixLCSSALoop->contains(LatchLoop)) 943 while (FixLCSSALoop->getParentLoop() != LatchLoop) 944 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 945 946 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 947 } else if (PreserveLCSSA) { 948 assert(OuterL->isLCSSAForm(*DT) && 949 "Loops should be in LCSSA form after loop-unroll."); 950 } 951 952 // TODO: That potentially might be compile-time expensive. We should try 953 // to fix the loop-simplified form incrementally. 954 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 955 } else { 956 // Simplify loops for which we might've broken loop-simplify form. 957 for (Loop *SubLoop : LoopsToSimplify) 958 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 959 } 960 } 961 962 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 963 : LoopUnrollResult::PartiallyUnrolled; 964 } 965 966 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 967 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 968 /// such metadata node exists, then nullptr is returned. 969 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 970 // First operand should refer to the loop id itself. 971 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 972 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 973 974 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 975 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 976 if (!MD) 977 continue; 978 979 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 980 if (!S) 981 continue; 982 983 if (Name.equals(S->getString())) 984 return MD; 985 } 986 return nullptr; 987 } 988