1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51                     cl::desc("Allow runtime unrolled loops to be unrolled "
52                              "with epilog instead of prolog."));
53 
54 /// Convert the instruction operands from referencing the current values into
55 /// those specified by VMap.
56 static inline void remapInstruction(Instruction *I,
57                                     ValueToValueMapTy &VMap) {
58   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
59     Value *Op = I->getOperand(op);
60     ValueToValueMapTy::iterator It = VMap.find(Op);
61     if (It != VMap.end())
62       I->setOperand(op, It->second);
63   }
64 
65   if (PHINode *PN = dyn_cast<PHINode>(I)) {
66     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
67       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
68       if (It != VMap.end())
69         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
70     }
71   }
72 }
73 
74 /// Folds a basic block into its predecessor if it only has one predecessor, and
75 /// that predecessor only has one successor.
76 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
77 /// successful references to the containing loop must be removed from
78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
79 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
80 /// of loops that have already been forgotten to prevent redundant, expensive
81 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
82 static BasicBlock *
83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
84                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
85                          DominatorTree *DT) {
86   // Merge basic blocks into their predecessor if there is only one distinct
87   // pred, and if there is only one distinct successor of the predecessor, and
88   // if there are no PHI nodes.
89   BasicBlock *OnlyPred = BB->getSinglePredecessor();
90   if (!OnlyPred) return nullptr;
91 
92   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
93     return nullptr;
94 
95   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
96 
97   // Resolve any PHI nodes at the start of the block.  They are all
98   // guaranteed to have exactly one entry if they exist, unless there are
99   // multiple duplicate (but guaranteed to be equal) entries for the
100   // incoming edges.  This occurs when there are multiple edges from
101   // OnlyPred to OnlySucc.
102   FoldSingleEntryPHINodes(BB);
103 
104   // Delete the unconditional branch from the predecessor...
105   OnlyPred->getInstList().pop_back();
106 
107   // Make all PHI nodes that referred to BB now refer to Pred as their
108   // source...
109   BB->replaceAllUsesWith(OnlyPred);
110 
111   // Move all definitions in the successor to the predecessor...
112   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
113 
114   // OldName will be valid until erased.
115   StringRef OldName = BB->getName();
116 
117   // Erase the old block and update dominator info.
118   if (DT)
119     if (DomTreeNode *DTN = DT->getNode(BB)) {
120       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
121       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
122       for (auto *DI : Children)
123         DT->changeImmediateDominator(DI, PredDTN);
124 
125       DT->eraseNode(BB);
126     }
127 
128   // ScalarEvolution holds references to loop exit blocks.
129   if (SE) {
130     if (Loop *L = LI->getLoopFor(BB)) {
131       if (ForgottenLoops.insert(L).second)
132         SE->forgetLoop(L);
133     }
134   }
135   LI->removeBlock(BB);
136 
137   // Inherit predecessor's name if it exists...
138   if (!OldName.empty() && !OnlyPred->hasName())
139     OnlyPred->setName(OldName);
140 
141   BB->eraseFromParent();
142 
143   return OnlyPred;
144 }
145 
146 /// Check if unrolling created a situation where we need to insert phi nodes to
147 /// preserve LCSSA form.
148 /// \param Blocks is a vector of basic blocks representing unrolled loop.
149 /// \param L is the outer loop.
150 /// It's possible that some of the blocks are in L, and some are not. In this
151 /// case, if there is a use is outside L, and definition is inside L, we need to
152 /// insert a phi-node, otherwise LCSSA will be broken.
153 /// The function is just a helper function for llvm::UnrollLoop that returns
154 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
156                                      LoopInfo *LI) {
157   for (BasicBlock *BB : Blocks) {
158     if (LI->getLoopFor(BB) == L)
159       continue;
160     for (Instruction &I : *BB) {
161       for (Use &U : I.operands()) {
162         if (auto Def = dyn_cast<Instruction>(U)) {
163           Loop *DefLoop = LI->getLoopFor(Def->getParent());
164           if (!DefLoop)
165             continue;
166           if (DefLoop->contains(L))
167             return true;
168         }
169       }
170     }
171   }
172   return false;
173 }
174 
175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
177 /// can only fail when the loop's latch block is not terminated by a conditional
178 /// branch instruction. However, if the trip count (and multiple) are not known,
179 /// loop unrolling will mostly produce more code that is no faster.
180 ///
181 /// TripCount is generally defined as the number of times the loop header
182 /// executes. UnrollLoop relaxes the definition to permit early exits: here
183 /// TripCount is the iteration on which control exits LatchBlock if no early
184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
185 /// terminates LatchBlock in order to remove unnecesssary instances of the
186 /// test. In other words, control may exit the loop prior to TripCount
187 /// iterations via an early branch, but control may not exit the loop from the
188 /// LatchBlock's terminator prior to TripCount iterations.
189 ///
190 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
191 /// needs to be preserved.  It is needed when we use trip count upper bound to
192 /// fully unroll the loop.
193 ///
194 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
195 /// execute without exiting the loop.
196 ///
197 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
198 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
199 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
200 /// iterations before branching into the unrolled loop.  UnrollLoop will not
201 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
202 /// AllowExpensiveTripCount is false.
203 ///
204 /// The LoopInfo Analysis that is passed will be kept consistent.
205 ///
206 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
207 /// DominatorTree if they are non-null.
208 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
209                       bool AllowRuntime, bool AllowExpensiveTripCount,
210                       bool PreserveCondBr, unsigned TripMultiple, LoopInfo *LI,
211                       ScalarEvolution *SE, DominatorTree *DT,
212                       AssumptionCache *AC, OptimizationRemarkEmitter *ORE,
213                       bool PreserveLCSSA) {
214   BasicBlock *Preheader = L->getLoopPreheader();
215   if (!Preheader) {
216     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
217     return false;
218   }
219 
220   BasicBlock *LatchBlock = L->getLoopLatch();
221   if (!LatchBlock) {
222     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
223     return false;
224   }
225 
226   // Loops with indirectbr cannot be cloned.
227   if (!L->isSafeToClone()) {
228     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
229     return false;
230   }
231 
232   BasicBlock *Header = L->getHeader();
233   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
234 
235   if (!BI || BI->isUnconditional()) {
236     // The loop-rotate pass can be helpful to avoid this in many cases.
237     DEBUG(dbgs() <<
238              "  Can't unroll; loop not terminated by a conditional branch.\n");
239     return false;
240   }
241 
242   if (Header->hasAddressTaken()) {
243     // The loop-rotate pass can be helpful to avoid this in many cases.
244     DEBUG(dbgs() <<
245           "  Won't unroll loop: address of header block is taken.\n");
246     return false;
247   }
248 
249   if (TripCount != 0)
250     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
251   if (TripMultiple != 1)
252     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
253 
254   // Effectively "DCE" unrolled iterations that are beyond the tripcount
255   // and will never be executed.
256   if (TripCount != 0 && Count > TripCount)
257     Count = TripCount;
258 
259   // Don't enter the unroll code if there is nothing to do. This way we don't
260   // need to support "partial unrolling by 1".
261   if (TripCount == 0 && Count < 2)
262     return false;
263 
264   assert(Count > 0);
265   assert(TripMultiple > 0);
266   assert(TripCount == 0 || TripCount % TripMultiple == 0);
267 
268   // Are we eliminating the loop control altogether?
269   bool CompletelyUnroll = Count == TripCount;
270   SmallVector<BasicBlock *, 4> ExitBlocks;
271   L->getExitBlocks(ExitBlocks);
272   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
273 
274   // Go through all exits of L and see if there are any phi-nodes there. We just
275   // conservatively assume that they're inserted to preserve LCSSA form, which
276   // means that complete unrolling might break this form. We need to either fix
277   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
278   // now we just recompute LCSSA for the outer loop, but it should be possible
279   // to fix it in-place.
280   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
281                         any_of(ExitBlocks, [](const BasicBlock *BB) {
282                           return isa<PHINode>(BB->begin());
283                         });
284 
285   // We assume a run-time trip count if the compiler cannot
286   // figure out the loop trip count and the unroll-runtime
287   // flag is specified.
288   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
289 
290   // Loops containing convergent instructions must have a count that divides
291   // their TripMultiple.
292   DEBUG(
293       {
294         bool HasConvergent = false;
295         for (auto &BB : L->blocks())
296           for (auto &I : *BB)
297             if (auto CS = CallSite(&I))
298               HasConvergent |= CS.isConvergent();
299         assert((!HasConvergent || TripMultiple % Count == 0) &&
300                "Unroll count must divide trip multiple if loop contains a "
301                "convergent operation.");
302       });
303   // Don't output the runtime loop remainder if Count is a multiple of
304   // TripMultiple.  Such a remainder is never needed, and is unsafe if the loop
305   // contains a convergent instruction.
306   if (RuntimeTripCount && TripMultiple % Count != 0 &&
307       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
308                                   UnrollRuntimeEpilog, LI, SE, DT,
309                                   PreserveLCSSA)) {
310     if (Force)
311       RuntimeTripCount = false;
312     else
313       return false;
314   }
315 
316   // Notify ScalarEvolution that the loop will be substantially changed,
317   // if not outright eliminated.
318   if (SE)
319     SE->forgetLoop(L);
320 
321   // If we know the trip count, we know the multiple...
322   unsigned BreakoutTrip = 0;
323   if (TripCount != 0) {
324     BreakoutTrip = TripCount % Count;
325     TripMultiple = 0;
326   } else {
327     // Figure out what multiple to use.
328     BreakoutTrip = TripMultiple =
329       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
330   }
331 
332   using namespace ore;
333   // Report the unrolling decision.
334   if (CompletelyUnroll) {
335     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
336           << " with trip count " << TripCount << "!\n");
337     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
338                                  L->getHeader())
339               << "completely unrolled loop with "
340               << NV("UnrollCount", TripCount) << " iterations");
341   } else {
342     OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
343                             L->getHeader());
344     Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count);
345 
346     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
347           << " by " << Count);
348     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
349       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
350       ORE->emit(Diag << " with a breakout at trip "
351                      << NV("BreakoutTrip", BreakoutTrip));
352     } else if (TripMultiple != 1) {
353       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
354       ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple)
355                      << " trips per branch");
356     } else if (RuntimeTripCount) {
357       DEBUG(dbgs() << " with run-time trip count");
358       ORE->emit(Diag << " with run-time trip count");
359     }
360     DEBUG(dbgs() << "!\n");
361   }
362 
363   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
364   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
365 
366   // For the first iteration of the loop, we should use the precloned values for
367   // PHI nodes.  Insert associations now.
368   ValueToValueMapTy LastValueMap;
369   std::vector<PHINode*> OrigPHINode;
370   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
371     OrigPHINode.push_back(cast<PHINode>(I));
372   }
373 
374   std::vector<BasicBlock*> Headers;
375   std::vector<BasicBlock*> Latches;
376   Headers.push_back(Header);
377   Latches.push_back(LatchBlock);
378 
379   // The current on-the-fly SSA update requires blocks to be processed in
380   // reverse postorder so that LastValueMap contains the correct value at each
381   // exit.
382   LoopBlocksDFS DFS(L);
383   DFS.perform(LI);
384 
385   // Stash the DFS iterators before adding blocks to the loop.
386   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
387   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
388 
389   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
390 
391   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
392   // might break loop-simplified form for these loops (as they, e.g., would
393   // share the same exit blocks). We'll keep track of loops for which we can
394   // break this so that later we can re-simplify them.
395   SmallSetVector<Loop *, 4> LoopsToSimplify;
396   for (Loop *SubLoop : *L)
397     LoopsToSimplify.insert(SubLoop);
398 
399   for (unsigned It = 1; It != Count; ++It) {
400     std::vector<BasicBlock*> NewBlocks;
401     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
402     NewLoops[L] = L;
403 
404     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
405       ValueToValueMapTy VMap;
406       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
407       Header->getParent()->getBasicBlockList().push_back(New);
408 
409       // Tell LI about New.
410       if (*BB == Header) {
411         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
412         L->addBasicBlockToLoop(New, *LI);
413       } else {
414         // Figure out which loop New is in.
415         const Loop *OldLoop = LI->getLoopFor(*BB);
416         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
417 
418         Loop *&NewLoop = NewLoops[OldLoop];
419         if (!NewLoop) {
420           // Found a new sub-loop.
421           assert(*BB == OldLoop->getHeader() &&
422                  "Header should be first in RPO");
423 
424           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
425           assert(NewLoopParent &&
426                  "Expected parent loop before sub-loop in RPO");
427           NewLoop = new Loop;
428           NewLoopParent->addChildLoop(NewLoop);
429           LoopsToSimplify.insert(NewLoop);
430 
431           // Forget the old loop, since its inputs may have changed.
432           if (SE)
433             SE->forgetLoop(OldLoop);
434         }
435         NewLoop->addBasicBlockToLoop(New, *LI);
436       }
437 
438       if (*BB == Header)
439         // Loop over all of the PHI nodes in the block, changing them to use
440         // the incoming values from the previous block.
441         for (PHINode *OrigPHI : OrigPHINode) {
442           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
443           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
444           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
445             if (It > 1 && L->contains(InValI))
446               InVal = LastValueMap[InValI];
447           VMap[OrigPHI] = InVal;
448           New->getInstList().erase(NewPHI);
449         }
450 
451       // Update our running map of newest clones
452       LastValueMap[*BB] = New;
453       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
454            VI != VE; ++VI)
455         LastValueMap[VI->first] = VI->second;
456 
457       // Add phi entries for newly created values to all exit blocks.
458       for (BasicBlock *Succ : successors(*BB)) {
459         if (L->contains(Succ))
460           continue;
461         for (BasicBlock::iterator BBI = Succ->begin();
462              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
463           Value *Incoming = phi->getIncomingValueForBlock(*BB);
464           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
465           if (It != LastValueMap.end())
466             Incoming = It->second;
467           phi->addIncoming(Incoming, New);
468         }
469       }
470       // Keep track of new headers and latches as we create them, so that
471       // we can insert the proper branches later.
472       if (*BB == Header)
473         Headers.push_back(New);
474       if (*BB == LatchBlock)
475         Latches.push_back(New);
476 
477       NewBlocks.push_back(New);
478       UnrolledLoopBlocks.push_back(New);
479 
480       // Update DomTree: since we just copy the loop body, and each copy has a
481       // dedicated entry block (copy of the header block), this header's copy
482       // dominates all copied blocks. That means, dominance relations in the
483       // copied body are the same as in the original body.
484       if (DT) {
485         if (*BB == Header)
486           DT->addNewBlock(New, Latches[It - 1]);
487         else {
488           auto BBDomNode = DT->getNode(*BB);
489           auto BBIDom = BBDomNode->getIDom();
490           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
491           DT->addNewBlock(
492               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
493         }
494       }
495     }
496 
497     // Remap all instructions in the most recent iteration
498     for (BasicBlock *NewBlock : NewBlocks) {
499       for (Instruction &I : *NewBlock) {
500         ::remapInstruction(&I, LastValueMap);
501         if (auto *II = dyn_cast<IntrinsicInst>(&I))
502           if (II->getIntrinsicID() == Intrinsic::assume)
503             AC->registerAssumption(II);
504       }
505     }
506   }
507 
508   // Loop over the PHI nodes in the original block, setting incoming values.
509   for (PHINode *PN : OrigPHINode) {
510     if (CompletelyUnroll) {
511       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
512       Header->getInstList().erase(PN);
513     }
514     else if (Count > 1) {
515       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
516       // If this value was defined in the loop, take the value defined by the
517       // last iteration of the loop.
518       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
519         if (L->contains(InValI))
520           InVal = LastValueMap[InVal];
521       }
522       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
523       PN->addIncoming(InVal, Latches.back());
524     }
525   }
526 
527   // Now that all the basic blocks for the unrolled iterations are in place,
528   // set up the branches to connect them.
529   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
530     // The original branch was replicated in each unrolled iteration.
531     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
532 
533     // The branch destination.
534     unsigned j = (i + 1) % e;
535     BasicBlock *Dest = Headers[j];
536     bool NeedConditional = true;
537 
538     if (RuntimeTripCount && j != 0) {
539       NeedConditional = false;
540     }
541 
542     // For a complete unroll, make the last iteration end with a branch
543     // to the exit block.
544     if (CompletelyUnroll) {
545       if (j == 0)
546         Dest = LoopExit;
547       // If using trip count upper bound to completely unroll, we need to keep
548       // the conditional branch except the last one because the loop may exit
549       // after any iteration.
550       assert(NeedConditional &&
551              "NeedCondition cannot be modified by both complete "
552              "unrolling and runtime unrolling");
553       NeedConditional = (PreserveCondBr && j);
554     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
555       // If we know the trip count or a multiple of it, we can safely use an
556       // unconditional branch for some iterations.
557       NeedConditional = false;
558     }
559 
560     if (NeedConditional) {
561       // Update the conditional branch's successor for the following
562       // iteration.
563       Term->setSuccessor(!ContinueOnTrue, Dest);
564     } else {
565       // Remove phi operands at this loop exit
566       if (Dest != LoopExit) {
567         BasicBlock *BB = Latches[i];
568         for (BasicBlock *Succ: successors(BB)) {
569           if (Succ == Headers[i])
570             continue;
571           for (BasicBlock::iterator BBI = Succ->begin();
572                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
573             Phi->removeIncomingValue(BB, false);
574           }
575         }
576       }
577       // Replace the conditional branch with an unconditional one.
578       BranchInst::Create(Dest, Term);
579       Term->eraseFromParent();
580     }
581   }
582   // Update dominators of blocks we might reach through exits.
583   // Immediate dominator of such block might change, because we add more
584   // routes which can lead to the exit: we can now reach it from the copied
585   // iterations too. Thus, the new idom of the block will be the nearest
586   // common dominator of the previous idom and common dominator of all copies of
587   // the previous idom. This is equivalent to the nearest common dominator of
588   // the previous idom and the first latch, which dominates all copies of the
589   // previous idom.
590   if (DT && Count > 1) {
591     for (auto *BB : OriginalLoopBlocks) {
592       auto *BBDomNode = DT->getNode(BB);
593       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
594       for (auto *ChildDomNode : BBDomNode->getChildren()) {
595         auto *ChildBB = ChildDomNode->getBlock();
596         if (!L->contains(ChildBB))
597           ChildrenToUpdate.push_back(ChildBB);
598       }
599       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
600       for (auto *ChildBB : ChildrenToUpdate)
601         DT->changeImmediateDominator(ChildBB, NewIDom);
602     }
603   }
604 
605   // Merge adjacent basic blocks, if possible.
606   SmallPtrSet<Loop *, 4> ForgottenLoops;
607   for (BasicBlock *Latch : Latches) {
608     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
609     if (Term->isUnconditional()) {
610       BasicBlock *Dest = Term->getSuccessor(0);
611       if (BasicBlock *Fold =
612               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
613         // Dest has been folded into Fold. Update our worklists accordingly.
614         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
615         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
616                                              UnrolledLoopBlocks.end(), Dest),
617                                  UnrolledLoopBlocks.end());
618       }
619     }
620   }
621 
622   // FIXME: We only preserve DT info for complete unrolling now. Incrementally
623   // updating domtree after partial loop unrolling should also be easy.
624   if (DT && !CompletelyUnroll)
625     DT->recalculate(*L->getHeader()->getParent());
626   else if (DT)
627     DEBUG(DT->verifyDomTree());
628 
629   // Simplify any new induction variables in the partially unrolled loop.
630   if (SE && !CompletelyUnroll) {
631     SmallVector<WeakVH, 16> DeadInsts;
632     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
633 
634     // Aggressively clean up dead instructions that simplifyLoopIVs already
635     // identified. Any remaining should be cleaned up below.
636     while (!DeadInsts.empty())
637       if (Instruction *Inst =
638               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
639         RecursivelyDeleteTriviallyDeadInstructions(Inst);
640   }
641 
642   // At this point, the code is well formed.  We now do a quick sweep over the
643   // inserted code, doing constant propagation and dead code elimination as we
644   // go.
645   const DataLayout &DL = Header->getModule()->getDataLayout();
646   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
647   for (BasicBlock *BB : NewLoopBlocks) {
648     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
649       Instruction *Inst = &*I++;
650 
651       if (Value *V = SimplifyInstruction(Inst, DL))
652         if (LI->replacementPreservesLCSSAForm(Inst, V))
653           Inst->replaceAllUsesWith(V);
654       if (isInstructionTriviallyDead(Inst))
655         BB->getInstList().erase(Inst);
656     }
657   }
658 
659   NumCompletelyUnrolled += CompletelyUnroll;
660   ++NumUnrolled;
661 
662   Loop *OuterL = L->getParentLoop();
663   // Update LoopInfo if the loop is completely removed.
664   if (CompletelyUnroll)
665     LI->markAsRemoved(L);
666 
667   // After complete unrolling most of the blocks should be contained in OuterL.
668   // However, some of them might happen to be out of OuterL (e.g. if they
669   // precede a loop exit). In this case we might need to insert PHI nodes in
670   // order to preserve LCSSA form.
671   // We don't need to check this if we already know that we need to fix LCSSA
672   // form.
673   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
674   // it should be possible to fix it in-place.
675   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
676     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
677 
678   // If we have a pass and a DominatorTree we should re-simplify impacted loops
679   // to ensure subsequent analyses can rely on this form. We want to simplify
680   // at least one layer outside of the loop that was unrolled so that any
681   // changes to the parent loop exposed by the unrolling are considered.
682   if (DT) {
683     if (!OuterL && !CompletelyUnroll)
684       OuterL = L;
685     if (OuterL) {
686       // OuterL includes all loops for which we can break loop-simplify, so
687       // it's sufficient to simplify only it (it'll recursively simplify inner
688       // loops too).
689       // TODO: That potentially might be compile-time expensive. We should try
690       // to fix the loop-simplified form incrementally.
691       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
692 
693       // LCSSA must be performed on the outermost affected loop. The unrolled
694       // loop's last loop latch is guaranteed to be in the outermost loop after
695       // LoopInfo's been updated by markAsRemoved.
696       Loop *LatchLoop = LI->getLoopFor(Latches.back());
697       if (!OuterL->contains(LatchLoop))
698         while (OuterL->getParentLoop() != LatchLoop)
699           OuterL = OuterL->getParentLoop();
700 
701       if (NeedToFixLCSSA)
702         formLCSSARecursively(*OuterL, *DT, LI, SE);
703       else
704         assert(OuterL->isLCSSAForm(*DT) &&
705                "Loops should be in LCSSA form after loop-unroll.");
706     } else {
707       // Simplify loops for which we might've broken loop-simplify form.
708       for (Loop *SubLoop : LoopsToSimplify)
709         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
710     }
711   }
712 
713   return true;
714 }
715 
716 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
717 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
718 /// such metadata node exists, then nullptr is returned.
719 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
720   // First operand should refer to the loop id itself.
721   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
722   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
723 
724   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
725     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
726     if (!MD)
727       continue;
728 
729     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
730     if (!S)
731       continue;
732 
733     if (Name.equals(S->getString()))
734       return MD;
735   }
736   return nullptr;
737 }
738