1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 /// Convert the instruction operands from referencing the current values into 55 /// those specified by VMap. 56 static inline void remapInstruction(Instruction *I, 57 ValueToValueMapTy &VMap) { 58 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 59 Value *Op = I->getOperand(op); 60 ValueToValueMapTy::iterator It = VMap.find(Op); 61 if (It != VMap.end()) 62 I->setOperand(op, It->second); 63 } 64 65 if (PHINode *PN = dyn_cast<PHINode>(I)) { 66 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 67 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 68 if (It != VMap.end()) 69 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 70 } 71 } 72 } 73 74 /// Folds a basic block into its predecessor if it only has one predecessor, and 75 /// that predecessor only has one successor. 76 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 77 /// successful references to the containing loop must be removed from 78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 79 /// references to the eliminated BB. The argument ForgottenLoops contains a set 80 /// of loops that have already been forgotten to prevent redundant, expensive 81 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 82 static BasicBlock * 83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 84 SmallPtrSetImpl<Loop *> &ForgottenLoops, 85 DominatorTree *DT) { 86 // Merge basic blocks into their predecessor if there is only one distinct 87 // pred, and if there is only one distinct successor of the predecessor, and 88 // if there are no PHI nodes. 89 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 90 if (!OnlyPred) return nullptr; 91 92 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 93 return nullptr; 94 95 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 96 97 // Resolve any PHI nodes at the start of the block. They are all 98 // guaranteed to have exactly one entry if they exist, unless there are 99 // multiple duplicate (but guaranteed to be equal) entries for the 100 // incoming edges. This occurs when there are multiple edges from 101 // OnlyPred to OnlySucc. 102 FoldSingleEntryPHINodes(BB); 103 104 // Delete the unconditional branch from the predecessor... 105 OnlyPred->getInstList().pop_back(); 106 107 // Make all PHI nodes that referred to BB now refer to Pred as their 108 // source... 109 BB->replaceAllUsesWith(OnlyPred); 110 111 // Move all definitions in the successor to the predecessor... 112 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 113 114 // OldName will be valid until erased. 115 StringRef OldName = BB->getName(); 116 117 // Erase the old block and update dominator info. 118 if (DT) 119 if (DomTreeNode *DTN = DT->getNode(BB)) { 120 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 121 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 122 for (auto *DI : Children) 123 DT->changeImmediateDominator(DI, PredDTN); 124 125 DT->eraseNode(BB); 126 } 127 128 // ScalarEvolution holds references to loop exit blocks. 129 if (SE) { 130 if (Loop *L = LI->getLoopFor(BB)) { 131 if (ForgottenLoops.insert(L).second) 132 SE->forgetLoop(L); 133 } 134 } 135 LI->removeBlock(BB); 136 137 // Inherit predecessor's name if it exists... 138 if (!OldName.empty() && !OnlyPred->hasName()) 139 OnlyPred->setName(OldName); 140 141 BB->eraseFromParent(); 142 143 return OnlyPred; 144 } 145 146 /// Check if unrolling created a situation where we need to insert phi nodes to 147 /// preserve LCSSA form. 148 /// \param Blocks is a vector of basic blocks representing unrolled loop. 149 /// \param L is the outer loop. 150 /// It's possible that some of the blocks are in L, and some are not. In this 151 /// case, if there is a use is outside L, and definition is inside L, we need to 152 /// insert a phi-node, otherwise LCSSA will be broken. 153 /// The function is just a helper function for llvm::UnrollLoop that returns 154 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 156 LoopInfo *LI) { 157 for (BasicBlock *BB : Blocks) { 158 if (LI->getLoopFor(BB) == L) 159 continue; 160 for (Instruction &I : *BB) { 161 for (Use &U : I.operands()) { 162 if (auto Def = dyn_cast<Instruction>(U)) { 163 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 164 if (!DefLoop) 165 continue; 166 if (DefLoop->contains(L)) 167 return true; 168 } 169 } 170 } 171 } 172 return false; 173 } 174 175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 177 /// can only fail when the loop's latch block is not terminated by a conditional 178 /// branch instruction. However, if the trip count (and multiple) are not known, 179 /// loop unrolling will mostly produce more code that is no faster. 180 /// 181 /// TripCount is generally defined as the number of times the loop header 182 /// executes. UnrollLoop relaxes the definition to permit early exits: here 183 /// TripCount is the iteration on which control exits LatchBlock if no early 184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 185 /// terminates LatchBlock in order to remove unnecesssary instances of the 186 /// test. In other words, control may exit the loop prior to TripCount 187 /// iterations via an early branch, but control may not exit the loop from the 188 /// LatchBlock's terminator prior to TripCount iterations. 189 /// 190 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 191 /// needs to be preserved. It is needed when we use trip count upper bound to 192 /// fully unroll the loop. 193 /// 194 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 195 /// execute without exiting the loop. 196 /// 197 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 198 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 199 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 200 /// iterations before branching into the unrolled loop. UnrollLoop will not 201 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 202 /// AllowExpensiveTripCount is false. 203 /// 204 /// The LoopInfo Analysis that is passed will be kept consistent. 205 /// 206 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 207 /// DominatorTree if they are non-null. 208 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 209 bool AllowRuntime, bool AllowExpensiveTripCount, 210 bool PreserveCondBr, unsigned TripMultiple, LoopInfo *LI, 211 ScalarEvolution *SE, DominatorTree *DT, 212 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, 213 bool PreserveLCSSA) { 214 BasicBlock *Preheader = L->getLoopPreheader(); 215 if (!Preheader) { 216 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 217 return false; 218 } 219 220 BasicBlock *LatchBlock = L->getLoopLatch(); 221 if (!LatchBlock) { 222 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 223 return false; 224 } 225 226 // Loops with indirectbr cannot be cloned. 227 if (!L->isSafeToClone()) { 228 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 229 return false; 230 } 231 232 BasicBlock *Header = L->getHeader(); 233 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 234 235 if (!BI || BI->isUnconditional()) { 236 // The loop-rotate pass can be helpful to avoid this in many cases. 237 DEBUG(dbgs() << 238 " Can't unroll; loop not terminated by a conditional branch.\n"); 239 return false; 240 } 241 242 if (Header->hasAddressTaken()) { 243 // The loop-rotate pass can be helpful to avoid this in many cases. 244 DEBUG(dbgs() << 245 " Won't unroll loop: address of header block is taken.\n"); 246 return false; 247 } 248 249 if (TripCount != 0) 250 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 251 if (TripMultiple != 1) 252 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 253 254 // Effectively "DCE" unrolled iterations that are beyond the tripcount 255 // and will never be executed. 256 if (TripCount != 0 && Count > TripCount) 257 Count = TripCount; 258 259 // Don't enter the unroll code if there is nothing to do. This way we don't 260 // need to support "partial unrolling by 1". 261 if (TripCount == 0 && Count < 2) 262 return false; 263 264 assert(Count > 0); 265 assert(TripMultiple > 0); 266 assert(TripCount == 0 || TripCount % TripMultiple == 0); 267 268 // Are we eliminating the loop control altogether? 269 bool CompletelyUnroll = Count == TripCount; 270 SmallVector<BasicBlock *, 4> ExitBlocks; 271 L->getExitBlocks(ExitBlocks); 272 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 273 274 // Go through all exits of L and see if there are any phi-nodes there. We just 275 // conservatively assume that they're inserted to preserve LCSSA form, which 276 // means that complete unrolling might break this form. We need to either fix 277 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 278 // now we just recompute LCSSA for the outer loop, but it should be possible 279 // to fix it in-place. 280 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 281 any_of(ExitBlocks, [](const BasicBlock *BB) { 282 return isa<PHINode>(BB->begin()); 283 }); 284 285 // We assume a run-time trip count if the compiler cannot 286 // figure out the loop trip count and the unroll-runtime 287 // flag is specified. 288 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 289 290 // Loops containing convergent instructions must have a count that divides 291 // their TripMultiple. 292 DEBUG( 293 { 294 bool HasConvergent = false; 295 for (auto &BB : L->blocks()) 296 for (auto &I : *BB) 297 if (auto CS = CallSite(&I)) 298 HasConvergent |= CS.isConvergent(); 299 assert((!HasConvergent || TripMultiple % Count == 0) && 300 "Unroll count must divide trip multiple if loop contains a " 301 "convergent operation."); 302 }); 303 // Don't output the runtime loop remainder if Count is a multiple of 304 // TripMultiple. Such a remainder is never needed, and is unsafe if the loop 305 // contains a convergent instruction. 306 if (RuntimeTripCount && TripMultiple % Count != 0 && 307 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 308 UnrollRuntimeEpilog, LI, SE, DT, 309 PreserveLCSSA)) { 310 if (Force) 311 RuntimeTripCount = false; 312 else 313 return false; 314 } 315 316 // Notify ScalarEvolution that the loop will be substantially changed, 317 // if not outright eliminated. 318 if (SE) 319 SE->forgetLoop(L); 320 321 // If we know the trip count, we know the multiple... 322 unsigned BreakoutTrip = 0; 323 if (TripCount != 0) { 324 BreakoutTrip = TripCount % Count; 325 TripMultiple = 0; 326 } else { 327 // Figure out what multiple to use. 328 BreakoutTrip = TripMultiple = 329 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 330 } 331 332 using namespace ore; 333 // Report the unrolling decision. 334 if (CompletelyUnroll) { 335 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 336 << " with trip count " << TripCount << "!\n"); 337 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 338 L->getHeader()) 339 << "completely unrolled loop with " 340 << NV("UnrollCount", TripCount) << " iterations"); 341 } else { 342 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 343 L->getHeader()); 344 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 345 346 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 347 << " by " << Count); 348 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 349 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 350 ORE->emit(Diag << " with a breakout at trip " 351 << NV("BreakoutTrip", BreakoutTrip)); 352 } else if (TripMultiple != 1) { 353 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 354 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 355 << " trips per branch"); 356 } else if (RuntimeTripCount) { 357 DEBUG(dbgs() << " with run-time trip count"); 358 ORE->emit(Diag << " with run-time trip count"); 359 } 360 DEBUG(dbgs() << "!\n"); 361 } 362 363 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 364 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 365 366 // For the first iteration of the loop, we should use the precloned values for 367 // PHI nodes. Insert associations now. 368 ValueToValueMapTy LastValueMap; 369 std::vector<PHINode*> OrigPHINode; 370 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 371 OrigPHINode.push_back(cast<PHINode>(I)); 372 } 373 374 std::vector<BasicBlock*> Headers; 375 std::vector<BasicBlock*> Latches; 376 Headers.push_back(Header); 377 Latches.push_back(LatchBlock); 378 379 // The current on-the-fly SSA update requires blocks to be processed in 380 // reverse postorder so that LastValueMap contains the correct value at each 381 // exit. 382 LoopBlocksDFS DFS(L); 383 DFS.perform(LI); 384 385 // Stash the DFS iterators before adding blocks to the loop. 386 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 387 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 388 389 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 390 391 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 392 // might break loop-simplified form for these loops (as they, e.g., would 393 // share the same exit blocks). We'll keep track of loops for which we can 394 // break this so that later we can re-simplify them. 395 SmallSetVector<Loop *, 4> LoopsToSimplify; 396 for (Loop *SubLoop : *L) 397 LoopsToSimplify.insert(SubLoop); 398 399 for (unsigned It = 1; It != Count; ++It) { 400 std::vector<BasicBlock*> NewBlocks; 401 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 402 NewLoops[L] = L; 403 404 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 405 ValueToValueMapTy VMap; 406 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 407 Header->getParent()->getBasicBlockList().push_back(New); 408 409 // Tell LI about New. 410 if (*BB == Header) { 411 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 412 L->addBasicBlockToLoop(New, *LI); 413 } else { 414 // Figure out which loop New is in. 415 const Loop *OldLoop = LI->getLoopFor(*BB); 416 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 417 418 Loop *&NewLoop = NewLoops[OldLoop]; 419 if (!NewLoop) { 420 // Found a new sub-loop. 421 assert(*BB == OldLoop->getHeader() && 422 "Header should be first in RPO"); 423 424 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 425 assert(NewLoopParent && 426 "Expected parent loop before sub-loop in RPO"); 427 NewLoop = new Loop; 428 NewLoopParent->addChildLoop(NewLoop); 429 LoopsToSimplify.insert(NewLoop); 430 431 // Forget the old loop, since its inputs may have changed. 432 if (SE) 433 SE->forgetLoop(OldLoop); 434 } 435 NewLoop->addBasicBlockToLoop(New, *LI); 436 } 437 438 if (*BB == Header) 439 // Loop over all of the PHI nodes in the block, changing them to use 440 // the incoming values from the previous block. 441 for (PHINode *OrigPHI : OrigPHINode) { 442 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 443 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 444 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 445 if (It > 1 && L->contains(InValI)) 446 InVal = LastValueMap[InValI]; 447 VMap[OrigPHI] = InVal; 448 New->getInstList().erase(NewPHI); 449 } 450 451 // Update our running map of newest clones 452 LastValueMap[*BB] = New; 453 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 454 VI != VE; ++VI) 455 LastValueMap[VI->first] = VI->second; 456 457 // Add phi entries for newly created values to all exit blocks. 458 for (BasicBlock *Succ : successors(*BB)) { 459 if (L->contains(Succ)) 460 continue; 461 for (BasicBlock::iterator BBI = Succ->begin(); 462 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 463 Value *Incoming = phi->getIncomingValueForBlock(*BB); 464 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 465 if (It != LastValueMap.end()) 466 Incoming = It->second; 467 phi->addIncoming(Incoming, New); 468 } 469 } 470 // Keep track of new headers and latches as we create them, so that 471 // we can insert the proper branches later. 472 if (*BB == Header) 473 Headers.push_back(New); 474 if (*BB == LatchBlock) 475 Latches.push_back(New); 476 477 NewBlocks.push_back(New); 478 UnrolledLoopBlocks.push_back(New); 479 480 // Update DomTree: since we just copy the loop body, and each copy has a 481 // dedicated entry block (copy of the header block), this header's copy 482 // dominates all copied blocks. That means, dominance relations in the 483 // copied body are the same as in the original body. 484 if (DT) { 485 if (*BB == Header) 486 DT->addNewBlock(New, Latches[It - 1]); 487 else { 488 auto BBDomNode = DT->getNode(*BB); 489 auto BBIDom = BBDomNode->getIDom(); 490 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 491 DT->addNewBlock( 492 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 493 } 494 } 495 } 496 497 // Remap all instructions in the most recent iteration 498 for (BasicBlock *NewBlock : NewBlocks) { 499 for (Instruction &I : *NewBlock) { 500 ::remapInstruction(&I, LastValueMap); 501 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 502 if (II->getIntrinsicID() == Intrinsic::assume) 503 AC->registerAssumption(II); 504 } 505 } 506 } 507 508 // Loop over the PHI nodes in the original block, setting incoming values. 509 for (PHINode *PN : OrigPHINode) { 510 if (CompletelyUnroll) { 511 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 512 Header->getInstList().erase(PN); 513 } 514 else if (Count > 1) { 515 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 516 // If this value was defined in the loop, take the value defined by the 517 // last iteration of the loop. 518 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 519 if (L->contains(InValI)) 520 InVal = LastValueMap[InVal]; 521 } 522 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 523 PN->addIncoming(InVal, Latches.back()); 524 } 525 } 526 527 // Now that all the basic blocks for the unrolled iterations are in place, 528 // set up the branches to connect them. 529 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 530 // The original branch was replicated in each unrolled iteration. 531 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 532 533 // The branch destination. 534 unsigned j = (i + 1) % e; 535 BasicBlock *Dest = Headers[j]; 536 bool NeedConditional = true; 537 538 if (RuntimeTripCount && j != 0) { 539 NeedConditional = false; 540 } 541 542 // For a complete unroll, make the last iteration end with a branch 543 // to the exit block. 544 if (CompletelyUnroll) { 545 if (j == 0) 546 Dest = LoopExit; 547 // If using trip count upper bound to completely unroll, we need to keep 548 // the conditional branch except the last one because the loop may exit 549 // after any iteration. 550 assert(NeedConditional && 551 "NeedCondition cannot be modified by both complete " 552 "unrolling and runtime unrolling"); 553 NeedConditional = (PreserveCondBr && j); 554 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 555 // If we know the trip count or a multiple of it, we can safely use an 556 // unconditional branch for some iterations. 557 NeedConditional = false; 558 } 559 560 if (NeedConditional) { 561 // Update the conditional branch's successor for the following 562 // iteration. 563 Term->setSuccessor(!ContinueOnTrue, Dest); 564 } else { 565 // Remove phi operands at this loop exit 566 if (Dest != LoopExit) { 567 BasicBlock *BB = Latches[i]; 568 for (BasicBlock *Succ: successors(BB)) { 569 if (Succ == Headers[i]) 570 continue; 571 for (BasicBlock::iterator BBI = Succ->begin(); 572 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 573 Phi->removeIncomingValue(BB, false); 574 } 575 } 576 } 577 // Replace the conditional branch with an unconditional one. 578 BranchInst::Create(Dest, Term); 579 Term->eraseFromParent(); 580 } 581 } 582 // Update dominators of blocks we might reach through exits. 583 // Immediate dominator of such block might change, because we add more 584 // routes which can lead to the exit: we can now reach it from the copied 585 // iterations too. Thus, the new idom of the block will be the nearest 586 // common dominator of the previous idom and common dominator of all copies of 587 // the previous idom. This is equivalent to the nearest common dominator of 588 // the previous idom and the first latch, which dominates all copies of the 589 // previous idom. 590 if (DT && Count > 1) { 591 for (auto *BB : OriginalLoopBlocks) { 592 auto *BBDomNode = DT->getNode(BB); 593 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 594 for (auto *ChildDomNode : BBDomNode->getChildren()) { 595 auto *ChildBB = ChildDomNode->getBlock(); 596 if (!L->contains(ChildBB)) 597 ChildrenToUpdate.push_back(ChildBB); 598 } 599 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]); 600 for (auto *ChildBB : ChildrenToUpdate) 601 DT->changeImmediateDominator(ChildBB, NewIDom); 602 } 603 } 604 605 // Merge adjacent basic blocks, if possible. 606 SmallPtrSet<Loop *, 4> ForgottenLoops; 607 for (BasicBlock *Latch : Latches) { 608 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 609 if (Term->isUnconditional()) { 610 BasicBlock *Dest = Term->getSuccessor(0); 611 if (BasicBlock *Fold = 612 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 613 // Dest has been folded into Fold. Update our worklists accordingly. 614 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 615 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 616 UnrolledLoopBlocks.end(), Dest), 617 UnrolledLoopBlocks.end()); 618 } 619 } 620 } 621 622 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 623 // updating domtree after partial loop unrolling should also be easy. 624 if (DT && !CompletelyUnroll) 625 DT->recalculate(*L->getHeader()->getParent()); 626 else if (DT) 627 DEBUG(DT->verifyDomTree()); 628 629 // Simplify any new induction variables in the partially unrolled loop. 630 if (SE && !CompletelyUnroll) { 631 SmallVector<WeakVH, 16> DeadInsts; 632 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 633 634 // Aggressively clean up dead instructions that simplifyLoopIVs already 635 // identified. Any remaining should be cleaned up below. 636 while (!DeadInsts.empty()) 637 if (Instruction *Inst = 638 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 639 RecursivelyDeleteTriviallyDeadInstructions(Inst); 640 } 641 642 // At this point, the code is well formed. We now do a quick sweep over the 643 // inserted code, doing constant propagation and dead code elimination as we 644 // go. 645 const DataLayout &DL = Header->getModule()->getDataLayout(); 646 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 647 for (BasicBlock *BB : NewLoopBlocks) { 648 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 649 Instruction *Inst = &*I++; 650 651 if (Value *V = SimplifyInstruction(Inst, DL)) 652 if (LI->replacementPreservesLCSSAForm(Inst, V)) 653 Inst->replaceAllUsesWith(V); 654 if (isInstructionTriviallyDead(Inst)) 655 BB->getInstList().erase(Inst); 656 } 657 } 658 659 NumCompletelyUnrolled += CompletelyUnroll; 660 ++NumUnrolled; 661 662 Loop *OuterL = L->getParentLoop(); 663 // Update LoopInfo if the loop is completely removed. 664 if (CompletelyUnroll) 665 LI->markAsRemoved(L); 666 667 // After complete unrolling most of the blocks should be contained in OuterL. 668 // However, some of them might happen to be out of OuterL (e.g. if they 669 // precede a loop exit). In this case we might need to insert PHI nodes in 670 // order to preserve LCSSA form. 671 // We don't need to check this if we already know that we need to fix LCSSA 672 // form. 673 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 674 // it should be possible to fix it in-place. 675 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 676 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 677 678 // If we have a pass and a DominatorTree we should re-simplify impacted loops 679 // to ensure subsequent analyses can rely on this form. We want to simplify 680 // at least one layer outside of the loop that was unrolled so that any 681 // changes to the parent loop exposed by the unrolling are considered. 682 if (DT) { 683 if (!OuterL && !CompletelyUnroll) 684 OuterL = L; 685 if (OuterL) { 686 // OuterL includes all loops for which we can break loop-simplify, so 687 // it's sufficient to simplify only it (it'll recursively simplify inner 688 // loops too). 689 // TODO: That potentially might be compile-time expensive. We should try 690 // to fix the loop-simplified form incrementally. 691 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 692 693 // LCSSA must be performed on the outermost affected loop. The unrolled 694 // loop's last loop latch is guaranteed to be in the outermost loop after 695 // LoopInfo's been updated by markAsRemoved. 696 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 697 if (!OuterL->contains(LatchLoop)) 698 while (OuterL->getParentLoop() != LatchLoop) 699 OuterL = OuterL->getParentLoop(); 700 701 if (NeedToFixLCSSA) 702 formLCSSARecursively(*OuterL, *DT, LI, SE); 703 else 704 assert(OuterL->isLCSSAForm(*DT) && 705 "Loops should be in LCSSA form after loop-unroll."); 706 } else { 707 // Simplify loops for which we might've broken loop-simplify form. 708 for (Loop *SubLoop : LoopsToSimplify) 709 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 710 } 711 } 712 713 return true; 714 } 715 716 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 717 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 718 /// such metadata node exists, then nullptr is returned. 719 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 720 // First operand should refer to the loop id itself. 721 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 722 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 723 724 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 725 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 726 if (!MD) 727 continue; 728 729 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 730 if (!S) 731 continue; 732 733 if (Name.equals(S->getString())) 734 return MD; 735 } 736 return nullptr; 737 } 738