1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // It works best when loops have been canonicalized by the -indvars pass, 15 // allowing it to determine the trip counts of loops easily. 16 // 17 // The process of unrolling can produce extraneous basic blocks linked with 18 // unconditional branches. This will be corrected in the future. 19 //===----------------------------------------------------------------------===// 20 21 #define DEBUG_TYPE "loop-unroll" 22 #include "llvm/Transforms/Utils/UnrollLoop.h" 23 #include "llvm/BasicBlock.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 33 using namespace llvm; 34 35 // TODO: Should these be here or in LoopUnroll? 36 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 37 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 38 39 /// RemapInstruction - Convert the instruction operands from referencing the 40 /// current values into those specified by ValueMap. 41 static inline void RemapInstruction(Instruction *I, 42 DenseMap<const Value *, Value*> &ValueMap) { 43 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 44 Value *Op = I->getOperand(op); 45 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op); 46 if (It != ValueMap.end()) 47 I->setOperand(op, It->second); 48 } 49 } 50 51 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 52 /// only has one predecessor, and that predecessor only has one successor. 53 /// The LoopInfo Analysis that is passed will be kept consistent. 54 /// Returns the new combined block. 55 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) { 56 // Merge basic blocks into their predecessor if there is only one distinct 57 // pred, and if there is only one distinct successor of the predecessor, and 58 // if there are no PHI nodes. 59 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 60 if (!OnlyPred) return 0; 61 62 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 63 return 0; 64 65 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 66 67 // Resolve any PHI nodes at the start of the block. They are all 68 // guaranteed to have exactly one entry if they exist, unless there are 69 // multiple duplicate (but guaranteed to be equal) entries for the 70 // incoming edges. This occurs when there are multiple edges from 71 // OnlyPred to OnlySucc. 72 FoldSingleEntryPHINodes(BB); 73 74 // Delete the unconditional branch from the predecessor... 75 OnlyPred->getInstList().pop_back(); 76 77 // Move all definitions in the successor to the predecessor... 78 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 79 80 // Make all PHI nodes that referred to BB now refer to Pred as their 81 // source... 82 BB->replaceAllUsesWith(OnlyPred); 83 84 std::string OldName = BB->getName(); 85 86 // Erase basic block from the function... 87 LI->removeBlock(BB); 88 BB->eraseFromParent(); 89 90 // Inherit predecessor's name if it exists... 91 if (!OldName.empty() && !OnlyPred->hasName()) 92 OnlyPred->setName(OldName); 93 94 return OnlyPred; 95 } 96 97 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 98 /// if unrolling was succesful, or false if the loop was unmodified. Unrolling 99 /// can only fail when the loop's latch block is not terminated by a conditional 100 /// branch instruction. However, if the trip count (and multiple) are not known, 101 /// loop unrolling will mostly produce more code that is no faster. 102 /// 103 /// The LoopInfo Analysis that is passed will be kept consistent. 104 /// 105 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 106 /// removed from the LoopPassManager as well. LPM can also be NULL. 107 bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) { 108 assert(L->isLCSSAForm()); 109 110 BasicBlock *Preheader = L->getLoopPreheader(); 111 if (!Preheader) { 112 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 113 return false; 114 } 115 116 BasicBlock *LatchBlock = L->getLoopLatch(); 117 if (!LatchBlock) { 118 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 119 return false; 120 } 121 122 BasicBlock *Header = L->getHeader(); 123 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 124 125 if (!BI || BI->isUnconditional()) { 126 // The loop-rotate pass can be helpful to avoid this in many cases. 127 DEBUG(dbgs() << 128 " Can't unroll; loop not terminated by a conditional branch.\n"); 129 return false; 130 } 131 132 // Find trip count 133 unsigned TripCount = L->getSmallConstantTripCount(); 134 // Find trip multiple if count is not available 135 unsigned TripMultiple = 1; 136 if (TripCount == 0) 137 TripMultiple = L->getSmallConstantTripMultiple(); 138 139 if (TripCount != 0) 140 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 141 if (TripMultiple != 1) 142 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 143 144 // Effectively "DCE" unrolled iterations that are beyond the tripcount 145 // and will never be executed. 146 if (TripCount != 0 && Count > TripCount) 147 Count = TripCount; 148 149 assert(Count > 0); 150 assert(TripMultiple > 0); 151 assert(TripCount == 0 || TripCount % TripMultiple == 0); 152 153 // Are we eliminating the loop control altogether? 154 bool CompletelyUnroll = Count == TripCount; 155 156 // If we know the trip count, we know the multiple... 157 unsigned BreakoutTrip = 0; 158 if (TripCount != 0) { 159 BreakoutTrip = TripCount % Count; 160 TripMultiple = 0; 161 } else { 162 // Figure out what multiple to use. 163 BreakoutTrip = TripMultiple = 164 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 165 } 166 167 if (CompletelyUnroll) { 168 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 169 << " with trip count " << TripCount << "!\n"); 170 } else { 171 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 172 << " by " << Count); 173 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 174 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 175 } else if (TripMultiple != 1) { 176 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 177 } 178 DEBUG(dbgs() << "!\n"); 179 } 180 181 std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); 182 183 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 184 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 185 186 // For the first iteration of the loop, we should use the precloned values for 187 // PHI nodes. Insert associations now. 188 typedef DenseMap<const Value*, Value*> ValueMapTy; 189 ValueMapTy LastValueMap; 190 std::vector<PHINode*> OrigPHINode; 191 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 192 PHINode *PN = cast<PHINode>(I); 193 OrigPHINode.push_back(PN); 194 if (Instruction *I = 195 dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock))) 196 if (L->contains(I)) 197 LastValueMap[I] = I; 198 } 199 200 std::vector<BasicBlock*> Headers; 201 std::vector<BasicBlock*> Latches; 202 Headers.push_back(Header); 203 Latches.push_back(LatchBlock); 204 205 for (unsigned It = 1; It != Count; ++It) { 206 std::vector<BasicBlock*> NewBlocks; 207 208 for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(), 209 E = LoopBlocks.end(); BB != E; ++BB) { 210 ValueMapTy ValueMap; 211 BasicBlock *New = CloneBasicBlock(*BB, ValueMap, "." + Twine(It)); 212 Header->getParent()->getBasicBlockList().push_back(New); 213 214 // Loop over all of the PHI nodes in the block, changing them to use the 215 // incoming values from the previous block. 216 if (*BB == Header) 217 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 218 PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]); 219 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 220 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 221 if (It > 1 && L->contains(InValI)) 222 InVal = LastValueMap[InValI]; 223 ValueMap[OrigPHINode[i]] = InVal; 224 New->getInstList().erase(NewPHI); 225 } 226 227 // Update our running map of newest clones 228 LastValueMap[*BB] = New; 229 for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end(); 230 VI != VE; ++VI) 231 LastValueMap[VI->first] = VI->second; 232 233 L->addBasicBlockToLoop(New, LI->getBase()); 234 235 // Add phi entries for newly created values to all exit blocks except 236 // the successor of the latch block. The successor of the exit block will 237 // be updated specially after unrolling all the way. 238 if (*BB != LatchBlock) 239 for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end(); 240 UI != UE;) { 241 Instruction *UseInst = cast<Instruction>(*UI); 242 ++UI; 243 if (isa<PHINode>(UseInst) && !L->contains(UseInst)) { 244 PHINode *phi = cast<PHINode>(UseInst); 245 Value *Incoming = phi->getIncomingValueForBlock(*BB); 246 phi->addIncoming(Incoming, New); 247 } 248 } 249 250 // Keep track of new headers and latches as we create them, so that 251 // we can insert the proper branches later. 252 if (*BB == Header) 253 Headers.push_back(New); 254 if (*BB == LatchBlock) { 255 Latches.push_back(New); 256 257 // Also, clear out the new latch's back edge so that it doesn't look 258 // like a new loop, so that it's amenable to being merged with adjacent 259 // blocks later on. 260 TerminatorInst *Term = New->getTerminator(); 261 assert(L->contains(Term->getSuccessor(!ContinueOnTrue))); 262 assert(Term->getSuccessor(ContinueOnTrue) == LoopExit); 263 Term->setSuccessor(!ContinueOnTrue, NULL); 264 } 265 266 NewBlocks.push_back(New); 267 } 268 269 // Remap all instructions in the most recent iteration 270 for (unsigned i = 0; i < NewBlocks.size(); ++i) 271 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 272 E = NewBlocks[i]->end(); I != E; ++I) 273 RemapInstruction(I, LastValueMap); 274 } 275 276 // The latch block exits the loop. If there are any PHI nodes in the 277 // successor blocks, update them to use the appropriate values computed as the 278 // last iteration of the loop. 279 if (Count != 1) { 280 SmallPtrSet<PHINode*, 8> Users; 281 for (Value::use_iterator UI = LatchBlock->use_begin(), 282 UE = LatchBlock->use_end(); UI != UE; ++UI) 283 if (PHINode *phi = dyn_cast<PHINode>(*UI)) 284 Users.insert(phi); 285 286 BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]); 287 for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end(); 288 SI != SE; ++SI) { 289 PHINode *PN = *SI; 290 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 291 // If this value was defined in the loop, take the value defined by the 292 // last iteration of the loop. 293 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 294 if (L->contains(InValI)) 295 InVal = LastValueMap[InVal]; 296 } 297 PN->addIncoming(InVal, LastIterationBB); 298 } 299 } 300 301 // Now, if we're doing complete unrolling, loop over the PHI nodes in the 302 // original block, setting them to their incoming values. 303 if (CompletelyUnroll) { 304 BasicBlock *Preheader = L->getLoopPreheader(); 305 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 306 PHINode *PN = OrigPHINode[i]; 307 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 308 Header->getInstList().erase(PN); 309 } 310 } 311 312 // Now that all the basic blocks for the unrolled iterations are in place, 313 // set up the branches to connect them. 314 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 315 // The original branch was replicated in each unrolled iteration. 316 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 317 318 // The branch destination. 319 unsigned j = (i + 1) % e; 320 BasicBlock *Dest = Headers[j]; 321 bool NeedConditional = true; 322 323 // For a complete unroll, make the last iteration end with a branch 324 // to the exit block. 325 if (CompletelyUnroll && j == 0) { 326 Dest = LoopExit; 327 NeedConditional = false; 328 } 329 330 // If we know the trip count or a multiple of it, we can safely use an 331 // unconditional branch for some iterations. 332 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 333 NeedConditional = false; 334 } 335 336 if (NeedConditional) { 337 // Update the conditional branch's successor for the following 338 // iteration. 339 Term->setSuccessor(!ContinueOnTrue, Dest); 340 } else { 341 Term->setUnconditionalDest(Dest); 342 // Merge adjacent basic blocks, if possible. 343 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) { 344 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 345 std::replace(Headers.begin(), Headers.end(), Dest, Fold); 346 } 347 } 348 } 349 350 // At this point, the code is well formed. We now do a quick sweep over the 351 // inserted code, doing constant propagation and dead code elimination as we 352 // go. 353 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 354 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 355 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 356 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 357 Instruction *Inst = I++; 358 359 if (isInstructionTriviallyDead(Inst)) 360 (*BB)->getInstList().erase(Inst); 361 else if (Constant *C = ConstantFoldInstruction(Inst)) { 362 Inst->replaceAllUsesWith(C); 363 (*BB)->getInstList().erase(Inst); 364 } 365 } 366 367 NumCompletelyUnrolled += CompletelyUnroll; 368 ++NumUnrolled; 369 // Remove the loop from the LoopPassManager if it's completely removed. 370 if (CompletelyUnroll && LPM != NULL) 371 LPM->deleteLoopFromQueue(L); 372 373 // If we didn't completely unroll the loop, it should still be in LCSSA form. 374 if (!CompletelyUnroll) 375 assert(L->isLCSSAForm()); 376 377 return true; 378 } 379