1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopPeel.h" 63 #include "llvm/Transforms/Utils/LoopSimplify.h" 64 #include "llvm/Transforms/Utils/LoopUtils.h" 65 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 66 #include "llvm/Transforms/Utils/UnrollLoop.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <assert.h> 70 #include <type_traits> 71 #include <vector> 72 73 namespace llvm { 74 class DataLayout; 75 class Value; 76 } // namespace llvm 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-unroll" 81 82 // TODO: Should these be here or in LoopUnroll? 83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 86 "latch (completely or otherwise)"); 87 88 static cl::opt<bool> 89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 90 cl::desc("Allow runtime unrolled loops to be unrolled " 91 "with epilog instead of prolog.")); 92 93 static cl::opt<bool> 94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 95 cl::desc("Verify domtree after unrolling"), 96 #ifdef EXPENSIVE_CHECKS 97 cl::init(true) 98 #else 99 cl::init(false) 100 #endif 101 ); 102 103 /// Check if unrolling created a situation where we need to insert phi nodes to 104 /// preserve LCSSA form. 105 /// \param Blocks is a vector of basic blocks representing unrolled loop. 106 /// \param L is the outer loop. 107 /// It's possible that some of the blocks are in L, and some are not. In this 108 /// case, if there is a use is outside L, and definition is inside L, we need to 109 /// insert a phi-node, otherwise LCSSA will be broken. 110 /// The function is just a helper function for llvm::UnrollLoop that returns 111 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 112 static bool needToInsertPhisForLCSSA(Loop *L, 113 const std::vector<BasicBlock *> &Blocks, 114 LoopInfo *LI) { 115 for (BasicBlock *BB : Blocks) { 116 if (LI->getLoopFor(BB) == L) 117 continue; 118 for (Instruction &I : *BB) { 119 for (Use &U : I.operands()) { 120 if (const auto *Def = dyn_cast<Instruction>(U)) { 121 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 122 if (!DefLoop) 123 continue; 124 if (DefLoop->contains(L)) 125 return true; 126 } 127 } 128 } 129 } 130 return false; 131 } 132 133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 134 /// and adds a mapping from the original loop to the new loop to NewLoops. 135 /// Returns nullptr if no new loop was created and a pointer to the 136 /// original loop OriginalBB was part of otherwise. 137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 138 BasicBlock *ClonedBB, LoopInfo *LI, 139 NewLoopsMap &NewLoops) { 140 // Figure out which loop New is in. 141 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 142 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 143 144 Loop *&NewLoop = NewLoops[OldLoop]; 145 if (!NewLoop) { 146 // Found a new sub-loop. 147 assert(OriginalBB == OldLoop->getHeader() && 148 "Header should be first in RPO"); 149 150 NewLoop = LI->AllocateLoop(); 151 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 152 153 if (NewLoopParent) 154 NewLoopParent->addChildLoop(NewLoop); 155 else 156 LI->addTopLevelLoop(NewLoop); 157 158 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 159 return OldLoop; 160 } else { 161 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 162 return nullptr; 163 } 164 } 165 166 /// The function chooses which type of unroll (epilog or prolog) is more 167 /// profitabale. 168 /// Epilog unroll is more profitable when there is PHI that starts from 169 /// constant. In this case epilog will leave PHI start from constant, 170 /// but prolog will convert it to non-constant. 171 /// 172 /// loop: 173 /// PN = PHI [I, Latch], [CI, PreHeader] 174 /// I = foo(PN) 175 /// ... 176 /// 177 /// Epilog unroll case. 178 /// loop: 179 /// PN = PHI [I2, Latch], [CI, PreHeader] 180 /// I1 = foo(PN) 181 /// I2 = foo(I1) 182 /// ... 183 /// Prolog unroll case. 184 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 185 /// loop: 186 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 187 /// I1 = foo(PN) 188 /// I2 = foo(I1) 189 /// ... 190 /// 191 static bool isEpilogProfitable(Loop *L) { 192 BasicBlock *PreHeader = L->getLoopPreheader(); 193 BasicBlock *Header = L->getHeader(); 194 assert(PreHeader && Header); 195 for (const PHINode &PN : Header->phis()) { 196 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 197 return true; 198 } 199 return false; 200 } 201 202 /// Perform some cleanup and simplifications on loops after unrolling. It is 203 /// useful to simplify the IV's in the new loop, as well as do a quick 204 /// simplify/dce pass of the instructions. 205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 206 ScalarEvolution *SE, DominatorTree *DT, 207 AssumptionCache *AC, 208 const TargetTransformInfo *TTI) { 209 // Simplify any new induction variables in the partially unrolled loop. 210 if (SE && SimplifyIVs) { 211 SmallVector<WeakTrackingVH, 16> DeadInsts; 212 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 213 214 // Aggressively clean up dead instructions that simplifyLoopIVs already 215 // identified. Any remaining should be cleaned up below. 216 while (!DeadInsts.empty()) { 217 Value *V = DeadInsts.pop_back_val(); 218 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 219 RecursivelyDeleteTriviallyDeadInstructions(Inst); 220 } 221 } 222 223 // At this point, the code is well formed. Perform constprop, instsimplify, 224 // and dce. 225 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 226 SmallVector<WeakTrackingVH, 16> DeadInsts; 227 for (BasicBlock *BB : L->getBlocks()) { 228 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 229 Instruction *Inst = &*I++; 230 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 231 if (LI->replacementPreservesLCSSAForm(Inst, V)) 232 Inst->replaceAllUsesWith(V); 233 if (isInstructionTriviallyDead(Inst)) 234 DeadInsts.emplace_back(Inst); 235 } 236 // We can't do recursive deletion until we're done iterating, as we might 237 // have a phi which (potentially indirectly) uses instructions later in 238 // the block we're iterating through. 239 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 240 } 241 } 242 243 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 244 /// can only fail when the loop's latch block is not terminated by a conditional 245 /// branch instruction. However, if the trip count (and multiple) are not known, 246 /// loop unrolling will mostly produce more code that is no faster. 247 /// 248 /// TripCount is the upper bound of the iteration on which control exits 249 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 250 /// via an early branch in other loop block or via LatchBlock terminator. This 251 /// is relaxed from the general definition of trip count which is the number of 252 /// times the loop header executes. Note that UnrollLoop assumes that the loop 253 /// counter test is in LatchBlock in order to remove unnecesssary instances of 254 /// the test. If control can exit the loop from the LatchBlock's terminator 255 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 256 /// 257 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 258 /// needs to be preserved. It is needed when we use trip count upper bound to 259 /// fully unroll the loop. 260 /// 261 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 262 /// execute without exiting the loop. 263 /// 264 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 265 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 266 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 267 /// iterations before branching into the unrolled loop. UnrollLoop will not 268 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 269 /// AllowExpensiveTripCount is false. 270 /// 271 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 272 /// number of iterations we want to peel off. 273 /// 274 /// The LoopInfo Analysis that is passed will be kept consistent. 275 /// 276 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 277 /// DominatorTree if they are non-null. 278 /// 279 /// If RemainderLoop is non-null, it will receive the remainder loop (if 280 /// required and not fully unrolled). 281 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 282 ScalarEvolution *SE, DominatorTree *DT, 283 AssumptionCache *AC, 284 const TargetTransformInfo *TTI, 285 OptimizationRemarkEmitter *ORE, 286 bool PreserveLCSSA, Loop **RemainderLoop) { 287 assert(DT && "DomTree is required"); 288 289 if (!L->getLoopPreheader()) { 290 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 291 return LoopUnrollResult::Unmodified; 292 } 293 294 if (!L->getLoopLatch()) { 295 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 296 return LoopUnrollResult::Unmodified; 297 } 298 299 // Loops with indirectbr cannot be cloned. 300 if (!L->isSafeToClone()) { 301 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 302 return LoopUnrollResult::Unmodified; 303 } 304 305 if (L->getHeader()->hasAddressTaken()) { 306 // The loop-rotate pass can be helpful to avoid this in many cases. 307 LLVM_DEBUG( 308 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 309 return LoopUnrollResult::Unmodified; 310 } 311 312 if (ULO.TripCount != 0) 313 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 314 if (ULO.TripMultiple != 1) 315 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 316 317 // Effectively "DCE" unrolled iterations that are beyond the tripcount 318 // and will never be executed. 319 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 320 ULO.Count = ULO.TripCount; 321 322 // Don't enter the unroll code if there is nothing to do. 323 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 324 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 325 return LoopUnrollResult::Unmodified; 326 } 327 328 assert(ULO.Count > 0); 329 assert(ULO.TripMultiple > 0); 330 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 331 332 // Are we eliminating the loop control altogether? 333 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 334 335 // We assume a run-time trip count if the compiler cannot 336 // figure out the loop trip count and the unroll-runtime 337 // flag is specified. 338 bool RuntimeTripCount = 339 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 340 341 assert((!RuntimeTripCount || !ULO.PeelCount) && 342 "Did not expect runtime trip-count unrolling " 343 "and peeling for the same loop"); 344 345 bool Peeled = false; 346 if (ULO.PeelCount) { 347 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 348 349 // Successful peeling may result in a change in the loop preheader/trip 350 // counts. If we later unroll the loop, we want these to be updated. 351 if (Peeled) { 352 // According to our guards and profitability checks the only 353 // meaningful exit should be latch block. Other exits go to deopt, 354 // so we do not worry about them. 355 BasicBlock *ExitingBlock = L->getLoopLatch(); 356 assert(ExitingBlock && "Loop without exiting block?"); 357 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 358 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 359 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 360 } 361 } 362 363 // All these values should be taken only after peeling because they might have 364 // changed. 365 BasicBlock *Preheader = L->getLoopPreheader(); 366 BasicBlock *Header = L->getHeader(); 367 BasicBlock *LatchBlock = L->getLoopLatch(); 368 SmallVector<BasicBlock *, 4> ExitBlocks; 369 L->getExitBlocks(ExitBlocks); 370 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 371 372 // Go through all exits of L and see if there are any phi-nodes there. We just 373 // conservatively assume that they're inserted to preserve LCSSA form, which 374 // means that complete unrolling might break this form. We need to either fix 375 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 376 // now we just recompute LCSSA for the outer loop, but it should be possible 377 // to fix it in-place. 378 bool NeedToFixLCSSA = 379 PreserveLCSSA && CompletelyUnroll && 380 any_of(ExitBlocks, 381 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 382 383 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); 384 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 385 386 const bool PreserveOnlyFirst = ULO.Count == MaxTripCount && MaxOrZero; 387 388 // The current loop unroll pass can unroll loops that have 389 // (1) single latch; and 390 // (2a) latch is unconditional; or 391 // (2b) latch is conditional and is an exiting block 392 // FIXME: The implementation can be extended to work with more complicated 393 // cases, e.g. loops with multiple latches. 394 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 395 396 // A conditional branch which exits the loop, which can be optimized to an 397 // unconditional branch in the unrolled loop in some cases. 398 BranchInst *ExitingBI = nullptr; 399 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 400 if (LatchIsExiting) 401 ExitingBI = LatchBI; 402 else if (BasicBlock *ExitingBlock = L->getExitingBlock()) 403 ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 404 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 405 // If the peeling guard is changed this assert may be relaxed or even 406 // deleted. 407 assert(!Peeled && "Peeling guard changed!"); 408 LLVM_DEBUG( 409 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 410 return LoopUnrollResult::Unmodified; 411 } 412 LLVM_DEBUG({ 413 if (ExitingBI) 414 dbgs() << " Exiting Block = " << ExitingBI->getParent()->getName() 415 << "\n"; 416 else 417 dbgs() << " No single exiting block\n"; 418 }); 419 420 // Loops containing convergent instructions must have a count that divides 421 // their TripMultiple. 422 LLVM_DEBUG( 423 { 424 bool HasConvergent = false; 425 for (auto &BB : L->blocks()) 426 for (auto &I : *BB) 427 if (auto *CB = dyn_cast<CallBase>(&I)) 428 HasConvergent |= CB->isConvergent(); 429 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 430 "Unroll count must divide trip multiple if loop contains a " 431 "convergent operation."); 432 }); 433 434 bool EpilogProfitability = 435 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 436 : isEpilogProfitable(L); 437 438 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 439 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 440 EpilogProfitability, ULO.UnrollRemainder, 441 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 442 PreserveLCSSA, RemainderLoop)) { 443 if (ULO.Force) 444 RuntimeTripCount = false; 445 else { 446 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 447 "generated when assuming runtime trip count\n"); 448 return LoopUnrollResult::Unmodified; 449 } 450 } 451 452 // If we know the trip count, we know the multiple... 453 unsigned BreakoutTrip = 0; 454 if (ULO.TripCount != 0) { 455 BreakoutTrip = ULO.TripCount % ULO.Count; 456 ULO.TripMultiple = 0; 457 } else { 458 // Figure out what multiple to use. 459 BreakoutTrip = ULO.TripMultiple = 460 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 461 } 462 463 using namespace ore; 464 // Report the unrolling decision. 465 if (CompletelyUnroll) { 466 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 467 << " with trip count " << ULO.TripCount << "!\n"); 468 if (ORE) 469 ORE->emit([&]() { 470 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 471 L->getHeader()) 472 << "completely unrolled loop with " 473 << NV("UnrollCount", ULO.TripCount) << " iterations"; 474 }); 475 } else if (ULO.PeelCount) { 476 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 477 << " with iteration count " << ULO.PeelCount << "!\n"); 478 if (ORE) 479 ORE->emit([&]() { 480 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 481 L->getHeader()) 482 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 483 << " iterations"; 484 }); 485 } else { 486 auto DiagBuilder = [&]() { 487 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 488 L->getHeader()); 489 return Diag << "unrolled loop by a factor of " 490 << NV("UnrollCount", ULO.Count); 491 }; 492 493 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 494 << ULO.Count); 495 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 496 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 497 if (ORE) 498 ORE->emit([&]() { 499 return DiagBuilder() << " with a breakout at trip " 500 << NV("BreakoutTrip", BreakoutTrip); 501 }); 502 } else if (ULO.TripMultiple != 1) { 503 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 504 if (ORE) 505 ORE->emit([&]() { 506 return DiagBuilder() 507 << " with " << NV("TripMultiple", ULO.TripMultiple) 508 << " trips per branch"; 509 }); 510 } else if (RuntimeTripCount) { 511 LLVM_DEBUG(dbgs() << " with run-time trip count"); 512 if (ORE) 513 ORE->emit( 514 [&]() { return DiagBuilder() << " with run-time trip count"; }); 515 } 516 LLVM_DEBUG(dbgs() << "!\n"); 517 } 518 519 // We are going to make changes to this loop. SCEV may be keeping cached info 520 // about it, in particular about backedge taken count. The changes we make 521 // are guaranteed to invalidate this information for our loop. It is tempting 522 // to only invalidate the loop being unrolled, but it is incorrect as long as 523 // all exiting branches from all inner loops have impact on the outer loops, 524 // and if something changes inside them then any of outer loops may also 525 // change. When we forget outermost loop, we also forget all contained loops 526 // and this is what we need here. 527 if (SE) { 528 if (ULO.ForgetAllSCEV) 529 SE->forgetAllLoops(); 530 else 531 SE->forgetTopmostLoop(L); 532 } 533 534 if (!LatchIsExiting) 535 ++NumUnrolledNotLatch; 536 537 // For the first iteration of the loop, we should use the precloned values for 538 // PHI nodes. Insert associations now. 539 ValueToValueMapTy LastValueMap; 540 std::vector<PHINode*> OrigPHINode; 541 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 542 OrigPHINode.push_back(cast<PHINode>(I)); 543 } 544 545 std::vector<BasicBlock *> Headers; 546 std::vector<BasicBlock *> ExitingBlocks; 547 std::vector<BasicBlock *> Latches; 548 Headers.push_back(Header); 549 Latches.push_back(LatchBlock); 550 if (ExitingBI) 551 ExitingBlocks.push_back(ExitingBI->getParent()); 552 553 // The current on-the-fly SSA update requires blocks to be processed in 554 // reverse postorder so that LastValueMap contains the correct value at each 555 // exit. 556 LoopBlocksDFS DFS(L); 557 DFS.perform(LI); 558 559 // Stash the DFS iterators before adding blocks to the loop. 560 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 561 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 562 563 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 564 565 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 566 // might break loop-simplified form for these loops (as they, e.g., would 567 // share the same exit blocks). We'll keep track of loops for which we can 568 // break this so that later we can re-simplify them. 569 SmallSetVector<Loop *, 4> LoopsToSimplify; 570 for (Loop *SubLoop : *L) 571 LoopsToSimplify.insert(SubLoop); 572 573 // When a FSDiscriminator is enabled, we don't need to add the multiply 574 // factors to the discriminators. 575 if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator) 576 for (BasicBlock *BB : L->getBlocks()) 577 for (Instruction &I : *BB) 578 if (!isa<DbgInfoIntrinsic>(&I)) 579 if (const DILocation *DIL = I.getDebugLoc()) { 580 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 581 if (NewDIL) 582 I.setDebugLoc(NewDIL.getValue()); 583 else 584 LLVM_DEBUG(dbgs() 585 << "Failed to create new discriminator: " 586 << DIL->getFilename() << " Line: " << DIL->getLine()); 587 } 588 589 // Identify what noalias metadata is inside the loop: if it is inside the 590 // loop, the associated metadata must be cloned for each iteration. 591 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 592 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 593 594 for (unsigned It = 1; It != ULO.Count; ++It) { 595 SmallVector<BasicBlock *, 8> NewBlocks; 596 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 597 NewLoops[L] = L; 598 599 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 600 ValueToValueMapTy VMap; 601 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 602 Header->getParent()->getBasicBlockList().push_back(New); 603 604 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 605 "Header should not be in a sub-loop"); 606 // Tell LI about New. 607 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 608 if (OldLoop) 609 LoopsToSimplify.insert(NewLoops[OldLoop]); 610 611 if (*BB == Header) 612 // Loop over all of the PHI nodes in the block, changing them to use 613 // the incoming values from the previous block. 614 for (PHINode *OrigPHI : OrigPHINode) { 615 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 616 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 617 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 618 if (It > 1 && L->contains(InValI)) 619 InVal = LastValueMap[InValI]; 620 VMap[OrigPHI] = InVal; 621 New->getInstList().erase(NewPHI); 622 } 623 624 // Update our running map of newest clones 625 LastValueMap[*BB] = New; 626 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 627 VI != VE; ++VI) 628 LastValueMap[VI->first] = VI->second; 629 630 // Add phi entries for newly created values to all exit blocks. 631 for (BasicBlock *Succ : successors(*BB)) { 632 if (L->contains(Succ)) 633 continue; 634 for (PHINode &PHI : Succ->phis()) { 635 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 636 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 637 if (It != LastValueMap.end()) 638 Incoming = It->second; 639 PHI.addIncoming(Incoming, New); 640 } 641 } 642 // Keep track of new headers and latches as we create them, so that 643 // we can insert the proper branches later. 644 if (*BB == Header) 645 Headers.push_back(New); 646 if (*BB == LatchBlock) 647 Latches.push_back(New); 648 649 // Keep track of the exiting block and its successor block contained in 650 // the loop for the current iteration. 651 if (ExitingBI) 652 if (*BB == ExitingBlocks[0]) 653 ExitingBlocks.push_back(New); 654 655 NewBlocks.push_back(New); 656 UnrolledLoopBlocks.push_back(New); 657 658 // Update DomTree: since we just copy the loop body, and each copy has a 659 // dedicated entry block (copy of the header block), this header's copy 660 // dominates all copied blocks. That means, dominance relations in the 661 // copied body are the same as in the original body. 662 if (*BB == Header) 663 DT->addNewBlock(New, Latches[It - 1]); 664 else { 665 auto BBDomNode = DT->getNode(*BB); 666 auto BBIDom = BBDomNode->getIDom(); 667 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 668 DT->addNewBlock( 669 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 670 } 671 } 672 673 // Remap all instructions in the most recent iteration 674 remapInstructionsInBlocks(NewBlocks, LastValueMap); 675 for (BasicBlock *NewBlock : NewBlocks) 676 for (Instruction &I : *NewBlock) 677 if (auto *II = dyn_cast<AssumeInst>(&I)) 678 AC->registerAssumption(II); 679 680 { 681 // Identify what other metadata depends on the cloned version. After 682 // cloning, replace the metadata with the corrected version for both 683 // memory instructions and noalias intrinsics. 684 std::string ext = (Twine("It") + Twine(It)).str(); 685 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 686 Header->getContext(), ext); 687 } 688 } 689 690 // Loop over the PHI nodes in the original block, setting incoming values. 691 for (PHINode *PN : OrigPHINode) { 692 if (CompletelyUnroll) { 693 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 694 Header->getInstList().erase(PN); 695 } else if (ULO.Count > 1) { 696 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 697 // If this value was defined in the loop, take the value defined by the 698 // last iteration of the loop. 699 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 700 if (L->contains(InValI)) 701 InVal = LastValueMap[InVal]; 702 } 703 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 704 PN->addIncoming(InVal, Latches.back()); 705 } 706 } 707 708 // Connect latches of the unrolled iterations to the headers of the next 709 // iteration. Currently they point to the header of the same iteration. 710 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 711 unsigned j = (i + 1) % e; 712 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); 713 } 714 715 // Update dominators of blocks we might reach through exits. 716 // Immediate dominator of such block might change, because we add more 717 // routes which can lead to the exit: we can now reach it from the copied 718 // iterations too. 719 if (ULO.Count > 1) { 720 for (auto *BB : OriginalLoopBlocks) { 721 auto *BBDomNode = DT->getNode(BB); 722 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 723 for (auto *ChildDomNode : BBDomNode->children()) { 724 auto *ChildBB = ChildDomNode->getBlock(); 725 if (!L->contains(ChildBB)) 726 ChildrenToUpdate.push_back(ChildBB); 727 } 728 // The new idom of the block will be the nearest common dominator 729 // of all copies of the previous idom. This is equivalent to the 730 // nearest common dominator of the previous idom and the first latch, 731 // which dominates all copies of the previous idom. 732 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 733 for (auto *ChildBB : ChildrenToUpdate) 734 DT->changeImmediateDominator(ChildBB, NewIDom); 735 } 736 } 737 738 assert(!UnrollVerifyDomtree || 739 DT->verify(DominatorTree::VerificationLevel::Fast)); 740 741 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 742 743 if (ExitingBI) { 744 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { 745 auto *Term = cast<BranchInst>(Src->getTerminator()); 746 const unsigned Idx = ExitOnTrue ^ WillExit; 747 BasicBlock *Dest = Term->getSuccessor(Idx); 748 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); 749 750 // Remove predecessors from all non-Dest successors. 751 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); 752 753 // Replace the conditional branch with an unconditional one. 754 BranchInst::Create(Dest, Term); 755 Term->eraseFromParent(); 756 757 DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}}); 758 }; 759 760 auto WillExit = [&](unsigned i, unsigned j) -> Optional<bool> { 761 if (CompletelyUnroll) { 762 if (ULO.PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)) 763 return None; 764 return j == 0; 765 } 766 767 if (RuntimeTripCount && j != 0) 768 return false; 769 770 if (j != BreakoutTrip && 771 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 772 // If we know the trip count or a multiple of it, we can safely use an 773 // unconditional branch for some iterations. 774 return false; 775 } 776 return None; 777 }; 778 779 // Fold branches for iterations where we know that they will exit or not 780 // exit. 781 bool ExitOnTrue = !L->contains(ExitingBI->getSuccessor(0)); 782 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 783 // The branch destination. 784 unsigned j = (i + 1) % e; 785 Optional<bool> KnownWillExit = WillExit(i, j); 786 if (!KnownWillExit) 787 continue; 788 789 // TODO: Also fold known-exiting branches for non-latch exits. 790 if (*KnownWillExit && !LatchIsExiting) 791 continue; 792 793 SetDest(ExitingBlocks[i], *KnownWillExit, ExitOnTrue); 794 } 795 } 796 797 798 // When completely unrolling, the last latch becomes unreachable. 799 if (!LatchIsExiting && CompletelyUnroll) 800 changeToUnreachable(Latches.back()->getTerminator(), /* UseTrap */ false, 801 PreserveLCSSA, &DTU); 802 803 // Merge adjacent basic blocks, if possible. 804 for (BasicBlock *Latch : Latches) { 805 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 806 assert((Term || 807 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 808 "Need a branch as terminator, except when fully unrolling with " 809 "unconditional latch"); 810 if (Term && Term->isUnconditional()) { 811 BasicBlock *Dest = Term->getSuccessor(0); 812 BasicBlock *Fold = Dest->getUniquePredecessor(); 813 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 814 // Dest has been folded into Fold. Update our worklists accordingly. 815 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 816 llvm::erase_value(UnrolledLoopBlocks, Dest); 817 } 818 } 819 } 820 // Apply updates to the DomTree. 821 DT = &DTU.getDomTree(); 822 823 // At this point, the code is well formed. We now simplify the unrolled loop, 824 // doing constant propagation and dead code elimination as we go. 825 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 826 SE, DT, AC, TTI); 827 828 NumCompletelyUnrolled += CompletelyUnroll; 829 ++NumUnrolled; 830 831 Loop *OuterL = L->getParentLoop(); 832 // Update LoopInfo if the loop is completely removed. 833 if (CompletelyUnroll) 834 LI->erase(L); 835 836 // After complete unrolling most of the blocks should be contained in OuterL. 837 // However, some of them might happen to be out of OuterL (e.g. if they 838 // precede a loop exit). In this case we might need to insert PHI nodes in 839 // order to preserve LCSSA form. 840 // We don't need to check this if we already know that we need to fix LCSSA 841 // form. 842 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 843 // it should be possible to fix it in-place. 844 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 845 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 846 847 // Make sure that loop-simplify form is preserved. We want to simplify 848 // at least one layer outside of the loop that was unrolled so that any 849 // changes to the parent loop exposed by the unrolling are considered. 850 if (OuterL) { 851 // OuterL includes all loops for which we can break loop-simplify, so 852 // it's sufficient to simplify only it (it'll recursively simplify inner 853 // loops too). 854 if (NeedToFixLCSSA) { 855 // LCSSA must be performed on the outermost affected loop. The unrolled 856 // loop's last loop latch is guaranteed to be in the outermost loop 857 // after LoopInfo's been updated by LoopInfo::erase. 858 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 859 Loop *FixLCSSALoop = OuterL; 860 if (!FixLCSSALoop->contains(LatchLoop)) 861 while (FixLCSSALoop->getParentLoop() != LatchLoop) 862 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 863 864 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 865 } else if (PreserveLCSSA) { 866 assert(OuterL->isLCSSAForm(*DT) && 867 "Loops should be in LCSSA form after loop-unroll."); 868 } 869 870 // TODO: That potentially might be compile-time expensive. We should try 871 // to fix the loop-simplified form incrementally. 872 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 873 } else { 874 // Simplify loops for which we might've broken loop-simplify form. 875 for (Loop *SubLoop : LoopsToSimplify) 876 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 877 } 878 879 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 880 : LoopUnrollResult::PartiallyUnrolled; 881 } 882 883 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 884 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 885 /// such metadata node exists, then nullptr is returned. 886 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 887 // First operand should refer to the loop id itself. 888 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 889 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 890 891 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 892 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 893 if (!MD) 894 continue; 895 896 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 897 if (!S) 898 continue; 899 900 if (Name.equals(S->getString())) 901 return MD; 902 } 903 return nullptr; 904 } 905