1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopIterator.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/LoopSimplify.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 static cl::opt<bool> 55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 56 cl::desc("Verify domtree after unrolling"), 57 #ifdef EXPENSIVE_CHECKS 58 cl::init(true) 59 #else 60 cl::init(false) 61 #endif 62 ); 63 64 /// Convert the instruction operands from referencing the current values into 65 /// those specified by VMap. 66 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) { 67 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 68 Value *Op = I->getOperand(op); 69 70 // Unwrap arguments of dbg.value intrinsics. 71 bool Wrapped = false; 72 if (auto *V = dyn_cast<MetadataAsValue>(Op)) 73 if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) { 74 Op = Unwrapped->getValue(); 75 Wrapped = true; 76 } 77 78 auto wrap = [&](Value *V) { 79 auto &C = I->getContext(); 80 return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V; 81 }; 82 83 ValueToValueMapTy::iterator It = VMap.find(Op); 84 if (It != VMap.end()) 85 I->setOperand(op, wrap(It->second)); 86 } 87 88 if (PHINode *PN = dyn_cast<PHINode>(I)) { 89 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 90 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 91 if (It != VMap.end()) 92 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 93 } 94 } 95 } 96 97 /// Folds a basic block into its predecessor if it only has one predecessor, and 98 /// that predecessor only has one successor. 99 /// The LoopInfo Analysis that is passed will be kept consistent. 100 BasicBlock *llvm::foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, 101 ScalarEvolution *SE, 102 DominatorTree *DT) { 103 // Merge basic blocks into their predecessor if there is only one distinct 104 // pred, and if there is only one distinct successor of the predecessor, and 105 // if there are no PHI nodes. 106 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 107 if (!OnlyPred) return nullptr; 108 109 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 110 return nullptr; 111 112 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 113 << OnlyPred->getName() << "\n"); 114 115 // Resolve any PHI nodes at the start of the block. They are all 116 // guaranteed to have exactly one entry if they exist, unless there are 117 // multiple duplicate (but guaranteed to be equal) entries for the 118 // incoming edges. This occurs when there are multiple edges from 119 // OnlyPred to OnlySucc. 120 FoldSingleEntryPHINodes(BB); 121 122 // Delete the unconditional branch from the predecessor... 123 OnlyPred->getInstList().pop_back(); 124 125 // Make all PHI nodes that referred to BB now refer to Pred as their 126 // source... 127 BB->replaceAllUsesWith(OnlyPred); 128 129 // Move all definitions in the successor to the predecessor... 130 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 131 132 // OldName will be valid until erased. 133 StringRef OldName = BB->getName(); 134 135 // Erase the old block and update dominator info. 136 if (DT) 137 if (DomTreeNode *DTN = DT->getNode(BB)) { 138 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 139 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 140 for (auto *DI : Children) 141 DT->changeImmediateDominator(DI, PredDTN); 142 143 DT->eraseNode(BB); 144 } 145 146 LI->removeBlock(BB); 147 148 // Inherit predecessor's name if it exists... 149 if (!OldName.empty() && !OnlyPred->hasName()) 150 OnlyPred->setName(OldName); 151 152 BB->eraseFromParent(); 153 154 return OnlyPred; 155 } 156 157 /// Check if unrolling created a situation where we need to insert phi nodes to 158 /// preserve LCSSA form. 159 /// \param Blocks is a vector of basic blocks representing unrolled loop. 160 /// \param L is the outer loop. 161 /// It's possible that some of the blocks are in L, and some are not. In this 162 /// case, if there is a use is outside L, and definition is inside L, we need to 163 /// insert a phi-node, otherwise LCSSA will be broken. 164 /// The function is just a helper function for llvm::UnrollLoop that returns 165 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 167 LoopInfo *LI) { 168 for (BasicBlock *BB : Blocks) { 169 if (LI->getLoopFor(BB) == L) 170 continue; 171 for (Instruction &I : *BB) { 172 for (Use &U : I.operands()) { 173 if (auto Def = dyn_cast<Instruction>(U)) { 174 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 175 if (!DefLoop) 176 continue; 177 if (DefLoop->contains(L)) 178 return true; 179 } 180 } 181 } 182 } 183 return false; 184 } 185 186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 187 /// and adds a mapping from the original loop to the new loop to NewLoops. 188 /// Returns nullptr if no new loop was created and a pointer to the 189 /// original loop OriginalBB was part of otherwise. 190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 191 BasicBlock *ClonedBB, LoopInfo *LI, 192 NewLoopsMap &NewLoops) { 193 // Figure out which loop New is in. 194 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 195 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 196 197 Loop *&NewLoop = NewLoops[OldLoop]; 198 if (!NewLoop) { 199 // Found a new sub-loop. 200 assert(OriginalBB == OldLoop->getHeader() && 201 "Header should be first in RPO"); 202 203 NewLoop = LI->AllocateLoop(); 204 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 205 206 if (NewLoopParent) 207 NewLoopParent->addChildLoop(NewLoop); 208 else 209 LI->addTopLevelLoop(NewLoop); 210 211 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 212 return OldLoop; 213 } else { 214 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 215 return nullptr; 216 } 217 } 218 219 /// The function chooses which type of unroll (epilog or prolog) is more 220 /// profitabale. 221 /// Epilog unroll is more profitable when there is PHI that starts from 222 /// constant. In this case epilog will leave PHI start from constant, 223 /// but prolog will convert it to non-constant. 224 /// 225 /// loop: 226 /// PN = PHI [I, Latch], [CI, PreHeader] 227 /// I = foo(PN) 228 /// ... 229 /// 230 /// Epilog unroll case. 231 /// loop: 232 /// PN = PHI [I2, Latch], [CI, PreHeader] 233 /// I1 = foo(PN) 234 /// I2 = foo(I1) 235 /// ... 236 /// Prolog unroll case. 237 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 238 /// loop: 239 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 240 /// I1 = foo(PN) 241 /// I2 = foo(I1) 242 /// ... 243 /// 244 static bool isEpilogProfitable(Loop *L) { 245 BasicBlock *PreHeader = L->getLoopPreheader(); 246 BasicBlock *Header = L->getHeader(); 247 assert(PreHeader && Header); 248 for (const PHINode &PN : Header->phis()) { 249 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 250 return true; 251 } 252 return false; 253 } 254 255 /// Perform some cleanup and simplifications on loops after unrolling. It is 256 /// useful to simplify the IV's in the new loop, as well as do a quick 257 /// simplify/dce pass of the instructions. 258 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 259 ScalarEvolution *SE, DominatorTree *DT, 260 AssumptionCache *AC) { 261 // Simplify any new induction variables in the partially unrolled loop. 262 if (SE && SimplifyIVs) { 263 SmallVector<WeakTrackingVH, 16> DeadInsts; 264 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 265 266 // Aggressively clean up dead instructions that simplifyLoopIVs already 267 // identified. Any remaining should be cleaned up below. 268 while (!DeadInsts.empty()) 269 if (Instruction *Inst = 270 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 271 RecursivelyDeleteTriviallyDeadInstructions(Inst); 272 } 273 274 // At this point, the code is well formed. We now do a quick sweep over the 275 // inserted code, doing constant propagation and dead code elimination as we 276 // go. 277 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 278 for (BasicBlock *BB : L->getBlocks()) { 279 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 280 Instruction *Inst = &*I++; 281 282 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 283 if (LI->replacementPreservesLCSSAForm(Inst, V)) 284 Inst->replaceAllUsesWith(V); 285 if (isInstructionTriviallyDead(Inst)) 286 BB->getInstList().erase(Inst); 287 } 288 } 289 290 // TODO: after peeling or unrolling, previously loop variant conditions are 291 // likely to fold to constants, eagerly propagating those here will require 292 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 293 // appropriate. 294 } 295 296 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 297 /// can only fail when the loop's latch block is not terminated by a conditional 298 /// branch instruction. However, if the trip count (and multiple) are not known, 299 /// loop unrolling will mostly produce more code that is no faster. 300 /// 301 /// TripCount is the upper bound of the iteration on which control exits 302 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 303 /// via an early branch in other loop block or via LatchBlock terminator. This 304 /// is relaxed from the general definition of trip count which is the number of 305 /// times the loop header executes. Note that UnrollLoop assumes that the loop 306 /// counter test is in LatchBlock in order to remove unnecesssary instances of 307 /// the test. If control can exit the loop from the LatchBlock's terminator 308 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 309 /// 310 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 311 /// needs to be preserved. It is needed when we use trip count upper bound to 312 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 313 /// conditional branch needs to be preserved. 314 /// 315 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 316 /// execute without exiting the loop. 317 /// 318 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 319 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 320 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 321 /// iterations before branching into the unrolled loop. UnrollLoop will not 322 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 323 /// AllowExpensiveTripCount is false. 324 /// 325 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 326 /// number of iterations we want to peel off. 327 /// 328 /// The LoopInfo Analysis that is passed will be kept consistent. 329 /// 330 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 331 /// DominatorTree if they are non-null. 332 /// 333 /// If RemainderLoop is non-null, it will receive the remainder loop (if 334 /// required and not fully unrolled). 335 LoopUnrollResult llvm::UnrollLoop( 336 Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime, 337 bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst, 338 unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder, 339 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 340 OptimizationRemarkEmitter *ORE, bool PreserveLCSSA, Loop **RemainderLoop) { 341 342 BasicBlock *Preheader = L->getLoopPreheader(); 343 if (!Preheader) { 344 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 345 return LoopUnrollResult::Unmodified; 346 } 347 348 BasicBlock *LatchBlock = L->getLoopLatch(); 349 if (!LatchBlock) { 350 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 351 return LoopUnrollResult::Unmodified; 352 } 353 354 // Loops with indirectbr cannot be cloned. 355 if (!L->isSafeToClone()) { 356 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 357 return LoopUnrollResult::Unmodified; 358 } 359 360 // The current loop unroll pass can only unroll loops with a single latch 361 // that's a conditional branch exiting the loop. 362 // FIXME: The implementation can be extended to work with more complicated 363 // cases, e.g. loops with multiple latches. 364 BasicBlock *Header = L->getHeader(); 365 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 366 367 if (!BI || BI->isUnconditional()) { 368 // The loop-rotate pass can be helpful to avoid this in many cases. 369 LLVM_DEBUG( 370 dbgs() 371 << " Can't unroll; loop not terminated by a conditional branch.\n"); 372 return LoopUnrollResult::Unmodified; 373 } 374 375 auto CheckSuccessors = [&](unsigned S1, unsigned S2) { 376 return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2)); 377 }; 378 379 if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) { 380 LLVM_DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch" 381 " exiting the loop can be unrolled\n"); 382 return LoopUnrollResult::Unmodified; 383 } 384 385 if (Header->hasAddressTaken()) { 386 // The loop-rotate pass can be helpful to avoid this in many cases. 387 LLVM_DEBUG( 388 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 389 return LoopUnrollResult::Unmodified; 390 } 391 392 if (TripCount != 0) 393 LLVM_DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 394 if (TripMultiple != 1) 395 LLVM_DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 396 397 // Effectively "DCE" unrolled iterations that are beyond the tripcount 398 // and will never be executed. 399 if (TripCount != 0 && Count > TripCount) 400 Count = TripCount; 401 402 // Don't enter the unroll code if there is nothing to do. 403 if (TripCount == 0 && Count < 2 && PeelCount == 0) { 404 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 405 return LoopUnrollResult::Unmodified; 406 } 407 408 assert(Count > 0); 409 assert(TripMultiple > 0); 410 assert(TripCount == 0 || TripCount % TripMultiple == 0); 411 412 // Are we eliminating the loop control altogether? 413 bool CompletelyUnroll = Count == TripCount; 414 SmallVector<BasicBlock *, 4> ExitBlocks; 415 L->getExitBlocks(ExitBlocks); 416 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 417 418 // Go through all exits of L and see if there are any phi-nodes there. We just 419 // conservatively assume that they're inserted to preserve LCSSA form, which 420 // means that complete unrolling might break this form. We need to either fix 421 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 422 // now we just recompute LCSSA for the outer loop, but it should be possible 423 // to fix it in-place. 424 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 425 any_of(ExitBlocks, [](const BasicBlock *BB) { 426 return isa<PHINode>(BB->begin()); 427 }); 428 429 // We assume a run-time trip count if the compiler cannot 430 // figure out the loop trip count and the unroll-runtime 431 // flag is specified. 432 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 433 434 assert((!RuntimeTripCount || !PeelCount) && 435 "Did not expect runtime trip-count unrolling " 436 "and peeling for the same loop"); 437 438 bool Peeled = false; 439 if (PeelCount) { 440 Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA); 441 442 // Successful peeling may result in a change in the loop preheader/trip 443 // counts. If we later unroll the loop, we want these to be updated. 444 if (Peeled) { 445 BasicBlock *ExitingBlock = L->getExitingBlock(); 446 assert(ExitingBlock && "Loop without exiting block?"); 447 Preheader = L->getLoopPreheader(); 448 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 449 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 450 } 451 } 452 453 // Loops containing convergent instructions must have a count that divides 454 // their TripMultiple. 455 LLVM_DEBUG( 456 { 457 bool HasConvergent = false; 458 for (auto &BB : L->blocks()) 459 for (auto &I : *BB) 460 if (auto CS = CallSite(&I)) 461 HasConvergent |= CS.isConvergent(); 462 assert((!HasConvergent || TripMultiple % Count == 0) && 463 "Unroll count must divide trip multiple if loop contains a " 464 "convergent operation."); 465 }); 466 467 bool EpilogProfitability = 468 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 469 : isEpilogProfitable(L); 470 471 if (RuntimeTripCount && TripMultiple % Count != 0 && 472 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 473 EpilogProfitability, UnrollRemainder, LI, SE, 474 DT, AC, PreserveLCSSA, RemainderLoop)) { 475 if (Force) 476 RuntimeTripCount = false; 477 else { 478 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 479 "generated when assuming runtime trip count\n"); 480 return LoopUnrollResult::Unmodified; 481 } 482 } 483 484 // If we know the trip count, we know the multiple... 485 unsigned BreakoutTrip = 0; 486 if (TripCount != 0) { 487 BreakoutTrip = TripCount % Count; 488 TripMultiple = 0; 489 } else { 490 // Figure out what multiple to use. 491 BreakoutTrip = TripMultiple = 492 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 493 } 494 495 using namespace ore; 496 // Report the unrolling decision. 497 if (CompletelyUnroll) { 498 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 499 << " with trip count " << TripCount << "!\n"); 500 if (ORE) 501 ORE->emit([&]() { 502 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 503 L->getHeader()) 504 << "completely unrolled loop with " 505 << NV("UnrollCount", TripCount) << " iterations"; 506 }); 507 } else if (PeelCount) { 508 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 509 << " with iteration count " << PeelCount << "!\n"); 510 if (ORE) 511 ORE->emit([&]() { 512 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 513 L->getHeader()) 514 << " peeled loop by " << NV("PeelCount", PeelCount) 515 << " iterations"; 516 }); 517 } else { 518 auto DiagBuilder = [&]() { 519 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 520 L->getHeader()); 521 return Diag << "unrolled loop by a factor of " 522 << NV("UnrollCount", Count); 523 }; 524 525 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 526 << Count); 527 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 528 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 529 if (ORE) 530 ORE->emit([&]() { 531 return DiagBuilder() << " with a breakout at trip " 532 << NV("BreakoutTrip", BreakoutTrip); 533 }); 534 } else if (TripMultiple != 1) { 535 LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 536 if (ORE) 537 ORE->emit([&]() { 538 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) 539 << " trips per branch"; 540 }); 541 } else if (RuntimeTripCount) { 542 LLVM_DEBUG(dbgs() << " with run-time trip count"); 543 if (ORE) 544 ORE->emit( 545 [&]() { return DiagBuilder() << " with run-time trip count"; }); 546 } 547 LLVM_DEBUG(dbgs() << "!\n"); 548 } 549 550 // We are going to make changes to this loop. SCEV may be keeping cached info 551 // about it, in particular about backedge taken count. The changes we make 552 // are guaranteed to invalidate this information for our loop. It is tempting 553 // to only invalidate the loop being unrolled, but it is incorrect as long as 554 // all exiting branches from all inner loops have impact on the outer loops, 555 // and if something changes inside them then any of outer loops may also 556 // change. When we forget outermost loop, we also forget all contained loops 557 // and this is what we need here. 558 if (SE) 559 SE->forgetTopmostLoop(L); 560 561 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 562 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 563 564 // For the first iteration of the loop, we should use the precloned values for 565 // PHI nodes. Insert associations now. 566 ValueToValueMapTy LastValueMap; 567 std::vector<PHINode*> OrigPHINode; 568 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 569 OrigPHINode.push_back(cast<PHINode>(I)); 570 } 571 572 std::vector<BasicBlock*> Headers; 573 std::vector<BasicBlock*> Latches; 574 Headers.push_back(Header); 575 Latches.push_back(LatchBlock); 576 577 // The current on-the-fly SSA update requires blocks to be processed in 578 // reverse postorder so that LastValueMap contains the correct value at each 579 // exit. 580 LoopBlocksDFS DFS(L); 581 DFS.perform(LI); 582 583 // Stash the DFS iterators before adding blocks to the loop. 584 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 585 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 586 587 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 588 589 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 590 // might break loop-simplified form for these loops (as they, e.g., would 591 // share the same exit blocks). We'll keep track of loops for which we can 592 // break this so that later we can re-simplify them. 593 SmallSetVector<Loop *, 4> LoopsToSimplify; 594 for (Loop *SubLoop : *L) 595 LoopsToSimplify.insert(SubLoop); 596 597 if (Header->getParent()->isDebugInfoForProfiling()) 598 for (BasicBlock *BB : L->getBlocks()) 599 for (Instruction &I : *BB) 600 if (!isa<DbgInfoIntrinsic>(&I)) 601 if (const DILocation *DIL = I.getDebugLoc()) { 602 auto NewDIL = DIL->cloneWithDuplicationFactor(Count); 603 if (NewDIL) 604 I.setDebugLoc(NewDIL.getValue()); 605 else 606 LLVM_DEBUG(dbgs() 607 << "Failed to create new discriminator: " 608 << DIL->getFilename() << " Line: " << DIL->getLine()); 609 } 610 611 for (unsigned It = 1; It != Count; ++It) { 612 std::vector<BasicBlock*> NewBlocks; 613 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 614 NewLoops[L] = L; 615 616 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 617 ValueToValueMapTy VMap; 618 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 619 Header->getParent()->getBasicBlockList().push_back(New); 620 621 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 622 "Header should not be in a sub-loop"); 623 // Tell LI about New. 624 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 625 if (OldLoop) 626 LoopsToSimplify.insert(NewLoops[OldLoop]); 627 628 if (*BB == Header) 629 // Loop over all of the PHI nodes in the block, changing them to use 630 // the incoming values from the previous block. 631 for (PHINode *OrigPHI : OrigPHINode) { 632 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 633 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 634 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 635 if (It > 1 && L->contains(InValI)) 636 InVal = LastValueMap[InValI]; 637 VMap[OrigPHI] = InVal; 638 New->getInstList().erase(NewPHI); 639 } 640 641 // Update our running map of newest clones 642 LastValueMap[*BB] = New; 643 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 644 VI != VE; ++VI) 645 LastValueMap[VI->first] = VI->second; 646 647 // Add phi entries for newly created values to all exit blocks. 648 for (BasicBlock *Succ : successors(*BB)) { 649 if (L->contains(Succ)) 650 continue; 651 for (PHINode &PHI : Succ->phis()) { 652 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 653 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 654 if (It != LastValueMap.end()) 655 Incoming = It->second; 656 PHI.addIncoming(Incoming, New); 657 } 658 } 659 // Keep track of new headers and latches as we create them, so that 660 // we can insert the proper branches later. 661 if (*BB == Header) 662 Headers.push_back(New); 663 if (*BB == LatchBlock) 664 Latches.push_back(New); 665 666 NewBlocks.push_back(New); 667 UnrolledLoopBlocks.push_back(New); 668 669 // Update DomTree: since we just copy the loop body, and each copy has a 670 // dedicated entry block (copy of the header block), this header's copy 671 // dominates all copied blocks. That means, dominance relations in the 672 // copied body are the same as in the original body. 673 if (DT) { 674 if (*BB == Header) 675 DT->addNewBlock(New, Latches[It - 1]); 676 else { 677 auto BBDomNode = DT->getNode(*BB); 678 auto BBIDom = BBDomNode->getIDom(); 679 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 680 DT->addNewBlock( 681 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 682 } 683 } 684 } 685 686 // Remap all instructions in the most recent iteration 687 for (BasicBlock *NewBlock : NewBlocks) { 688 for (Instruction &I : *NewBlock) { 689 ::remapInstruction(&I, LastValueMap); 690 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 691 if (II->getIntrinsicID() == Intrinsic::assume) 692 AC->registerAssumption(II); 693 } 694 } 695 } 696 697 // Loop over the PHI nodes in the original block, setting incoming values. 698 for (PHINode *PN : OrigPHINode) { 699 if (CompletelyUnroll) { 700 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 701 Header->getInstList().erase(PN); 702 } 703 else if (Count > 1) { 704 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 705 // If this value was defined in the loop, take the value defined by the 706 // last iteration of the loop. 707 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 708 if (L->contains(InValI)) 709 InVal = LastValueMap[InVal]; 710 } 711 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 712 PN->addIncoming(InVal, Latches.back()); 713 } 714 } 715 716 // Now that all the basic blocks for the unrolled iterations are in place, 717 // set up the branches to connect them. 718 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 719 // The original branch was replicated in each unrolled iteration. 720 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 721 722 // The branch destination. 723 unsigned j = (i + 1) % e; 724 BasicBlock *Dest = Headers[j]; 725 bool NeedConditional = true; 726 727 if (RuntimeTripCount && j != 0) { 728 NeedConditional = false; 729 } 730 731 // For a complete unroll, make the last iteration end with a branch 732 // to the exit block. 733 if (CompletelyUnroll) { 734 if (j == 0) 735 Dest = LoopExit; 736 // If using trip count upper bound to completely unroll, we need to keep 737 // the conditional branch except the last one because the loop may exit 738 // after any iteration. 739 assert(NeedConditional && 740 "NeedCondition cannot be modified by both complete " 741 "unrolling and runtime unrolling"); 742 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 743 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 744 // If we know the trip count or a multiple of it, we can safely use an 745 // unconditional branch for some iterations. 746 NeedConditional = false; 747 } 748 749 if (NeedConditional) { 750 // Update the conditional branch's successor for the following 751 // iteration. 752 Term->setSuccessor(!ContinueOnTrue, Dest); 753 } else { 754 // Remove phi operands at this loop exit 755 if (Dest != LoopExit) { 756 BasicBlock *BB = Latches[i]; 757 for (BasicBlock *Succ: successors(BB)) { 758 if (Succ == Headers[i]) 759 continue; 760 for (PHINode &Phi : Succ->phis()) 761 Phi.removeIncomingValue(BB, false); 762 } 763 } 764 // Replace the conditional branch with an unconditional one. 765 BranchInst::Create(Dest, Term); 766 Term->eraseFromParent(); 767 } 768 } 769 770 // Update dominators of blocks we might reach through exits. 771 // Immediate dominator of such block might change, because we add more 772 // routes which can lead to the exit: we can now reach it from the copied 773 // iterations too. 774 if (DT && Count > 1) { 775 for (auto *BB : OriginalLoopBlocks) { 776 auto *BBDomNode = DT->getNode(BB); 777 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 778 for (auto *ChildDomNode : BBDomNode->getChildren()) { 779 auto *ChildBB = ChildDomNode->getBlock(); 780 if (!L->contains(ChildBB)) 781 ChildrenToUpdate.push_back(ChildBB); 782 } 783 BasicBlock *NewIDom; 784 if (BB == LatchBlock) { 785 // The latch is special because we emit unconditional branches in 786 // some cases where the original loop contained a conditional branch. 787 // Since the latch is always at the bottom of the loop, if the latch 788 // dominated an exit before unrolling, the new dominator of that exit 789 // must also be a latch. Specifically, the dominator is the first 790 // latch which ends in a conditional branch, or the last latch if 791 // there is no such latch. 792 NewIDom = Latches.back(); 793 for (BasicBlock *IterLatch : Latches) { 794 Instruction *Term = IterLatch->getTerminator(); 795 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 796 NewIDom = IterLatch; 797 break; 798 } 799 } 800 } else { 801 // The new idom of the block will be the nearest common dominator 802 // of all copies of the previous idom. This is equivalent to the 803 // nearest common dominator of the previous idom and the first latch, 804 // which dominates all copies of the previous idom. 805 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 806 } 807 for (auto *ChildBB : ChildrenToUpdate) 808 DT->changeImmediateDominator(ChildBB, NewIDom); 809 } 810 } 811 812 assert(!DT || !UnrollVerifyDomtree || 813 DT->verify(DominatorTree::VerificationLevel::Fast)); 814 815 // Merge adjacent basic blocks, if possible. 816 for (BasicBlock *Latch : Latches) { 817 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 818 if (Term->isUnconditional()) { 819 BasicBlock *Dest = Term->getSuccessor(0); 820 if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) { 821 // Dest has been folded into Fold. Update our worklists accordingly. 822 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 823 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 824 UnrolledLoopBlocks.end(), Dest), 825 UnrolledLoopBlocks.end()); 826 } 827 } 828 } 829 830 // At this point, the code is well formed. We now simplify the unrolled loop, 831 // doing constant propagation and dead code elimination as we go. 832 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (Count > 1 || Peeled), LI, SE, 833 DT, AC); 834 835 NumCompletelyUnrolled += CompletelyUnroll; 836 ++NumUnrolled; 837 838 Loop *OuterL = L->getParentLoop(); 839 // Update LoopInfo if the loop is completely removed. 840 if (CompletelyUnroll) 841 LI->erase(L); 842 843 // After complete unrolling most of the blocks should be contained in OuterL. 844 // However, some of them might happen to be out of OuterL (e.g. if they 845 // precede a loop exit). In this case we might need to insert PHI nodes in 846 // order to preserve LCSSA form. 847 // We don't need to check this if we already know that we need to fix LCSSA 848 // form. 849 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 850 // it should be possible to fix it in-place. 851 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 852 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 853 854 // If we have a pass and a DominatorTree we should re-simplify impacted loops 855 // to ensure subsequent analyses can rely on this form. We want to simplify 856 // at least one layer outside of the loop that was unrolled so that any 857 // changes to the parent loop exposed by the unrolling are considered. 858 if (DT) { 859 if (OuterL) { 860 // OuterL includes all loops for which we can break loop-simplify, so 861 // it's sufficient to simplify only it (it'll recursively simplify inner 862 // loops too). 863 if (NeedToFixLCSSA) { 864 // LCSSA must be performed on the outermost affected loop. The unrolled 865 // loop's last loop latch is guaranteed to be in the outermost loop 866 // after LoopInfo's been updated by LoopInfo::erase. 867 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 868 Loop *FixLCSSALoop = OuterL; 869 if (!FixLCSSALoop->contains(LatchLoop)) 870 while (FixLCSSALoop->getParentLoop() != LatchLoop) 871 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 872 873 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 874 } else if (PreserveLCSSA) { 875 assert(OuterL->isLCSSAForm(*DT) && 876 "Loops should be in LCSSA form after loop-unroll."); 877 } 878 879 // TODO: That potentially might be compile-time expensive. We should try 880 // to fix the loop-simplified form incrementally. 881 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 882 } else { 883 // Simplify loops for which we might've broken loop-simplify form. 884 for (Loop *SubLoop : LoopsToSimplify) 885 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 886 } 887 } 888 889 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 890 : LoopUnrollResult::PartiallyUnrolled; 891 } 892 893 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 894 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 895 /// such metadata node exists, then nullptr is returned. 896 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 897 // First operand should refer to the loop id itself. 898 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 899 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 900 901 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 902 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 903 if (!MD) 904 continue; 905 906 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 907 if (!S) 908 continue; 909 910 if (Name.equals(S->getString())) 911 return MD; 912 } 913 return nullptr; 914 } 915