1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Cloning.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Transforms/Utils/LoopUtils.h" 34 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "loop-unroll" 38 39 // TODO: Should these be here or in LoopUnroll? 40 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 41 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 42 43 /// RemapInstruction - Convert the instruction operands from referencing the 44 /// current values into those specified by VMap. 45 static inline void RemapInstruction(Instruction *I, 46 ValueToValueMapTy &VMap) { 47 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 48 Value *Op = I->getOperand(op); 49 ValueToValueMapTy::iterator It = VMap.find(Op); 50 if (It != VMap.end()) 51 I->setOperand(op, It->second); 52 } 53 54 if (PHINode *PN = dyn_cast<PHINode>(I)) { 55 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 56 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 57 if (It != VMap.end()) 58 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 59 } 60 } 61 } 62 63 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 64 /// only has one predecessor, and that predecessor only has one successor. 65 /// The LoopInfo Analysis that is passed will be kept consistent. 66 /// Returns the new combined block. 67 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, 68 LPPassManager *LPM) { 69 // Merge basic blocks into their predecessor if there is only one distinct 70 // pred, and if there is only one distinct successor of the predecessor, and 71 // if there are no PHI nodes. 72 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 73 if (!OnlyPred) return nullptr; 74 75 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 76 return nullptr; 77 78 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 79 80 // Resolve any PHI nodes at the start of the block. They are all 81 // guaranteed to have exactly one entry if they exist, unless there are 82 // multiple duplicate (but guaranteed to be equal) entries for the 83 // incoming edges. This occurs when there are multiple edges from 84 // OnlyPred to OnlySucc. 85 FoldSingleEntryPHINodes(BB); 86 87 // Delete the unconditional branch from the predecessor... 88 OnlyPred->getInstList().pop_back(); 89 90 // Make all PHI nodes that referred to BB now refer to Pred as their 91 // source... 92 BB->replaceAllUsesWith(OnlyPred); 93 94 // Move all definitions in the successor to the predecessor... 95 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 96 97 // OldName will be valid until erased. 98 StringRef OldName = BB->getName(); 99 100 // Erase basic block from the function... 101 102 // ScalarEvolution holds references to loop exit blocks. 103 if (LPM) { 104 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { 105 if (Loop *L = LI->getLoopFor(BB)) 106 SE->forgetLoop(L); 107 } 108 } 109 LI->removeBlock(BB); 110 111 // Inherit predecessor's name if it exists... 112 if (!OldName.empty() && !OnlyPred->hasName()) 113 OnlyPred->setName(OldName); 114 115 BB->eraseFromParent(); 116 117 return OnlyPred; 118 } 119 120 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 121 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 122 /// can only fail when the loop's latch block is not terminated by a conditional 123 /// branch instruction. However, if the trip count (and multiple) are not known, 124 /// loop unrolling will mostly produce more code that is no faster. 125 /// 126 /// TripCount is generally defined as the number of times the loop header 127 /// executes. UnrollLoop relaxes the definition to permit early exits: here 128 /// TripCount is the iteration on which control exits LatchBlock if no early 129 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 130 /// terminates LatchBlock in order to remove unnecesssary instances of the 131 /// test. In other words, control may exit the loop prior to TripCount 132 /// iterations via an early branch, but control may not exit the loop from the 133 /// LatchBlock's terminator prior to TripCount iterations. 134 /// 135 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 136 /// execute without exiting the loop. 137 /// 138 /// The LoopInfo Analysis that is passed will be kept consistent. 139 /// 140 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 141 /// removed from the LoopPassManager as well. LPM can also be NULL. 142 /// 143 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are 144 /// available from the Pass it must also preserve those analyses. 145 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 146 bool AllowRuntime, unsigned TripMultiple, 147 LoopInfo *LI, Pass *PP, LPPassManager *LPM) { 148 BasicBlock *Preheader = L->getLoopPreheader(); 149 if (!Preheader) { 150 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 151 return false; 152 } 153 154 BasicBlock *LatchBlock = L->getLoopLatch(); 155 if (!LatchBlock) { 156 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 157 return false; 158 } 159 160 // Loops with indirectbr cannot be cloned. 161 if (!L->isSafeToClone()) { 162 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 163 return false; 164 } 165 166 BasicBlock *Header = L->getHeader(); 167 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 168 169 if (!BI || BI->isUnconditional()) { 170 // The loop-rotate pass can be helpful to avoid this in many cases. 171 DEBUG(dbgs() << 172 " Can't unroll; loop not terminated by a conditional branch.\n"); 173 return false; 174 } 175 176 if (Header->hasAddressTaken()) { 177 // The loop-rotate pass can be helpful to avoid this in many cases. 178 DEBUG(dbgs() << 179 " Won't unroll loop: address of header block is taken.\n"); 180 return false; 181 } 182 183 if (TripCount != 0) 184 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 185 if (TripMultiple != 1) 186 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 187 188 // Effectively "DCE" unrolled iterations that are beyond the tripcount 189 // and will never be executed. 190 if (TripCount != 0 && Count > TripCount) 191 Count = TripCount; 192 193 // Don't enter the unroll code if there is nothing to do. This way we don't 194 // need to support "partial unrolling by 1". 195 if (TripCount == 0 && Count < 2) 196 return false; 197 198 assert(Count > 0); 199 assert(TripMultiple > 0); 200 assert(TripCount == 0 || TripCount % TripMultiple == 0); 201 202 // Are we eliminating the loop control altogether? 203 bool CompletelyUnroll = Count == TripCount; 204 205 // We assume a run-time trip count if the compiler cannot 206 // figure out the loop trip count and the unroll-runtime 207 // flag is specified. 208 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 209 210 if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) 211 return false; 212 213 // Notify ScalarEvolution that the loop will be substantially changed, 214 // if not outright eliminated. 215 if (PP) { 216 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 217 if (SE) 218 SE->forgetLoop(L); 219 } 220 221 // If we know the trip count, we know the multiple... 222 unsigned BreakoutTrip = 0; 223 if (TripCount != 0) { 224 BreakoutTrip = TripCount % Count; 225 TripMultiple = 0; 226 } else { 227 // Figure out what multiple to use. 228 BreakoutTrip = TripMultiple = 229 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 230 } 231 232 // Report the unrolling decision. 233 DebugLoc LoopLoc = L->getStartLoc(); 234 Function *F = Header->getParent(); 235 LLVMContext &Ctx = F->getContext(); 236 237 if (CompletelyUnroll) { 238 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 239 << " with trip count " << TripCount << "!\n"); 240 Ctx.emitOptimizationRemark(DEBUG_TYPE, *F, LoopLoc, 241 Twine("completely unrolled loop with ") + 242 Twine(TripCount) + " iterations"); 243 } else { 244 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 245 << " by " << Count); 246 Twine DiagMsg("unrolled loop by a factor of " + Twine(Count)); 247 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 248 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 249 DiagMsg.concat(" with a breakout at trip " + Twine(BreakoutTrip)); 250 } else if (TripMultiple != 1) { 251 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 252 DiagMsg.concat(" with " + Twine(TripMultiple) + " trips per branch"); 253 } else if (RuntimeTripCount) { 254 DEBUG(dbgs() << " with run-time trip count"); 255 DiagMsg.concat(" with run-time trip count"); 256 } 257 DEBUG(dbgs() << "!\n"); 258 Ctx.emitOptimizationRemark(DEBUG_TYPE, *F, LoopLoc, DiagMsg); 259 } 260 261 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 262 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 263 264 // For the first iteration of the loop, we should use the precloned values for 265 // PHI nodes. Insert associations now. 266 ValueToValueMapTy LastValueMap; 267 std::vector<PHINode*> OrigPHINode; 268 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 269 OrigPHINode.push_back(cast<PHINode>(I)); 270 } 271 272 std::vector<BasicBlock*> Headers; 273 std::vector<BasicBlock*> Latches; 274 Headers.push_back(Header); 275 Latches.push_back(LatchBlock); 276 277 // The current on-the-fly SSA update requires blocks to be processed in 278 // reverse postorder so that LastValueMap contains the correct value at each 279 // exit. 280 LoopBlocksDFS DFS(L); 281 DFS.perform(LI); 282 283 // Stash the DFS iterators before adding blocks to the loop. 284 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 285 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 286 287 for (unsigned It = 1; It != Count; ++It) { 288 std::vector<BasicBlock*> NewBlocks; 289 290 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 291 ValueToValueMapTy VMap; 292 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 293 Header->getParent()->getBasicBlockList().push_back(New); 294 295 // Loop over all of the PHI nodes in the block, changing them to use the 296 // incoming values from the previous block. 297 if (*BB == Header) 298 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 299 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 300 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 301 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 302 if (It > 1 && L->contains(InValI)) 303 InVal = LastValueMap[InValI]; 304 VMap[OrigPHINode[i]] = InVal; 305 New->getInstList().erase(NewPHI); 306 } 307 308 // Update our running map of newest clones 309 LastValueMap[*BB] = New; 310 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 311 VI != VE; ++VI) 312 LastValueMap[VI->first] = VI->second; 313 314 L->addBasicBlockToLoop(New, LI->getBase()); 315 316 // Add phi entries for newly created values to all exit blocks. 317 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 318 SI != SE; ++SI) { 319 if (L->contains(*SI)) 320 continue; 321 for (BasicBlock::iterator BBI = (*SI)->begin(); 322 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 323 Value *Incoming = phi->getIncomingValueForBlock(*BB); 324 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 325 if (It != LastValueMap.end()) 326 Incoming = It->second; 327 phi->addIncoming(Incoming, New); 328 } 329 } 330 // Keep track of new headers and latches as we create them, so that 331 // we can insert the proper branches later. 332 if (*BB == Header) 333 Headers.push_back(New); 334 if (*BB == LatchBlock) 335 Latches.push_back(New); 336 337 NewBlocks.push_back(New); 338 } 339 340 // Remap all instructions in the most recent iteration 341 for (unsigned i = 0; i < NewBlocks.size(); ++i) 342 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 343 E = NewBlocks[i]->end(); I != E; ++I) 344 ::RemapInstruction(I, LastValueMap); 345 } 346 347 // Loop over the PHI nodes in the original block, setting incoming values. 348 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 349 PHINode *PN = OrigPHINode[i]; 350 if (CompletelyUnroll) { 351 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 352 Header->getInstList().erase(PN); 353 } 354 else if (Count > 1) { 355 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 356 // If this value was defined in the loop, take the value defined by the 357 // last iteration of the loop. 358 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 359 if (L->contains(InValI)) 360 InVal = LastValueMap[InVal]; 361 } 362 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 363 PN->addIncoming(InVal, Latches.back()); 364 } 365 } 366 367 // Now that all the basic blocks for the unrolled iterations are in place, 368 // set up the branches to connect them. 369 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 370 // The original branch was replicated in each unrolled iteration. 371 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 372 373 // The branch destination. 374 unsigned j = (i + 1) % e; 375 BasicBlock *Dest = Headers[j]; 376 bool NeedConditional = true; 377 378 if (RuntimeTripCount && j != 0) { 379 NeedConditional = false; 380 } 381 382 // For a complete unroll, make the last iteration end with a branch 383 // to the exit block. 384 if (CompletelyUnroll && j == 0) { 385 Dest = LoopExit; 386 NeedConditional = false; 387 } 388 389 // If we know the trip count or a multiple of it, we can safely use an 390 // unconditional branch for some iterations. 391 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 392 NeedConditional = false; 393 } 394 395 if (NeedConditional) { 396 // Update the conditional branch's successor for the following 397 // iteration. 398 Term->setSuccessor(!ContinueOnTrue, Dest); 399 } else { 400 // Remove phi operands at this loop exit 401 if (Dest != LoopExit) { 402 BasicBlock *BB = Latches[i]; 403 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 404 SI != SE; ++SI) { 405 if (*SI == Headers[i]) 406 continue; 407 for (BasicBlock::iterator BBI = (*SI)->begin(); 408 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 409 Phi->removeIncomingValue(BB, false); 410 } 411 } 412 } 413 // Replace the conditional branch with an unconditional one. 414 BranchInst::Create(Dest, Term); 415 Term->eraseFromParent(); 416 } 417 } 418 419 // Merge adjacent basic blocks, if possible. 420 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 421 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 422 if (Term->isUnconditional()) { 423 BasicBlock *Dest = Term->getSuccessor(0); 424 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM)) 425 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 426 } 427 } 428 429 DominatorTree *DT = nullptr; 430 if (PP) { 431 // FIXME: Reconstruct dom info, because it is not preserved properly. 432 // Incrementally updating domtree after loop unrolling would be easy. 433 if (DominatorTreeWrapperPass *DTWP = 434 PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 435 DT = &DTWP->getDomTree(); 436 DT->recalculate(*L->getHeader()->getParent()); 437 } 438 439 // Simplify any new induction variables in the partially unrolled loop. 440 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 441 if (SE && !CompletelyUnroll) { 442 SmallVector<WeakVH, 16> DeadInsts; 443 simplifyLoopIVs(L, SE, LPM, DeadInsts); 444 445 // Aggressively clean up dead instructions that simplifyLoopIVs already 446 // identified. Any remaining should be cleaned up below. 447 while (!DeadInsts.empty()) 448 if (Instruction *Inst = 449 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 450 RecursivelyDeleteTriviallyDeadInstructions(Inst); 451 } 452 } 453 // At this point, the code is well formed. We now do a quick sweep over the 454 // inserted code, doing constant propagation and dead code elimination as we 455 // go. 456 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 457 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 458 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 459 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 460 Instruction *Inst = I++; 461 462 if (isInstructionTriviallyDead(Inst)) 463 (*BB)->getInstList().erase(Inst); 464 else if (Value *V = SimplifyInstruction(Inst)) 465 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 466 Inst->replaceAllUsesWith(V); 467 (*BB)->getInstList().erase(Inst); 468 } 469 } 470 471 NumCompletelyUnrolled += CompletelyUnroll; 472 ++NumUnrolled; 473 474 Loop *OuterL = L->getParentLoop(); 475 // Remove the loop from the LoopPassManager if it's completely removed. 476 if (CompletelyUnroll && LPM != nullptr) 477 LPM->deleteLoopFromQueue(L); 478 479 // If we have a pass and a DominatorTree we should re-simplify impacted loops 480 // to ensure subsequent analyses can rely on this form. We want to simplify 481 // at least one layer outside of the loop that was unrolled so that any 482 // changes to the parent loop exposed by the unrolling are considered. 483 if (PP && DT) { 484 if (!OuterL && !CompletelyUnroll) 485 OuterL = L; 486 if (OuterL) { 487 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 488 simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE); 489 formLCSSARecursively(*OuterL, *DT, SE); 490 } 491 } 492 493 return true; 494 } 495