1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/LoopSimplify.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39 #include "llvm/Transforms/Utils/UnrollLoop.h"
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "loop-unroll"
43 
44 // TODO: Should these be here or in LoopUnroll?
45 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
46 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
47 
48 static cl::opt<bool>
49 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
50                     cl::desc("Allow runtime unrolled loops to be unrolled "
51                              "with epilog instead of prolog."));
52 
53 static cl::opt<bool>
54 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
55                     cl::desc("Verify domtree after unrolling"),
56 #ifdef EXPENSIVE_CHECKS
57     cl::init(true)
58 #else
59     cl::init(false)
60 #endif
61                     );
62 
63 /// Convert the instruction operands from referencing the current values into
64 /// those specified by VMap.
65 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
66   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
67     Value *Op = I->getOperand(op);
68 
69     // Unwrap arguments of dbg.value intrinsics.
70     bool Wrapped = false;
71     if (auto *V = dyn_cast<MetadataAsValue>(Op))
72       if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
73         Op = Unwrapped->getValue();
74         Wrapped = true;
75       }
76 
77     auto wrap = [&](Value *V) {
78       auto &C = I->getContext();
79       return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
80     };
81 
82     ValueToValueMapTy::iterator It = VMap.find(Op);
83     if (It != VMap.end())
84       I->setOperand(op, wrap(It->second));
85   }
86 
87   if (PHINode *PN = dyn_cast<PHINode>(I)) {
88     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
89       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
90       if (It != VMap.end())
91         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
92     }
93   }
94 }
95 
96 /// Check if unrolling created a situation where we need to insert phi nodes to
97 /// preserve LCSSA form.
98 /// \param Blocks is a vector of basic blocks representing unrolled loop.
99 /// \param L is the outer loop.
100 /// It's possible that some of the blocks are in L, and some are not. In this
101 /// case, if there is a use is outside L, and definition is inside L, we need to
102 /// insert a phi-node, otherwise LCSSA will be broken.
103 /// The function is just a helper function for llvm::UnrollLoop that returns
104 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
105 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
106                                      LoopInfo *LI) {
107   for (BasicBlock *BB : Blocks) {
108     if (LI->getLoopFor(BB) == L)
109       continue;
110     for (Instruction &I : *BB) {
111       for (Use &U : I.operands()) {
112         if (auto Def = dyn_cast<Instruction>(U)) {
113           Loop *DefLoop = LI->getLoopFor(Def->getParent());
114           if (!DefLoop)
115             continue;
116           if (DefLoop->contains(L))
117             return true;
118         }
119       }
120     }
121   }
122   return false;
123 }
124 
125 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
126 /// and adds a mapping from the original loop to the new loop to NewLoops.
127 /// Returns nullptr if no new loop was created and a pointer to the
128 /// original loop OriginalBB was part of otherwise.
129 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
130                                            BasicBlock *ClonedBB, LoopInfo *LI,
131                                            NewLoopsMap &NewLoops) {
132   // Figure out which loop New is in.
133   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
134   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
135 
136   Loop *&NewLoop = NewLoops[OldLoop];
137   if (!NewLoop) {
138     // Found a new sub-loop.
139     assert(OriginalBB == OldLoop->getHeader() &&
140            "Header should be first in RPO");
141 
142     NewLoop = LI->AllocateLoop();
143     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
144 
145     if (NewLoopParent)
146       NewLoopParent->addChildLoop(NewLoop);
147     else
148       LI->addTopLevelLoop(NewLoop);
149 
150     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
151     return OldLoop;
152   } else {
153     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
154     return nullptr;
155   }
156 }
157 
158 /// The function chooses which type of unroll (epilog or prolog) is more
159 /// profitabale.
160 /// Epilog unroll is more profitable when there is PHI that starts from
161 /// constant.  In this case epilog will leave PHI start from constant,
162 /// but prolog will convert it to non-constant.
163 ///
164 /// loop:
165 ///   PN = PHI [I, Latch], [CI, PreHeader]
166 ///   I = foo(PN)
167 ///   ...
168 ///
169 /// Epilog unroll case.
170 /// loop:
171 ///   PN = PHI [I2, Latch], [CI, PreHeader]
172 ///   I1 = foo(PN)
173 ///   I2 = foo(I1)
174 ///   ...
175 /// Prolog unroll case.
176 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
177 /// loop:
178 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
179 ///   I1 = foo(PN)
180 ///   I2 = foo(I1)
181 ///   ...
182 ///
183 static bool isEpilogProfitable(Loop *L) {
184   BasicBlock *PreHeader = L->getLoopPreheader();
185   BasicBlock *Header = L->getHeader();
186   assert(PreHeader && Header);
187   for (const PHINode &PN : Header->phis()) {
188     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
189       return true;
190   }
191   return false;
192 }
193 
194 /// Perform some cleanup and simplifications on loops after unrolling. It is
195 /// useful to simplify the IV's in the new loop, as well as do a quick
196 /// simplify/dce pass of the instructions.
197 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
198                                    ScalarEvolution *SE, DominatorTree *DT,
199                                    AssumptionCache *AC) {
200   // Simplify any new induction variables in the partially unrolled loop.
201   if (SE && SimplifyIVs) {
202     SmallVector<WeakTrackingVH, 16> DeadInsts;
203     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
204 
205     // Aggressively clean up dead instructions that simplifyLoopIVs already
206     // identified. Any remaining should be cleaned up below.
207     while (!DeadInsts.empty())
208       if (Instruction *Inst =
209               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
210         RecursivelyDeleteTriviallyDeadInstructions(Inst);
211   }
212 
213   // At this point, the code is well formed.  We now do a quick sweep over the
214   // inserted code, doing constant propagation and dead code elimination as we
215   // go.
216   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
217   for (BasicBlock *BB : L->getBlocks()) {
218     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
219       Instruction *Inst = &*I++;
220 
221       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
222         if (LI->replacementPreservesLCSSAForm(Inst, V))
223           Inst->replaceAllUsesWith(V);
224       if (isInstructionTriviallyDead(Inst))
225         BB->getInstList().erase(Inst);
226     }
227   }
228 
229   // TODO: after peeling or unrolling, previously loop variant conditions are
230   // likely to fold to constants, eagerly propagating those here will require
231   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
232   // appropriate.
233 }
234 
235 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
236 /// can only fail when the loop's latch block is not terminated by a conditional
237 /// branch instruction. However, if the trip count (and multiple) are not known,
238 /// loop unrolling will mostly produce more code that is no faster.
239 ///
240 /// TripCount is the upper bound of the iteration on which control exits
241 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
242 /// via an early branch in other loop block or via LatchBlock terminator. This
243 /// is relaxed from the general definition of trip count which is the number of
244 /// times the loop header executes. Note that UnrollLoop assumes that the loop
245 /// counter test is in LatchBlock in order to remove unnecesssary instances of
246 /// the test.  If control can exit the loop from the LatchBlock's terminator
247 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
248 ///
249 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
250 /// needs to be preserved.  It is needed when we use trip count upper bound to
251 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
252 /// conditional branch needs to be preserved.
253 ///
254 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
255 /// execute without exiting the loop.
256 ///
257 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
258 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
259 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
260 /// iterations before branching into the unrolled loop.  UnrollLoop will not
261 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
262 /// AllowExpensiveTripCount is false.
263 ///
264 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
265 /// number of iterations we want to peel off.
266 ///
267 /// The LoopInfo Analysis that is passed will be kept consistent.
268 ///
269 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
270 /// DominatorTree if they are non-null.
271 ///
272 /// If RemainderLoop is non-null, it will receive the remainder loop (if
273 /// required and not fully unrolled).
274 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
275                                   ScalarEvolution *SE, DominatorTree *DT,
276                                   AssumptionCache *AC,
277                                   OptimizationRemarkEmitter *ORE,
278                                   bool PreserveLCSSA, Loop **RemainderLoop) {
279 
280   BasicBlock *Preheader = L->getLoopPreheader();
281   if (!Preheader) {
282     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
283     return LoopUnrollResult::Unmodified;
284   }
285 
286   BasicBlock *LatchBlock = L->getLoopLatch();
287   if (!LatchBlock) {
288     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
289     return LoopUnrollResult::Unmodified;
290   }
291 
292   // Loops with indirectbr cannot be cloned.
293   if (!L->isSafeToClone()) {
294     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
295     return LoopUnrollResult::Unmodified;
296   }
297 
298   // The current loop unroll pass can only unroll loops with a single latch
299   // that's a conditional branch exiting the loop.
300   // FIXME: The implementation can be extended to work with more complicated
301   // cases, e.g. loops with multiple latches.
302   BasicBlock *Header = L->getHeader();
303   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
304 
305   if (!BI || BI->isUnconditional()) {
306     // The loop-rotate pass can be helpful to avoid this in many cases.
307     LLVM_DEBUG(
308         dbgs()
309         << "  Can't unroll; loop not terminated by a conditional branch.\n");
310     return LoopUnrollResult::Unmodified;
311   }
312 
313   auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
314     return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
315   };
316 
317   if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
318     LLVM_DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
319                          " exiting the loop can be unrolled\n");
320     return LoopUnrollResult::Unmodified;
321   }
322 
323   if (Header->hasAddressTaken()) {
324     // The loop-rotate pass can be helpful to avoid this in many cases.
325     LLVM_DEBUG(
326         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
327     return LoopUnrollResult::Unmodified;
328   }
329 
330   if (ULO.TripCount != 0)
331     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
332   if (ULO.TripMultiple != 1)
333     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
334 
335   // Effectively "DCE" unrolled iterations that are beyond the tripcount
336   // and will never be executed.
337   if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
338     ULO.Count = ULO.TripCount;
339 
340   // Don't enter the unroll code if there is nothing to do.
341   if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
342     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
343     return LoopUnrollResult::Unmodified;
344   }
345 
346   assert(ULO.Count > 0);
347   assert(ULO.TripMultiple > 0);
348   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
349 
350   // Are we eliminating the loop control altogether?
351   bool CompletelyUnroll = ULO.Count == ULO.TripCount;
352   SmallVector<BasicBlock *, 4> ExitBlocks;
353   L->getExitBlocks(ExitBlocks);
354   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
355 
356   // Go through all exits of L and see if there are any phi-nodes there. We just
357   // conservatively assume that they're inserted to preserve LCSSA form, which
358   // means that complete unrolling might break this form. We need to either fix
359   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
360   // now we just recompute LCSSA for the outer loop, but it should be possible
361   // to fix it in-place.
362   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
363                         any_of(ExitBlocks, [](const BasicBlock *BB) {
364                           return isa<PHINode>(BB->begin());
365                         });
366 
367   // We assume a run-time trip count if the compiler cannot
368   // figure out the loop trip count and the unroll-runtime
369   // flag is specified.
370   bool RuntimeTripCount =
371       (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
372 
373   assert((!RuntimeTripCount || !ULO.PeelCount) &&
374          "Did not expect runtime trip-count unrolling "
375          "and peeling for the same loop");
376 
377   bool Peeled = false;
378   if (ULO.PeelCount) {
379     Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
380 
381     // Successful peeling may result in a change in the loop preheader/trip
382     // counts. If we later unroll the loop, we want these to be updated.
383     if (Peeled) {
384       BasicBlock *ExitingBlock = L->getExitingBlock();
385       assert(ExitingBlock && "Loop without exiting block?");
386       Preheader = L->getLoopPreheader();
387       ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
388       ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
389     }
390   }
391 
392   // Loops containing convergent instructions must have a count that divides
393   // their TripMultiple.
394   LLVM_DEBUG(
395       {
396         bool HasConvergent = false;
397         for (auto &BB : L->blocks())
398           for (auto &I : *BB)
399             if (auto CS = CallSite(&I))
400               HasConvergent |= CS.isConvergent();
401         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
402                "Unroll count must divide trip multiple if loop contains a "
403                "convergent operation.");
404       });
405 
406   bool EpilogProfitability =
407       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
408                                               : isEpilogProfitable(L);
409 
410   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
411       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
412                                   EpilogProfitability, ULO.UnrollRemainder,
413                                   ULO.ForgetAllSCEV, LI, SE, DT, AC,
414                                   PreserveLCSSA, RemainderLoop)) {
415     if (ULO.Force)
416       RuntimeTripCount = false;
417     else {
418       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
419                            "generated when assuming runtime trip count\n");
420       return LoopUnrollResult::Unmodified;
421     }
422   }
423 
424   // If we know the trip count, we know the multiple...
425   unsigned BreakoutTrip = 0;
426   if (ULO.TripCount != 0) {
427     BreakoutTrip = ULO.TripCount % ULO.Count;
428     ULO.TripMultiple = 0;
429   } else {
430     // Figure out what multiple to use.
431     BreakoutTrip = ULO.TripMultiple =
432         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
433   }
434 
435   using namespace ore;
436   // Report the unrolling decision.
437   if (CompletelyUnroll) {
438     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
439                       << " with trip count " << ULO.TripCount << "!\n");
440     if (ORE)
441       ORE->emit([&]() {
442         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
443                                   L->getHeader())
444                << "completely unrolled loop with "
445                << NV("UnrollCount", ULO.TripCount) << " iterations";
446       });
447   } else if (ULO.PeelCount) {
448     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
449                       << " with iteration count " << ULO.PeelCount << "!\n");
450     if (ORE)
451       ORE->emit([&]() {
452         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
453                                   L->getHeader())
454                << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
455                << " iterations";
456       });
457   } else {
458     auto DiagBuilder = [&]() {
459       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
460                               L->getHeader());
461       return Diag << "unrolled loop by a factor of "
462                   << NV("UnrollCount", ULO.Count);
463     };
464 
465     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
466                       << ULO.Count);
467     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
468       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
469       if (ORE)
470         ORE->emit([&]() {
471           return DiagBuilder() << " with a breakout at trip "
472                                << NV("BreakoutTrip", BreakoutTrip);
473         });
474     } else if (ULO.TripMultiple != 1) {
475       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
476       if (ORE)
477         ORE->emit([&]() {
478           return DiagBuilder()
479                  << " with " << NV("TripMultiple", ULO.TripMultiple)
480                  << " trips per branch";
481         });
482     } else if (RuntimeTripCount) {
483       LLVM_DEBUG(dbgs() << " with run-time trip count");
484       if (ORE)
485         ORE->emit(
486             [&]() { return DiagBuilder() << " with run-time trip count"; });
487     }
488     LLVM_DEBUG(dbgs() << "!\n");
489   }
490 
491   // We are going to make changes to this loop. SCEV may be keeping cached info
492   // about it, in particular about backedge taken count. The changes we make
493   // are guaranteed to invalidate this information for our loop. It is tempting
494   // to only invalidate the loop being unrolled, but it is incorrect as long as
495   // all exiting branches from all inner loops have impact on the outer loops,
496   // and if something changes inside them then any of outer loops may also
497   // change. When we forget outermost loop, we also forget all contained loops
498   // and this is what we need here.
499   if (SE) {
500     if (ULO.ForgetAllSCEV)
501       SE->forgetAllLoops();
502     else
503       SE->forgetTopmostLoop(L);
504   }
505 
506   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
507   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
508 
509   // For the first iteration of the loop, we should use the precloned values for
510   // PHI nodes.  Insert associations now.
511   ValueToValueMapTy LastValueMap;
512   std::vector<PHINode*> OrigPHINode;
513   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
514     OrigPHINode.push_back(cast<PHINode>(I));
515   }
516 
517   std::vector<BasicBlock*> Headers;
518   std::vector<BasicBlock*> Latches;
519   Headers.push_back(Header);
520   Latches.push_back(LatchBlock);
521 
522   // The current on-the-fly SSA update requires blocks to be processed in
523   // reverse postorder so that LastValueMap contains the correct value at each
524   // exit.
525   LoopBlocksDFS DFS(L);
526   DFS.perform(LI);
527 
528   // Stash the DFS iterators before adding blocks to the loop.
529   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
530   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
531 
532   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
533 
534   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
535   // might break loop-simplified form for these loops (as they, e.g., would
536   // share the same exit blocks). We'll keep track of loops for which we can
537   // break this so that later we can re-simplify them.
538   SmallSetVector<Loop *, 4> LoopsToSimplify;
539   for (Loop *SubLoop : *L)
540     LoopsToSimplify.insert(SubLoop);
541 
542   if (Header->getParent()->isDebugInfoForProfiling())
543     for (BasicBlock *BB : L->getBlocks())
544       for (Instruction &I : *BB)
545         if (!isa<DbgInfoIntrinsic>(&I))
546           if (const DILocation *DIL = I.getDebugLoc()) {
547             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
548             if (NewDIL)
549               I.setDebugLoc(NewDIL.getValue());
550             else
551               LLVM_DEBUG(dbgs()
552                          << "Failed to create new discriminator: "
553                          << DIL->getFilename() << " Line: " << DIL->getLine());
554           }
555 
556   for (unsigned It = 1; It != ULO.Count; ++It) {
557     std::vector<BasicBlock*> NewBlocks;
558     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
559     NewLoops[L] = L;
560 
561     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
562       ValueToValueMapTy VMap;
563       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
564       Header->getParent()->getBasicBlockList().push_back(New);
565 
566       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
567              "Header should not be in a sub-loop");
568       // Tell LI about New.
569       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
570       if (OldLoop)
571         LoopsToSimplify.insert(NewLoops[OldLoop]);
572 
573       if (*BB == Header)
574         // Loop over all of the PHI nodes in the block, changing them to use
575         // the incoming values from the previous block.
576         for (PHINode *OrigPHI : OrigPHINode) {
577           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
578           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
579           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
580             if (It > 1 && L->contains(InValI))
581               InVal = LastValueMap[InValI];
582           VMap[OrigPHI] = InVal;
583           New->getInstList().erase(NewPHI);
584         }
585 
586       // Update our running map of newest clones
587       LastValueMap[*BB] = New;
588       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
589            VI != VE; ++VI)
590         LastValueMap[VI->first] = VI->second;
591 
592       // Add phi entries for newly created values to all exit blocks.
593       for (BasicBlock *Succ : successors(*BB)) {
594         if (L->contains(Succ))
595           continue;
596         for (PHINode &PHI : Succ->phis()) {
597           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
598           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
599           if (It != LastValueMap.end())
600             Incoming = It->second;
601           PHI.addIncoming(Incoming, New);
602         }
603       }
604       // Keep track of new headers and latches as we create them, so that
605       // we can insert the proper branches later.
606       if (*BB == Header)
607         Headers.push_back(New);
608       if (*BB == LatchBlock)
609         Latches.push_back(New);
610 
611       NewBlocks.push_back(New);
612       UnrolledLoopBlocks.push_back(New);
613 
614       // Update DomTree: since we just copy the loop body, and each copy has a
615       // dedicated entry block (copy of the header block), this header's copy
616       // dominates all copied blocks. That means, dominance relations in the
617       // copied body are the same as in the original body.
618       if (DT) {
619         if (*BB == Header)
620           DT->addNewBlock(New, Latches[It - 1]);
621         else {
622           auto BBDomNode = DT->getNode(*BB);
623           auto BBIDom = BBDomNode->getIDom();
624           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
625           DT->addNewBlock(
626               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
627         }
628       }
629     }
630 
631     // Remap all instructions in the most recent iteration
632     for (BasicBlock *NewBlock : NewBlocks) {
633       for (Instruction &I : *NewBlock) {
634         ::remapInstruction(&I, LastValueMap);
635         if (auto *II = dyn_cast<IntrinsicInst>(&I))
636           if (II->getIntrinsicID() == Intrinsic::assume)
637             AC->registerAssumption(II);
638       }
639     }
640   }
641 
642   // Loop over the PHI nodes in the original block, setting incoming values.
643   for (PHINode *PN : OrigPHINode) {
644     if (CompletelyUnroll) {
645       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
646       Header->getInstList().erase(PN);
647     } else if (ULO.Count > 1) {
648       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
649       // If this value was defined in the loop, take the value defined by the
650       // last iteration of the loop.
651       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
652         if (L->contains(InValI))
653           InVal = LastValueMap[InVal];
654       }
655       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
656       PN->addIncoming(InVal, Latches.back());
657     }
658   }
659 
660   // Now that all the basic blocks for the unrolled iterations are in place,
661   // set up the branches to connect them.
662   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
663     // The original branch was replicated in each unrolled iteration.
664     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
665 
666     // The branch destination.
667     unsigned j = (i + 1) % e;
668     BasicBlock *Dest = Headers[j];
669     bool NeedConditional = true;
670 
671     if (RuntimeTripCount && j != 0) {
672       NeedConditional = false;
673     }
674 
675     // For a complete unroll, make the last iteration end with a branch
676     // to the exit block.
677     if (CompletelyUnroll) {
678       if (j == 0)
679         Dest = LoopExit;
680       // If using trip count upper bound to completely unroll, we need to keep
681       // the conditional branch except the last one because the loop may exit
682       // after any iteration.
683       assert(NeedConditional &&
684              "NeedCondition cannot be modified by both complete "
685              "unrolling and runtime unrolling");
686       NeedConditional =
687           (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
688     } else if (j != BreakoutTrip &&
689                (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
690       // If we know the trip count or a multiple of it, we can safely use an
691       // unconditional branch for some iterations.
692       NeedConditional = false;
693     }
694 
695     if (NeedConditional) {
696       // Update the conditional branch's successor for the following
697       // iteration.
698       Term->setSuccessor(!ContinueOnTrue, Dest);
699     } else {
700       // Remove phi operands at this loop exit
701       if (Dest != LoopExit) {
702         BasicBlock *BB = Latches[i];
703         for (BasicBlock *Succ: successors(BB)) {
704           if (Succ == Headers[i])
705             continue;
706           for (PHINode &Phi : Succ->phis())
707             Phi.removeIncomingValue(BB, false);
708         }
709       }
710       // Replace the conditional branch with an unconditional one.
711       BranchInst::Create(Dest, Term);
712       Term->eraseFromParent();
713     }
714   }
715 
716   // Update dominators of blocks we might reach through exits.
717   // Immediate dominator of such block might change, because we add more
718   // routes which can lead to the exit: we can now reach it from the copied
719   // iterations too.
720   if (DT && ULO.Count > 1) {
721     for (auto *BB : OriginalLoopBlocks) {
722       auto *BBDomNode = DT->getNode(BB);
723       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
724       for (auto *ChildDomNode : BBDomNode->getChildren()) {
725         auto *ChildBB = ChildDomNode->getBlock();
726         if (!L->contains(ChildBB))
727           ChildrenToUpdate.push_back(ChildBB);
728       }
729       BasicBlock *NewIDom;
730       if (BB == LatchBlock) {
731         // The latch is special because we emit unconditional branches in
732         // some cases where the original loop contained a conditional branch.
733         // Since the latch is always at the bottom of the loop, if the latch
734         // dominated an exit before unrolling, the new dominator of that exit
735         // must also be a latch.  Specifically, the dominator is the first
736         // latch which ends in a conditional branch, or the last latch if
737         // there is no such latch.
738         NewIDom = Latches.back();
739         for (BasicBlock *IterLatch : Latches) {
740           Instruction *Term = IterLatch->getTerminator();
741           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
742             NewIDom = IterLatch;
743             break;
744           }
745         }
746       } else {
747         // The new idom of the block will be the nearest common dominator
748         // of all copies of the previous idom. This is equivalent to the
749         // nearest common dominator of the previous idom and the first latch,
750         // which dominates all copies of the previous idom.
751         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
752       }
753       for (auto *ChildBB : ChildrenToUpdate)
754         DT->changeImmediateDominator(ChildBB, NewIDom);
755     }
756   }
757 
758   assert(!DT || !UnrollVerifyDomtree ||
759       DT->verify(DominatorTree::VerificationLevel::Fast));
760 
761   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
762   // Merge adjacent basic blocks, if possible.
763   for (BasicBlock *Latch : Latches) {
764     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
765     if (Term->isUnconditional()) {
766       BasicBlock *Dest = Term->getSuccessor(0);
767       BasicBlock *Fold = Dest->getUniquePredecessor();
768       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
769         // Dest has been folded into Fold. Update our worklists accordingly.
770         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
771         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
772                                              UnrolledLoopBlocks.end(), Dest),
773                                  UnrolledLoopBlocks.end());
774       }
775     }
776   }
777 
778   // At this point, the code is well formed.  We now simplify the unrolled loop,
779   // doing constant propagation and dead code elimination as we go.
780   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
781                           SE, DT, AC);
782 
783   NumCompletelyUnrolled += CompletelyUnroll;
784   ++NumUnrolled;
785 
786   Loop *OuterL = L->getParentLoop();
787   // Update LoopInfo if the loop is completely removed.
788   if (CompletelyUnroll)
789     LI->erase(L);
790 
791   // After complete unrolling most of the blocks should be contained in OuterL.
792   // However, some of them might happen to be out of OuterL (e.g. if they
793   // precede a loop exit). In this case we might need to insert PHI nodes in
794   // order to preserve LCSSA form.
795   // We don't need to check this if we already know that we need to fix LCSSA
796   // form.
797   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
798   // it should be possible to fix it in-place.
799   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
800     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
801 
802   // If we have a pass and a DominatorTree we should re-simplify impacted loops
803   // to ensure subsequent analyses can rely on this form. We want to simplify
804   // at least one layer outside of the loop that was unrolled so that any
805   // changes to the parent loop exposed by the unrolling are considered.
806   if (DT) {
807     if (OuterL) {
808       // OuterL includes all loops for which we can break loop-simplify, so
809       // it's sufficient to simplify only it (it'll recursively simplify inner
810       // loops too).
811       if (NeedToFixLCSSA) {
812         // LCSSA must be performed on the outermost affected loop. The unrolled
813         // loop's last loop latch is guaranteed to be in the outermost loop
814         // after LoopInfo's been updated by LoopInfo::erase.
815         Loop *LatchLoop = LI->getLoopFor(Latches.back());
816         Loop *FixLCSSALoop = OuterL;
817         if (!FixLCSSALoop->contains(LatchLoop))
818           while (FixLCSSALoop->getParentLoop() != LatchLoop)
819             FixLCSSALoop = FixLCSSALoop->getParentLoop();
820 
821         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
822       } else if (PreserveLCSSA) {
823         assert(OuterL->isLCSSAForm(*DT) &&
824                "Loops should be in LCSSA form after loop-unroll.");
825       }
826 
827       // TODO: That potentially might be compile-time expensive. We should try
828       // to fix the loop-simplified form incrementally.
829       simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
830     } else {
831       // Simplify loops for which we might've broken loop-simplify form.
832       for (Loop *SubLoop : LoopsToSimplify)
833         simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
834     }
835   }
836 
837   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
838                           : LoopUnrollResult::PartiallyUnrolled;
839 }
840 
841 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
842 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
843 /// such metadata node exists, then nullptr is returned.
844 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
845   // First operand should refer to the loop id itself.
846   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
847   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
848 
849   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
850     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
851     if (!MD)
852       continue;
853 
854     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
855     if (!S)
856       continue;
857 
858     if (Name.equals(S->getString()))
859       return MD;
860   }
861   return nullptr;
862 }
863