1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
65 #include "llvm/Transforms/Utils/UnrollLoop.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <assert.h>
69 #include <type_traits>
70 #include <vector>
71 
72 namespace llvm {
73 class DataLayout;
74 class Value;
75 } // namespace llvm
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-unroll"
80 
81 // TODO: Should these be here or in LoopUnroll?
82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85                                "latch (completely or otherwise)");
86 
87 static cl::opt<bool>
88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89                     cl::desc("Allow runtime unrolled loops to be unrolled "
90                              "with epilog instead of prolog."));
91 
92 static cl::opt<bool>
93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94                     cl::desc("Verify domtree after unrolling"),
95 #ifdef EXPENSIVE_CHECKS
96     cl::init(true)
97 #else
98     cl::init(false)
99 #endif
100                     );
101 
102 /// Check if unrolling created a situation where we need to insert phi nodes to
103 /// preserve LCSSA form.
104 /// \param Blocks is a vector of basic blocks representing unrolled loop.
105 /// \param L is the outer loop.
106 /// It's possible that some of the blocks are in L, and some are not. In this
107 /// case, if there is a use is outside L, and definition is inside L, we need to
108 /// insert a phi-node, otherwise LCSSA will be broken.
109 /// The function is just a helper function for llvm::UnrollLoop that returns
110 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
111 static bool needToInsertPhisForLCSSA(Loop *L,
112                                      const std::vector<BasicBlock *> &Blocks,
113                                      LoopInfo *LI) {
114   for (BasicBlock *BB : Blocks) {
115     if (LI->getLoopFor(BB) == L)
116       continue;
117     for (Instruction &I : *BB) {
118       for (Use &U : I.operands()) {
119         if (const auto *Def = dyn_cast<Instruction>(U)) {
120           Loop *DefLoop = LI->getLoopFor(Def->getParent());
121           if (!DefLoop)
122             continue;
123           if (DefLoop->contains(L))
124             return true;
125         }
126       }
127     }
128   }
129   return false;
130 }
131 
132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
133 /// and adds a mapping from the original loop to the new loop to NewLoops.
134 /// Returns nullptr if no new loop was created and a pointer to the
135 /// original loop OriginalBB was part of otherwise.
136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
137                                            BasicBlock *ClonedBB, LoopInfo *LI,
138                                            NewLoopsMap &NewLoops) {
139   // Figure out which loop New is in.
140   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
141   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
142 
143   Loop *&NewLoop = NewLoops[OldLoop];
144   if (!NewLoop) {
145     // Found a new sub-loop.
146     assert(OriginalBB == OldLoop->getHeader() &&
147            "Header should be first in RPO");
148 
149     NewLoop = LI->AllocateLoop();
150     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
151 
152     if (NewLoopParent)
153       NewLoopParent->addChildLoop(NewLoop);
154     else
155       LI->addTopLevelLoop(NewLoop);
156 
157     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
158     return OldLoop;
159   } else {
160     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
161     return nullptr;
162   }
163 }
164 
165 /// The function chooses which type of unroll (epilog or prolog) is more
166 /// profitabale.
167 /// Epilog unroll is more profitable when there is PHI that starts from
168 /// constant.  In this case epilog will leave PHI start from constant,
169 /// but prolog will convert it to non-constant.
170 ///
171 /// loop:
172 ///   PN = PHI [I, Latch], [CI, PreHeader]
173 ///   I = foo(PN)
174 ///   ...
175 ///
176 /// Epilog unroll case.
177 /// loop:
178 ///   PN = PHI [I2, Latch], [CI, PreHeader]
179 ///   I1 = foo(PN)
180 ///   I2 = foo(I1)
181 ///   ...
182 /// Prolog unroll case.
183 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
184 /// loop:
185 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
186 ///   I1 = foo(PN)
187 ///   I2 = foo(I1)
188 ///   ...
189 ///
190 static bool isEpilogProfitable(Loop *L) {
191   BasicBlock *PreHeader = L->getLoopPreheader();
192   BasicBlock *Header = L->getHeader();
193   assert(PreHeader && Header);
194   for (const PHINode &PN : Header->phis()) {
195     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
196       return true;
197   }
198   return false;
199 }
200 
201 /// Perform some cleanup and simplifications on loops after unrolling. It is
202 /// useful to simplify the IV's in the new loop, as well as do a quick
203 /// simplify/dce pass of the instructions.
204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
205                                    ScalarEvolution *SE, DominatorTree *DT,
206                                    AssumptionCache *AC,
207                                    const TargetTransformInfo *TTI) {
208   // Simplify any new induction variables in the partially unrolled loop.
209   if (SE && SimplifyIVs) {
210     SmallVector<WeakTrackingVH, 16> DeadInsts;
211     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
212 
213     // Aggressively clean up dead instructions that simplifyLoopIVs already
214     // identified. Any remaining should be cleaned up below.
215     while (!DeadInsts.empty()) {
216       Value *V = DeadInsts.pop_back_val();
217       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
218         RecursivelyDeleteTriviallyDeadInstructions(Inst);
219     }
220   }
221 
222   // At this point, the code is well formed.  Perform constprop, instsimplify,
223   // and dce.
224   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
225   SmallVector<WeakTrackingVH, 16> DeadInsts;
226   for (BasicBlock *BB : L->getBlocks()) {
227     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
228       Instruction *Inst = &*I++;
229       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
230         if (LI->replacementPreservesLCSSAForm(Inst, V))
231           Inst->replaceAllUsesWith(V);
232       if (isInstructionTriviallyDead(Inst))
233         DeadInsts.emplace_back(Inst);
234     }
235     // We can't do recursive deletion until we're done iterating, as we might
236     // have a phi which (potentially indirectly) uses instructions later in
237     // the block we're iterating through.
238     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
239   }
240 }
241 
242 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
243 /// can only fail when the loop's latch block is not terminated by a conditional
244 /// branch instruction. However, if the trip count (and multiple) are not known,
245 /// loop unrolling will mostly produce more code that is no faster.
246 ///
247 /// TripCount is an upper bound on the number of times the loop header runs.
248 /// Note that the trip count does not need to be exact, it can be any upper
249 /// bound on the true trip count.
250 ///
251 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
252 /// execute without exiting the loop.
253 ///
254 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
255 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
256 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
257 /// iterations before branching into the unrolled loop.  UnrollLoop will not
258 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
259 /// AllowExpensiveTripCount is false.
260 ///
261 /// The LoopInfo Analysis that is passed will be kept consistent.
262 ///
263 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
264 /// DominatorTree if they are non-null.
265 ///
266 /// If RemainderLoop is non-null, it will receive the remainder loop (if
267 /// required and not fully unrolled).
268 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
269                                   ScalarEvolution *SE, DominatorTree *DT,
270                                   AssumptionCache *AC,
271                                   const TargetTransformInfo *TTI,
272                                   OptimizationRemarkEmitter *ORE,
273                                   bool PreserveLCSSA, Loop **RemainderLoop) {
274   assert(DT && "DomTree is required");
275 
276   if (!L->getLoopPreheader()) {
277     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
278     return LoopUnrollResult::Unmodified;
279   }
280 
281   if (!L->getLoopLatch()) {
282     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
283     return LoopUnrollResult::Unmodified;
284   }
285 
286   // Loops with indirectbr cannot be cloned.
287   if (!L->isSafeToClone()) {
288     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
289     return LoopUnrollResult::Unmodified;
290   }
291 
292   if (L->getHeader()->hasAddressTaken()) {
293     // The loop-rotate pass can be helpful to avoid this in many cases.
294     LLVM_DEBUG(
295         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
296     return LoopUnrollResult::Unmodified;
297   }
298 
299   // Don't enter the unroll code if there is nothing to do.
300   if (ULO.TripCount == 0 && ULO.Count < 2) {
301     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
302     return LoopUnrollResult::Unmodified;
303   }
304 
305   assert(ULO.Count > 0);
306   assert(ULO.TripMultiple > 0);
307   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
308 
309   // All these values should be taken only after peeling because they might have
310   // changed.
311   BasicBlock *Preheader = L->getLoopPreheader();
312   BasicBlock *Header = L->getHeader();
313   BasicBlock *LatchBlock = L->getLoopLatch();
314   SmallVector<BasicBlock *, 4> ExitBlocks;
315   L->getExitBlocks(ExitBlocks);
316   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
317 
318   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
319   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
320 
321   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
322   // and will never be executed.
323   if (MaxTripCount && ULO.Count > MaxTripCount)
324     ULO.Count = MaxTripCount;
325 
326   struct ExitInfo {
327     unsigned TripCount;
328     unsigned TripMultiple;
329     unsigned BreakoutTrip;
330     bool ExitOnTrue;
331     SmallVector<BasicBlock *> ExitingBlocks;
332   };
333   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
334   SmallVector<BasicBlock *, 4> ExitingBlocks;
335   L->getExitingBlocks(ExitingBlocks);
336   for (auto *ExitingBlock : ExitingBlocks) {
337     // The folding code is not prepared to deal with non-branch instructions
338     // right now.
339     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
340     if (!BI)
341       continue;
342 
343     ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
344     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
345     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
346     if (Info.TripCount != 0) {
347       Info.BreakoutTrip = Info.TripCount % ULO.Count;
348       Info.TripMultiple = 0;
349     } else {
350       Info.BreakoutTrip = Info.TripMultiple =
351           (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple);
352     }
353     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
354     Info.ExitingBlocks.push_back(ExitingBlock);
355     LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
356                       << ": TripCount=" << Info.TripCount
357                       << ", TripMultiple=" << Info.TripMultiple
358                       << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
359   }
360 
361   // Are we eliminating the loop control altogether?  Note that we can know
362   // we're eliminating the backedge without knowing exactly which iteration
363   // of the unrolled body exits.
364   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
365 
366   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
367 
368   // We assume a run-time trip count if the compiler cannot
369   // figure out the loop trip count and the unroll-runtime
370   // flag is specified.
371   bool RuntimeTripCount = !CompletelyUnroll && ULO.TripCount == 0 &&
372                           ULO.TripMultiple % ULO.Count != 0 && ULO.AllowRuntime;
373 
374   // Go through all exits of L and see if there are any phi-nodes there. We just
375   // conservatively assume that they're inserted to preserve LCSSA form, which
376   // means that complete unrolling might break this form. We need to either fix
377   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
378   // now we just recompute LCSSA for the outer loop, but it should be possible
379   // to fix it in-place.
380   bool NeedToFixLCSSA =
381       PreserveLCSSA && CompletelyUnroll &&
382       any_of(ExitBlocks,
383              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
384 
385   // The current loop unroll pass can unroll loops that have
386   // (1) single latch; and
387   // (2a) latch is unconditional; or
388   // (2b) latch is conditional and is an exiting block
389   // FIXME: The implementation can be extended to work with more complicated
390   // cases, e.g. loops with multiple latches.
391   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
392 
393   // A conditional branch which exits the loop, which can be optimized to an
394   // unconditional branch in the unrolled loop in some cases.
395   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
396   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
397     LLVM_DEBUG(
398         dbgs() << "Can't unroll; a conditional latch must exit the loop");
399     return LoopUnrollResult::Unmodified;
400   }
401 
402   // Loops containing convergent instructions must have a count that divides
403   // their TripMultiple.
404   LLVM_DEBUG(
405       {
406         bool HasConvergent = false;
407         for (auto &BB : L->blocks())
408           for (auto &I : *BB)
409             if (auto *CB = dyn_cast<CallBase>(&I))
410               HasConvergent |= CB->isConvergent();
411         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
412                "Unroll count must divide trip multiple if loop contains a "
413                "convergent operation.");
414       });
415 
416   bool EpilogProfitability =
417       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
418                                               : isEpilogProfitable(L);
419 
420   if (RuntimeTripCount &&
421       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
422                                   EpilogProfitability, ULO.UnrollRemainder,
423                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
424                                   PreserveLCSSA, RemainderLoop)) {
425     if (ULO.Force)
426       RuntimeTripCount = false;
427     else {
428       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
429                            "generated when assuming runtime trip count\n");
430       return LoopUnrollResult::Unmodified;
431     }
432   }
433 
434   using namespace ore;
435   // Report the unrolling decision.
436   if (CompletelyUnroll) {
437     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
438                       << " with trip count " << ULO.Count << "!\n");
439     if (ORE)
440       ORE->emit([&]() {
441         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
442                                   L->getHeader())
443                << "completely unrolled loop with "
444                << NV("UnrollCount", ULO.Count) << " iterations";
445       });
446   } else {
447     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
448                       << ULO.Count);
449     if (RuntimeTripCount)
450       LLVM_DEBUG(dbgs() << " with run-time trip count");
451     LLVM_DEBUG(dbgs() << "!\n");
452 
453     if (ORE)
454       ORE->emit([&]() {
455         OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
456                                 L->getHeader());
457         Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
458         if (RuntimeTripCount)
459           Diag << " with run-time trip count";
460         return Diag;
461       });
462   }
463 
464   // We are going to make changes to this loop. SCEV may be keeping cached info
465   // about it, in particular about backedge taken count. The changes we make
466   // are guaranteed to invalidate this information for our loop. It is tempting
467   // to only invalidate the loop being unrolled, but it is incorrect as long as
468   // all exiting branches from all inner loops have impact on the outer loops,
469   // and if something changes inside them then any of outer loops may also
470   // change. When we forget outermost loop, we also forget all contained loops
471   // and this is what we need here.
472   if (SE) {
473     if (ULO.ForgetAllSCEV)
474       SE->forgetAllLoops();
475     else
476       SE->forgetTopmostLoop(L);
477   }
478 
479   if (!LatchIsExiting)
480     ++NumUnrolledNotLatch;
481 
482   // For the first iteration of the loop, we should use the precloned values for
483   // PHI nodes.  Insert associations now.
484   ValueToValueMapTy LastValueMap;
485   std::vector<PHINode*> OrigPHINode;
486   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
487     OrigPHINode.push_back(cast<PHINode>(I));
488   }
489 
490   std::vector<BasicBlock *> Headers;
491   std::vector<BasicBlock *> Latches;
492   Headers.push_back(Header);
493   Latches.push_back(LatchBlock);
494 
495   // The current on-the-fly SSA update requires blocks to be processed in
496   // reverse postorder so that LastValueMap contains the correct value at each
497   // exit.
498   LoopBlocksDFS DFS(L);
499   DFS.perform(LI);
500 
501   // Stash the DFS iterators before adding blocks to the loop.
502   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
503   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
504 
505   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
506 
507   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
508   // might break loop-simplified form for these loops (as they, e.g., would
509   // share the same exit blocks). We'll keep track of loops for which we can
510   // break this so that later we can re-simplify them.
511   SmallSetVector<Loop *, 4> LoopsToSimplify;
512   for (Loop *SubLoop : *L)
513     LoopsToSimplify.insert(SubLoop);
514 
515   // When a FSDiscriminator is enabled, we don't need to add the multiply
516   // factors to the discriminators.
517   if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
518     for (BasicBlock *BB : L->getBlocks())
519       for (Instruction &I : *BB)
520         if (!isa<DbgInfoIntrinsic>(&I))
521           if (const DILocation *DIL = I.getDebugLoc()) {
522             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
523             if (NewDIL)
524               I.setDebugLoc(NewDIL.getValue());
525             else
526               LLVM_DEBUG(dbgs()
527                          << "Failed to create new discriminator: "
528                          << DIL->getFilename() << " Line: " << DIL->getLine());
529           }
530 
531   // Identify what noalias metadata is inside the loop: if it is inside the
532   // loop, the associated metadata must be cloned for each iteration.
533   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
534   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
535 
536   for (unsigned It = 1; It != ULO.Count; ++It) {
537     SmallVector<BasicBlock *, 8> NewBlocks;
538     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
539     NewLoops[L] = L;
540 
541     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
542       ValueToValueMapTy VMap;
543       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
544       Header->getParent()->getBasicBlockList().push_back(New);
545 
546       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
547              "Header should not be in a sub-loop");
548       // Tell LI about New.
549       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
550       if (OldLoop)
551         LoopsToSimplify.insert(NewLoops[OldLoop]);
552 
553       if (*BB == Header)
554         // Loop over all of the PHI nodes in the block, changing them to use
555         // the incoming values from the previous block.
556         for (PHINode *OrigPHI : OrigPHINode) {
557           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
558           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
559           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
560             if (It > 1 && L->contains(InValI))
561               InVal = LastValueMap[InValI];
562           VMap[OrigPHI] = InVal;
563           New->getInstList().erase(NewPHI);
564         }
565 
566       // Update our running map of newest clones
567       LastValueMap[*BB] = New;
568       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
569            VI != VE; ++VI)
570         LastValueMap[VI->first] = VI->second;
571 
572       // Add phi entries for newly created values to all exit blocks.
573       for (BasicBlock *Succ : successors(*BB)) {
574         if (L->contains(Succ))
575           continue;
576         for (PHINode &PHI : Succ->phis()) {
577           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
578           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
579           if (It != LastValueMap.end())
580             Incoming = It->second;
581           PHI.addIncoming(Incoming, New);
582         }
583       }
584       // Keep track of new headers and latches as we create them, so that
585       // we can insert the proper branches later.
586       if (*BB == Header)
587         Headers.push_back(New);
588       if (*BB == LatchBlock)
589         Latches.push_back(New);
590 
591       // Keep track of the exiting block and its successor block contained in
592       // the loop for the current iteration.
593       auto ExitInfoIt = ExitInfos.find(*BB);
594       if (ExitInfoIt != ExitInfos.end())
595         ExitInfoIt->second.ExitingBlocks.push_back(New);
596 
597       NewBlocks.push_back(New);
598       UnrolledLoopBlocks.push_back(New);
599 
600       // Update DomTree: since we just copy the loop body, and each copy has a
601       // dedicated entry block (copy of the header block), this header's copy
602       // dominates all copied blocks. That means, dominance relations in the
603       // copied body are the same as in the original body.
604       if (*BB == Header)
605         DT->addNewBlock(New, Latches[It - 1]);
606       else {
607         auto BBDomNode = DT->getNode(*BB);
608         auto BBIDom = BBDomNode->getIDom();
609         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
610         DT->addNewBlock(
611             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
612       }
613     }
614 
615     // Remap all instructions in the most recent iteration
616     remapInstructionsInBlocks(NewBlocks, LastValueMap);
617     for (BasicBlock *NewBlock : NewBlocks)
618       for (Instruction &I : *NewBlock)
619         if (auto *II = dyn_cast<AssumeInst>(&I))
620           AC->registerAssumption(II);
621 
622     {
623       // Identify what other metadata depends on the cloned version. After
624       // cloning, replace the metadata with the corrected version for both
625       // memory instructions and noalias intrinsics.
626       std::string ext = (Twine("It") + Twine(It)).str();
627       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
628                                  Header->getContext(), ext);
629     }
630   }
631 
632   // Loop over the PHI nodes in the original block, setting incoming values.
633   for (PHINode *PN : OrigPHINode) {
634     if (CompletelyUnroll) {
635       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
636       Header->getInstList().erase(PN);
637     } else if (ULO.Count > 1) {
638       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
639       // If this value was defined in the loop, take the value defined by the
640       // last iteration of the loop.
641       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
642         if (L->contains(InValI))
643           InVal = LastValueMap[InVal];
644       }
645       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
646       PN->addIncoming(InVal, Latches.back());
647     }
648   }
649 
650   // Connect latches of the unrolled iterations to the headers of the next
651   // iteration. Currently they point to the header of the same iteration.
652   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
653     unsigned j = (i + 1) % e;
654     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
655   }
656 
657   // Update dominators of blocks we might reach through exits.
658   // Immediate dominator of such block might change, because we add more
659   // routes which can lead to the exit: we can now reach it from the copied
660   // iterations too.
661   if (ULO.Count > 1) {
662     for (auto *BB : OriginalLoopBlocks) {
663       auto *BBDomNode = DT->getNode(BB);
664       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
665       for (auto *ChildDomNode : BBDomNode->children()) {
666         auto *ChildBB = ChildDomNode->getBlock();
667         if (!L->contains(ChildBB))
668           ChildrenToUpdate.push_back(ChildBB);
669       }
670       // The new idom of the block will be the nearest common dominator
671       // of all copies of the previous idom. This is equivalent to the
672       // nearest common dominator of the previous idom and the first latch,
673       // which dominates all copies of the previous idom.
674       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
675       for (auto *ChildBB : ChildrenToUpdate)
676         DT->changeImmediateDominator(ChildBB, NewIDom);
677     }
678   }
679 
680   assert(!UnrollVerifyDomtree ||
681          DT->verify(DominatorTree::VerificationLevel::Fast));
682 
683   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
684 
685   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
686     auto *Term = cast<BranchInst>(Src->getTerminator());
687     const unsigned Idx = ExitOnTrue ^ WillExit;
688     BasicBlock *Dest = Term->getSuccessor(Idx);
689     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
690 
691     // Remove predecessors from all non-Dest successors.
692     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
693 
694     // Replace the conditional branch with an unconditional one.
695     BranchInst::Create(Dest, Term);
696     Term->eraseFromParent();
697 
698     DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
699   };
700 
701   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
702                       bool IsLatch) -> Optional<bool> {
703     if (CompletelyUnroll) {
704       if (PreserveOnlyFirst) {
705         if (i == 0)
706           return None;
707         return j == 0;
708       }
709       // Complete (but possibly inexact) unrolling
710       if (j == 0)
711         return true;
712       if (Info.TripCount && j != Info.TripCount)
713         return false;
714       return None;
715     }
716 
717     if (RuntimeTripCount) {
718       // If runtime unrolling inserts a prologue, information about non-latch
719       // exits may be stale.
720       if (IsLatch && j != 0)
721         return false;
722       return None;
723     }
724 
725     if (j != Info.BreakoutTrip &&
726         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
727       // If we know the trip count or a multiple of it, we can safely use an
728       // unconditional branch for some iterations.
729       return false;
730     }
731     return None;
732   };
733 
734   // Fold branches for iterations where we know that they will exit or not
735   // exit.
736   for (const auto &Pair : ExitInfos) {
737     const ExitInfo &Info = Pair.second;
738     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
739       // The branch destination.
740       unsigned j = (i + 1) % e;
741       bool IsLatch = Pair.first == LatchBlock;
742       Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
743       if (!KnownWillExit)
744         continue;
745 
746       // We don't fold known-exiting branches for non-latch exits here,
747       // because this ensures that both all loop blocks and all exit blocks
748       // remain reachable in the CFG.
749       // TODO: We could fold these branches, but it would require much more
750       // sophisticated updates to LoopInfo.
751       if (*KnownWillExit && !IsLatch)
752         continue;
753 
754       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
755     }
756   }
757 
758   // When completely unrolling, the last latch becomes unreachable.
759   if (!LatchIsExiting && CompletelyUnroll)
760     changeToUnreachable(Latches.back()->getTerminator(), /* UseTrap */ false,
761                         PreserveLCSSA, &DTU);
762 
763   // Merge adjacent basic blocks, if possible.
764   for (BasicBlock *Latch : Latches) {
765     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
766     assert((Term ||
767             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
768            "Need a branch as terminator, except when fully unrolling with "
769            "unconditional latch");
770     if (Term && Term->isUnconditional()) {
771       BasicBlock *Dest = Term->getSuccessor(0);
772       BasicBlock *Fold = Dest->getUniquePredecessor();
773       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
774         // Dest has been folded into Fold. Update our worklists accordingly.
775         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
776         llvm::erase_value(UnrolledLoopBlocks, Dest);
777       }
778     }
779   }
780   // Apply updates to the DomTree.
781   DT = &DTU.getDomTree();
782 
783   // At this point, the code is well formed.  We now simplify the unrolled loop,
784   // doing constant propagation and dead code elimination as we go.
785   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
786                           TTI);
787 
788   NumCompletelyUnrolled += CompletelyUnroll;
789   ++NumUnrolled;
790 
791   Loop *OuterL = L->getParentLoop();
792   // Update LoopInfo if the loop is completely removed.
793   if (CompletelyUnroll)
794     LI->erase(L);
795 
796   // After complete unrolling most of the blocks should be contained in OuterL.
797   // However, some of them might happen to be out of OuterL (e.g. if they
798   // precede a loop exit). In this case we might need to insert PHI nodes in
799   // order to preserve LCSSA form.
800   // We don't need to check this if we already know that we need to fix LCSSA
801   // form.
802   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
803   // it should be possible to fix it in-place.
804   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
805     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
806 
807   // Make sure that loop-simplify form is preserved. We want to simplify
808   // at least one layer outside of the loop that was unrolled so that any
809   // changes to the parent loop exposed by the unrolling are considered.
810   if (OuterL) {
811     // OuterL includes all loops for which we can break loop-simplify, so
812     // it's sufficient to simplify only it (it'll recursively simplify inner
813     // loops too).
814     if (NeedToFixLCSSA) {
815       // LCSSA must be performed on the outermost affected loop. The unrolled
816       // loop's last loop latch is guaranteed to be in the outermost loop
817       // after LoopInfo's been updated by LoopInfo::erase.
818       Loop *LatchLoop = LI->getLoopFor(Latches.back());
819       Loop *FixLCSSALoop = OuterL;
820       if (!FixLCSSALoop->contains(LatchLoop))
821         while (FixLCSSALoop->getParentLoop() != LatchLoop)
822           FixLCSSALoop = FixLCSSALoop->getParentLoop();
823 
824       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
825     } else if (PreserveLCSSA) {
826       assert(OuterL->isLCSSAForm(*DT) &&
827              "Loops should be in LCSSA form after loop-unroll.");
828     }
829 
830     // TODO: That potentially might be compile-time expensive. We should try
831     // to fix the loop-simplified form incrementally.
832     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
833   } else {
834     // Simplify loops for which we might've broken loop-simplify form.
835     for (Loop *SubLoop : LoopsToSimplify)
836       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
837   }
838 
839   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
840                           : LoopUnrollResult::PartiallyUnrolled;
841 }
842 
843 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
844 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
845 /// such metadata node exists, then nullptr is returned.
846 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
847   // First operand should refer to the loop id itself.
848   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
849   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
850 
851   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
852     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
853     if (!MD)
854       continue;
855 
856     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
857     if (!S)
858       continue;
859 
860     if (Name.equals(S->getString()))
861       return MD;
862   }
863   return nullptr;
864 }
865