1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 65 #include "llvm/Transforms/Utils/UnrollLoop.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <assert.h> 69 #include <type_traits> 70 #include <vector> 71 72 namespace llvm { 73 class DataLayout; 74 class Value; 75 } // namespace llvm 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-unroll" 80 81 // TODO: Should these be here or in LoopUnroll? 82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 85 "latch (completely or otherwise)"); 86 87 static cl::opt<bool> 88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 89 cl::desc("Allow runtime unrolled loops to be unrolled " 90 "with epilog instead of prolog.")); 91 92 static cl::opt<bool> 93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 94 cl::desc("Verify domtree after unrolling"), 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true) 97 #else 98 cl::init(false) 99 #endif 100 ); 101 102 /// Check if unrolling created a situation where we need to insert phi nodes to 103 /// preserve LCSSA form. 104 /// \param Blocks is a vector of basic blocks representing unrolled loop. 105 /// \param L is the outer loop. 106 /// It's possible that some of the blocks are in L, and some are not. In this 107 /// case, if there is a use is outside L, and definition is inside L, we need to 108 /// insert a phi-node, otherwise LCSSA will be broken. 109 /// The function is just a helper function for llvm::UnrollLoop that returns 110 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 111 static bool needToInsertPhisForLCSSA(Loop *L, 112 const std::vector<BasicBlock *> &Blocks, 113 LoopInfo *LI) { 114 for (BasicBlock *BB : Blocks) { 115 if (LI->getLoopFor(BB) == L) 116 continue; 117 for (Instruction &I : *BB) { 118 for (Use &U : I.operands()) { 119 if (const auto *Def = dyn_cast<Instruction>(U)) { 120 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 121 if (!DefLoop) 122 continue; 123 if (DefLoop->contains(L)) 124 return true; 125 } 126 } 127 } 128 } 129 return false; 130 } 131 132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 133 /// and adds a mapping from the original loop to the new loop to NewLoops. 134 /// Returns nullptr if no new loop was created and a pointer to the 135 /// original loop OriginalBB was part of otherwise. 136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 137 BasicBlock *ClonedBB, LoopInfo *LI, 138 NewLoopsMap &NewLoops) { 139 // Figure out which loop New is in. 140 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 141 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 142 143 Loop *&NewLoop = NewLoops[OldLoop]; 144 if (!NewLoop) { 145 // Found a new sub-loop. 146 assert(OriginalBB == OldLoop->getHeader() && 147 "Header should be first in RPO"); 148 149 NewLoop = LI->AllocateLoop(); 150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 151 152 if (NewLoopParent) 153 NewLoopParent->addChildLoop(NewLoop); 154 else 155 LI->addTopLevelLoop(NewLoop); 156 157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 158 return OldLoop; 159 } else { 160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 161 return nullptr; 162 } 163 } 164 165 /// The function chooses which type of unroll (epilog or prolog) is more 166 /// profitabale. 167 /// Epilog unroll is more profitable when there is PHI that starts from 168 /// constant. In this case epilog will leave PHI start from constant, 169 /// but prolog will convert it to non-constant. 170 /// 171 /// loop: 172 /// PN = PHI [I, Latch], [CI, PreHeader] 173 /// I = foo(PN) 174 /// ... 175 /// 176 /// Epilog unroll case. 177 /// loop: 178 /// PN = PHI [I2, Latch], [CI, PreHeader] 179 /// I1 = foo(PN) 180 /// I2 = foo(I1) 181 /// ... 182 /// Prolog unroll case. 183 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 184 /// loop: 185 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 186 /// I1 = foo(PN) 187 /// I2 = foo(I1) 188 /// ... 189 /// 190 static bool isEpilogProfitable(Loop *L) { 191 BasicBlock *PreHeader = L->getLoopPreheader(); 192 BasicBlock *Header = L->getHeader(); 193 assert(PreHeader && Header); 194 for (const PHINode &PN : Header->phis()) { 195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 196 return true; 197 } 198 return false; 199 } 200 201 /// Perform some cleanup and simplifications on loops after unrolling. It is 202 /// useful to simplify the IV's in the new loop, as well as do a quick 203 /// simplify/dce pass of the instructions. 204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 205 ScalarEvolution *SE, DominatorTree *DT, 206 AssumptionCache *AC, 207 const TargetTransformInfo *TTI) { 208 // Simplify any new induction variables in the partially unrolled loop. 209 if (SE && SimplifyIVs) { 210 SmallVector<WeakTrackingVH, 16> DeadInsts; 211 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 212 213 // Aggressively clean up dead instructions that simplifyLoopIVs already 214 // identified. Any remaining should be cleaned up below. 215 while (!DeadInsts.empty()) { 216 Value *V = DeadInsts.pop_back_val(); 217 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 218 RecursivelyDeleteTriviallyDeadInstructions(Inst); 219 } 220 } 221 222 // At this point, the code is well formed. Perform constprop, instsimplify, 223 // and dce. 224 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 225 SmallVector<WeakTrackingVH, 16> DeadInsts; 226 for (BasicBlock *BB : L->getBlocks()) { 227 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 228 Instruction *Inst = &*I++; 229 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 230 if (LI->replacementPreservesLCSSAForm(Inst, V)) 231 Inst->replaceAllUsesWith(V); 232 if (isInstructionTriviallyDead(Inst)) 233 DeadInsts.emplace_back(Inst); 234 } 235 // We can't do recursive deletion until we're done iterating, as we might 236 // have a phi which (potentially indirectly) uses instructions later in 237 // the block we're iterating through. 238 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 239 } 240 } 241 242 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 243 /// can only fail when the loop's latch block is not terminated by a conditional 244 /// branch instruction. However, if the trip count (and multiple) are not known, 245 /// loop unrolling will mostly produce more code that is no faster. 246 /// 247 /// TripCount is an upper bound on the number of times the loop header runs. 248 /// Note that the trip count does not need to be exact, it can be any upper 249 /// bound on the true trip count. 250 /// 251 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 252 /// execute without exiting the loop. 253 /// 254 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 255 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 256 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 257 /// iterations before branching into the unrolled loop. UnrollLoop will not 258 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 259 /// AllowExpensiveTripCount is false. 260 /// 261 /// The LoopInfo Analysis that is passed will be kept consistent. 262 /// 263 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 264 /// DominatorTree if they are non-null. 265 /// 266 /// If RemainderLoop is non-null, it will receive the remainder loop (if 267 /// required and not fully unrolled). 268 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 269 ScalarEvolution *SE, DominatorTree *DT, 270 AssumptionCache *AC, 271 const TargetTransformInfo *TTI, 272 OptimizationRemarkEmitter *ORE, 273 bool PreserveLCSSA, Loop **RemainderLoop) { 274 assert(DT && "DomTree is required"); 275 276 if (!L->getLoopPreheader()) { 277 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 278 return LoopUnrollResult::Unmodified; 279 } 280 281 if (!L->getLoopLatch()) { 282 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 283 return LoopUnrollResult::Unmodified; 284 } 285 286 // Loops with indirectbr cannot be cloned. 287 if (!L->isSafeToClone()) { 288 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 289 return LoopUnrollResult::Unmodified; 290 } 291 292 if (L->getHeader()->hasAddressTaken()) { 293 // The loop-rotate pass can be helpful to avoid this in many cases. 294 LLVM_DEBUG( 295 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 296 return LoopUnrollResult::Unmodified; 297 } 298 299 // Don't enter the unroll code if there is nothing to do. 300 if (ULO.TripCount == 0 && ULO.Count < 2) { 301 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 302 return LoopUnrollResult::Unmodified; 303 } 304 305 assert(ULO.Count > 0); 306 assert(ULO.TripMultiple > 0); 307 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 308 309 // All these values should be taken only after peeling because they might have 310 // changed. 311 BasicBlock *Preheader = L->getLoopPreheader(); 312 BasicBlock *Header = L->getHeader(); 313 BasicBlock *LatchBlock = L->getLoopLatch(); 314 SmallVector<BasicBlock *, 4> ExitBlocks; 315 L->getExitBlocks(ExitBlocks); 316 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 317 318 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); 319 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 320 321 // Effectively "DCE" unrolled iterations that are beyond the max tripcount 322 // and will never be executed. 323 if (MaxTripCount && ULO.Count > MaxTripCount) 324 ULO.Count = MaxTripCount; 325 326 struct ExitInfo { 327 unsigned TripCount; 328 unsigned TripMultiple; 329 unsigned BreakoutTrip; 330 bool ExitOnTrue; 331 SmallVector<BasicBlock *> ExitingBlocks; 332 }; 333 DenseMap<BasicBlock *, ExitInfo> ExitInfos; 334 SmallVector<BasicBlock *, 4> ExitingBlocks; 335 L->getExitingBlocks(ExitingBlocks); 336 for (auto *ExitingBlock : ExitingBlocks) { 337 // The folding code is not prepared to deal with non-branch instructions 338 // right now. 339 auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 340 if (!BI) 341 continue; 342 343 ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second; 344 Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 345 Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 346 if (Info.TripCount != 0) { 347 Info.BreakoutTrip = Info.TripCount % ULO.Count; 348 Info.TripMultiple = 0; 349 } else { 350 Info.BreakoutTrip = Info.TripMultiple = 351 (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple); 352 } 353 Info.ExitOnTrue = !L->contains(BI->getSuccessor(0)); 354 Info.ExitingBlocks.push_back(ExitingBlock); 355 LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName() 356 << ": TripCount=" << Info.TripCount 357 << ", TripMultiple=" << Info.TripMultiple 358 << ", BreakoutTrip=" << Info.BreakoutTrip << "\n"); 359 } 360 361 // Are we eliminating the loop control altogether? Note that we can know 362 // we're eliminating the backedge without knowing exactly which iteration 363 // of the unrolled body exits. 364 const bool CompletelyUnroll = ULO.Count == MaxTripCount; 365 366 const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; 367 368 // We assume a run-time trip count if the compiler cannot 369 // figure out the loop trip count and the unroll-runtime 370 // flag is specified. 371 bool RuntimeTripCount = !CompletelyUnroll && ULO.TripCount == 0 && 372 ULO.TripMultiple % ULO.Count != 0 && ULO.AllowRuntime; 373 374 // Go through all exits of L and see if there are any phi-nodes there. We just 375 // conservatively assume that they're inserted to preserve LCSSA form, which 376 // means that complete unrolling might break this form. We need to either fix 377 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 378 // now we just recompute LCSSA for the outer loop, but it should be possible 379 // to fix it in-place. 380 bool NeedToFixLCSSA = 381 PreserveLCSSA && CompletelyUnroll && 382 any_of(ExitBlocks, 383 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 384 385 // The current loop unroll pass can unroll loops that have 386 // (1) single latch; and 387 // (2a) latch is unconditional; or 388 // (2b) latch is conditional and is an exiting block 389 // FIXME: The implementation can be extended to work with more complicated 390 // cases, e.g. loops with multiple latches. 391 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 392 393 // A conditional branch which exits the loop, which can be optimized to an 394 // unconditional branch in the unrolled loop in some cases. 395 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 396 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 397 LLVM_DEBUG( 398 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 399 return LoopUnrollResult::Unmodified; 400 } 401 402 // Loops containing convergent instructions must have a count that divides 403 // their TripMultiple. 404 LLVM_DEBUG( 405 { 406 bool HasConvergent = false; 407 for (auto &BB : L->blocks()) 408 for (auto &I : *BB) 409 if (auto *CB = dyn_cast<CallBase>(&I)) 410 HasConvergent |= CB->isConvergent(); 411 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 412 "Unroll count must divide trip multiple if loop contains a " 413 "convergent operation."); 414 }); 415 416 bool EpilogProfitability = 417 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 418 : isEpilogProfitable(L); 419 420 if (RuntimeTripCount && 421 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 422 EpilogProfitability, ULO.UnrollRemainder, 423 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 424 PreserveLCSSA, RemainderLoop)) { 425 if (ULO.Force) 426 RuntimeTripCount = false; 427 else { 428 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 429 "generated when assuming runtime trip count\n"); 430 return LoopUnrollResult::Unmodified; 431 } 432 } 433 434 using namespace ore; 435 // Report the unrolling decision. 436 if (CompletelyUnroll) { 437 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 438 << " with trip count " << ULO.Count << "!\n"); 439 if (ORE) 440 ORE->emit([&]() { 441 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 442 L->getHeader()) 443 << "completely unrolled loop with " 444 << NV("UnrollCount", ULO.Count) << " iterations"; 445 }); 446 } else { 447 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 448 << ULO.Count); 449 if (RuntimeTripCount) 450 LLVM_DEBUG(dbgs() << " with run-time trip count"); 451 LLVM_DEBUG(dbgs() << "!\n"); 452 453 if (ORE) 454 ORE->emit([&]() { 455 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 456 L->getHeader()); 457 Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count); 458 if (RuntimeTripCount) 459 Diag << " with run-time trip count"; 460 return Diag; 461 }); 462 } 463 464 // We are going to make changes to this loop. SCEV may be keeping cached info 465 // about it, in particular about backedge taken count. The changes we make 466 // are guaranteed to invalidate this information for our loop. It is tempting 467 // to only invalidate the loop being unrolled, but it is incorrect as long as 468 // all exiting branches from all inner loops have impact on the outer loops, 469 // and if something changes inside them then any of outer loops may also 470 // change. When we forget outermost loop, we also forget all contained loops 471 // and this is what we need here. 472 if (SE) { 473 if (ULO.ForgetAllSCEV) 474 SE->forgetAllLoops(); 475 else 476 SE->forgetTopmostLoop(L); 477 } 478 479 if (!LatchIsExiting) 480 ++NumUnrolledNotLatch; 481 482 // For the first iteration of the loop, we should use the precloned values for 483 // PHI nodes. Insert associations now. 484 ValueToValueMapTy LastValueMap; 485 std::vector<PHINode*> OrigPHINode; 486 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 487 OrigPHINode.push_back(cast<PHINode>(I)); 488 } 489 490 std::vector<BasicBlock *> Headers; 491 std::vector<BasicBlock *> Latches; 492 Headers.push_back(Header); 493 Latches.push_back(LatchBlock); 494 495 // The current on-the-fly SSA update requires blocks to be processed in 496 // reverse postorder so that LastValueMap contains the correct value at each 497 // exit. 498 LoopBlocksDFS DFS(L); 499 DFS.perform(LI); 500 501 // Stash the DFS iterators before adding blocks to the loop. 502 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 503 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 504 505 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 506 507 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 508 // might break loop-simplified form for these loops (as they, e.g., would 509 // share the same exit blocks). We'll keep track of loops for which we can 510 // break this so that later we can re-simplify them. 511 SmallSetVector<Loop *, 4> LoopsToSimplify; 512 for (Loop *SubLoop : *L) 513 LoopsToSimplify.insert(SubLoop); 514 515 // When a FSDiscriminator is enabled, we don't need to add the multiply 516 // factors to the discriminators. 517 if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator) 518 for (BasicBlock *BB : L->getBlocks()) 519 for (Instruction &I : *BB) 520 if (!isa<DbgInfoIntrinsic>(&I)) 521 if (const DILocation *DIL = I.getDebugLoc()) { 522 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 523 if (NewDIL) 524 I.setDebugLoc(NewDIL.getValue()); 525 else 526 LLVM_DEBUG(dbgs() 527 << "Failed to create new discriminator: " 528 << DIL->getFilename() << " Line: " << DIL->getLine()); 529 } 530 531 // Identify what noalias metadata is inside the loop: if it is inside the 532 // loop, the associated metadata must be cloned for each iteration. 533 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 534 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 535 536 for (unsigned It = 1; It != ULO.Count; ++It) { 537 SmallVector<BasicBlock *, 8> NewBlocks; 538 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 539 NewLoops[L] = L; 540 541 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 542 ValueToValueMapTy VMap; 543 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 544 Header->getParent()->getBasicBlockList().push_back(New); 545 546 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 547 "Header should not be in a sub-loop"); 548 // Tell LI about New. 549 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 550 if (OldLoop) 551 LoopsToSimplify.insert(NewLoops[OldLoop]); 552 553 if (*BB == Header) 554 // Loop over all of the PHI nodes in the block, changing them to use 555 // the incoming values from the previous block. 556 for (PHINode *OrigPHI : OrigPHINode) { 557 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 558 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 559 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 560 if (It > 1 && L->contains(InValI)) 561 InVal = LastValueMap[InValI]; 562 VMap[OrigPHI] = InVal; 563 New->getInstList().erase(NewPHI); 564 } 565 566 // Update our running map of newest clones 567 LastValueMap[*BB] = New; 568 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 569 VI != VE; ++VI) 570 LastValueMap[VI->first] = VI->second; 571 572 // Add phi entries for newly created values to all exit blocks. 573 for (BasicBlock *Succ : successors(*BB)) { 574 if (L->contains(Succ)) 575 continue; 576 for (PHINode &PHI : Succ->phis()) { 577 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 578 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 579 if (It != LastValueMap.end()) 580 Incoming = It->second; 581 PHI.addIncoming(Incoming, New); 582 } 583 } 584 // Keep track of new headers and latches as we create them, so that 585 // we can insert the proper branches later. 586 if (*BB == Header) 587 Headers.push_back(New); 588 if (*BB == LatchBlock) 589 Latches.push_back(New); 590 591 // Keep track of the exiting block and its successor block contained in 592 // the loop for the current iteration. 593 auto ExitInfoIt = ExitInfos.find(*BB); 594 if (ExitInfoIt != ExitInfos.end()) 595 ExitInfoIt->second.ExitingBlocks.push_back(New); 596 597 NewBlocks.push_back(New); 598 UnrolledLoopBlocks.push_back(New); 599 600 // Update DomTree: since we just copy the loop body, and each copy has a 601 // dedicated entry block (copy of the header block), this header's copy 602 // dominates all copied blocks. That means, dominance relations in the 603 // copied body are the same as in the original body. 604 if (*BB == Header) 605 DT->addNewBlock(New, Latches[It - 1]); 606 else { 607 auto BBDomNode = DT->getNode(*BB); 608 auto BBIDom = BBDomNode->getIDom(); 609 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 610 DT->addNewBlock( 611 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 612 } 613 } 614 615 // Remap all instructions in the most recent iteration 616 remapInstructionsInBlocks(NewBlocks, LastValueMap); 617 for (BasicBlock *NewBlock : NewBlocks) 618 for (Instruction &I : *NewBlock) 619 if (auto *II = dyn_cast<AssumeInst>(&I)) 620 AC->registerAssumption(II); 621 622 { 623 // Identify what other metadata depends on the cloned version. After 624 // cloning, replace the metadata with the corrected version for both 625 // memory instructions and noalias intrinsics. 626 std::string ext = (Twine("It") + Twine(It)).str(); 627 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 628 Header->getContext(), ext); 629 } 630 } 631 632 // Loop over the PHI nodes in the original block, setting incoming values. 633 for (PHINode *PN : OrigPHINode) { 634 if (CompletelyUnroll) { 635 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 636 Header->getInstList().erase(PN); 637 } else if (ULO.Count > 1) { 638 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 639 // If this value was defined in the loop, take the value defined by the 640 // last iteration of the loop. 641 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 642 if (L->contains(InValI)) 643 InVal = LastValueMap[InVal]; 644 } 645 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 646 PN->addIncoming(InVal, Latches.back()); 647 } 648 } 649 650 // Connect latches of the unrolled iterations to the headers of the next 651 // iteration. Currently they point to the header of the same iteration. 652 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 653 unsigned j = (i + 1) % e; 654 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); 655 } 656 657 // Update dominators of blocks we might reach through exits. 658 // Immediate dominator of such block might change, because we add more 659 // routes which can lead to the exit: we can now reach it from the copied 660 // iterations too. 661 if (ULO.Count > 1) { 662 for (auto *BB : OriginalLoopBlocks) { 663 auto *BBDomNode = DT->getNode(BB); 664 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 665 for (auto *ChildDomNode : BBDomNode->children()) { 666 auto *ChildBB = ChildDomNode->getBlock(); 667 if (!L->contains(ChildBB)) 668 ChildrenToUpdate.push_back(ChildBB); 669 } 670 // The new idom of the block will be the nearest common dominator 671 // of all copies of the previous idom. This is equivalent to the 672 // nearest common dominator of the previous idom and the first latch, 673 // which dominates all copies of the previous idom. 674 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 675 for (auto *ChildBB : ChildrenToUpdate) 676 DT->changeImmediateDominator(ChildBB, NewIDom); 677 } 678 } 679 680 assert(!UnrollVerifyDomtree || 681 DT->verify(DominatorTree::VerificationLevel::Fast)); 682 683 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 684 685 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { 686 auto *Term = cast<BranchInst>(Src->getTerminator()); 687 const unsigned Idx = ExitOnTrue ^ WillExit; 688 BasicBlock *Dest = Term->getSuccessor(Idx); 689 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); 690 691 // Remove predecessors from all non-Dest successors. 692 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); 693 694 // Replace the conditional branch with an unconditional one. 695 BranchInst::Create(Dest, Term); 696 Term->eraseFromParent(); 697 698 DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}}); 699 }; 700 701 auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, 702 bool IsLatch) -> Optional<bool> { 703 if (CompletelyUnroll) { 704 if (PreserveOnlyFirst) { 705 if (i == 0) 706 return None; 707 return j == 0; 708 } 709 // Complete (but possibly inexact) unrolling 710 if (j == 0) 711 return true; 712 if (Info.TripCount && j != Info.TripCount) 713 return false; 714 return None; 715 } 716 717 if (RuntimeTripCount) { 718 // If runtime unrolling inserts a prologue, information about non-latch 719 // exits may be stale. 720 if (IsLatch && j != 0) 721 return false; 722 return None; 723 } 724 725 if (j != Info.BreakoutTrip && 726 (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { 727 // If we know the trip count or a multiple of it, we can safely use an 728 // unconditional branch for some iterations. 729 return false; 730 } 731 return None; 732 }; 733 734 // Fold branches for iterations where we know that they will exit or not 735 // exit. 736 for (const auto &Pair : ExitInfos) { 737 const ExitInfo &Info = Pair.second; 738 for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { 739 // The branch destination. 740 unsigned j = (i + 1) % e; 741 bool IsLatch = Pair.first == LatchBlock; 742 Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch); 743 if (!KnownWillExit) 744 continue; 745 746 // We don't fold known-exiting branches for non-latch exits here, 747 // because this ensures that both all loop blocks and all exit blocks 748 // remain reachable in the CFG. 749 // TODO: We could fold these branches, but it would require much more 750 // sophisticated updates to LoopInfo. 751 if (*KnownWillExit && !IsLatch) 752 continue; 753 754 SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); 755 } 756 } 757 758 // When completely unrolling, the last latch becomes unreachable. 759 if (!LatchIsExiting && CompletelyUnroll) 760 changeToUnreachable(Latches.back()->getTerminator(), /* UseTrap */ false, 761 PreserveLCSSA, &DTU); 762 763 // Merge adjacent basic blocks, if possible. 764 for (BasicBlock *Latch : Latches) { 765 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 766 assert((Term || 767 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 768 "Need a branch as terminator, except when fully unrolling with " 769 "unconditional latch"); 770 if (Term && Term->isUnconditional()) { 771 BasicBlock *Dest = Term->getSuccessor(0); 772 BasicBlock *Fold = Dest->getUniquePredecessor(); 773 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 774 // Dest has been folded into Fold. Update our worklists accordingly. 775 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 776 llvm::erase_value(UnrolledLoopBlocks, Dest); 777 } 778 } 779 } 780 // Apply updates to the DomTree. 781 DT = &DTU.getDomTree(); 782 783 // At this point, the code is well formed. We now simplify the unrolled loop, 784 // doing constant propagation and dead code elimination as we go. 785 simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, 786 TTI); 787 788 NumCompletelyUnrolled += CompletelyUnroll; 789 ++NumUnrolled; 790 791 Loop *OuterL = L->getParentLoop(); 792 // Update LoopInfo if the loop is completely removed. 793 if (CompletelyUnroll) 794 LI->erase(L); 795 796 // After complete unrolling most of the blocks should be contained in OuterL. 797 // However, some of them might happen to be out of OuterL (e.g. if they 798 // precede a loop exit). In this case we might need to insert PHI nodes in 799 // order to preserve LCSSA form. 800 // We don't need to check this if we already know that we need to fix LCSSA 801 // form. 802 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 803 // it should be possible to fix it in-place. 804 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 805 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 806 807 // Make sure that loop-simplify form is preserved. We want to simplify 808 // at least one layer outside of the loop that was unrolled so that any 809 // changes to the parent loop exposed by the unrolling are considered. 810 if (OuterL) { 811 // OuterL includes all loops for which we can break loop-simplify, so 812 // it's sufficient to simplify only it (it'll recursively simplify inner 813 // loops too). 814 if (NeedToFixLCSSA) { 815 // LCSSA must be performed on the outermost affected loop. The unrolled 816 // loop's last loop latch is guaranteed to be in the outermost loop 817 // after LoopInfo's been updated by LoopInfo::erase. 818 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 819 Loop *FixLCSSALoop = OuterL; 820 if (!FixLCSSALoop->contains(LatchLoop)) 821 while (FixLCSSALoop->getParentLoop() != LatchLoop) 822 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 823 824 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 825 } else if (PreserveLCSSA) { 826 assert(OuterL->isLCSSAForm(*DT) && 827 "Loops should be in LCSSA form after loop-unroll."); 828 } 829 830 // TODO: That potentially might be compile-time expensive. We should try 831 // to fix the loop-simplified form incrementally. 832 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 833 } else { 834 // Simplify loops for which we might've broken loop-simplify form. 835 for (Loop *SubLoop : LoopsToSimplify) 836 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 837 } 838 839 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 840 : LoopUnrollResult::PartiallyUnrolled; 841 } 842 843 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 844 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 845 /// such metadata node exists, then nullptr is returned. 846 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 847 // First operand should refer to the loop id itself. 848 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 849 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 850 851 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 852 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 853 if (!MD) 854 continue; 855 856 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 857 if (!S) 858 continue; 859 860 if (Name.equals(S->getString())) 861 return MD; 862 } 863 return nullptr; 864 } 865