1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // It works best when loops have been canonicalized by the -indvars pass, 15 // allowing it to determine the trip counts of loops easily. 16 // 17 // The process of unrolling can produce extraneous basic blocks linked with 18 // unconditional branches. This will be corrected in the future. 19 //===----------------------------------------------------------------------===// 20 21 #define DEBUG_TYPE "loop-unroll" 22 #include "llvm/Transforms/Utils/UnrollLoop.h" 23 #include "llvm/BasicBlock.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 33 using namespace llvm; 34 35 // TODO: Should these be here or in LoopUnroll? 36 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 37 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 38 39 /// RemapInstruction - Convert the instruction operands from referencing the 40 /// current values into those specified by ValueMap. 41 static inline void RemapInstruction(Instruction *I, 42 DenseMap<const Value *, Value*> &ValueMap) { 43 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 44 Value *Op = I->getOperand(op); 45 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op); 46 if (It != ValueMap.end()) 47 I->setOperand(op, It->second); 48 } 49 } 50 51 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 52 /// only has one predecessor, and that predecessor only has one successor. 53 /// The LoopInfo Analysis that is passed will be kept consistent. 54 /// Returns the new combined block. 55 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) { 56 // Merge basic blocks into their predecessor if there is only one distinct 57 // pred, and if there is only one distinct successor of the predecessor, and 58 // if there are no PHI nodes. 59 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 60 if (!OnlyPred) return 0; 61 62 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 63 return 0; 64 65 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 66 67 // Resolve any PHI nodes at the start of the block. They are all 68 // guaranteed to have exactly one entry if they exist, unless there are 69 // multiple duplicate (but guaranteed to be equal) entries for the 70 // incoming edges. This occurs when there are multiple edges from 71 // OnlyPred to OnlySucc. 72 FoldSingleEntryPHINodes(BB); 73 74 // Delete the unconditional branch from the predecessor... 75 OnlyPred->getInstList().pop_back(); 76 77 // Move all definitions in the successor to the predecessor... 78 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 79 80 // Make all PHI nodes that referred to BB now refer to Pred as their 81 // source... 82 BB->replaceAllUsesWith(OnlyPred); 83 84 std::string OldName = BB->getName(); 85 86 // Erase basic block from the function... 87 LI->removeBlock(BB); 88 BB->eraseFromParent(); 89 90 // Inherit predecessor's name if it exists... 91 if (!OldName.empty() && !OnlyPred->hasName()) 92 OnlyPred->setName(OldName); 93 94 return OnlyPred; 95 } 96 97 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 98 /// if unrolling was succesful, or false if the loop was unmodified. Unrolling 99 /// can only fail when the loop's latch block is not terminated by a conditional 100 /// branch instruction. However, if the trip count (and multiple) are not known, 101 /// loop unrolling will mostly produce more code that is no faster. 102 /// 103 /// The LoopInfo Analysis that is passed will be kept consistent. 104 /// 105 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 106 /// removed from the LoopPassManager as well. LPM can also be NULL. 107 bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) { 108 BasicBlock *Preheader = L->getLoopPreheader(); 109 if (!Preheader) { 110 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 111 return false; 112 } 113 114 BasicBlock *LatchBlock = L->getLoopLatch(); 115 if (!LatchBlock) { 116 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 117 return false; 118 } 119 120 BasicBlock *Header = L->getHeader(); 121 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 122 123 if (!BI || BI->isUnconditional()) { 124 // The loop-rotate pass can be helpful to avoid this in many cases. 125 DEBUG(dbgs() << 126 " Can't unroll; loop not terminated by a conditional branch.\n"); 127 return false; 128 } 129 130 // Find trip count 131 unsigned TripCount = L->getSmallConstantTripCount(); 132 // Find trip multiple if count is not available 133 unsigned TripMultiple = 1; 134 if (TripCount == 0) 135 TripMultiple = L->getSmallConstantTripMultiple(); 136 137 if (TripCount != 0) 138 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 139 if (TripMultiple != 1) 140 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 141 142 // Effectively "DCE" unrolled iterations that are beyond the tripcount 143 // and will never be executed. 144 if (TripCount != 0 && Count > TripCount) 145 Count = TripCount; 146 147 assert(Count > 0); 148 assert(TripMultiple > 0); 149 assert(TripCount == 0 || TripCount % TripMultiple == 0); 150 151 // Are we eliminating the loop control altogether? 152 bool CompletelyUnroll = Count == TripCount; 153 154 // If we know the trip count, we know the multiple... 155 unsigned BreakoutTrip = 0; 156 if (TripCount != 0) { 157 BreakoutTrip = TripCount % Count; 158 TripMultiple = 0; 159 } else { 160 // Figure out what multiple to use. 161 BreakoutTrip = TripMultiple = 162 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 163 } 164 165 if (CompletelyUnroll) { 166 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 167 << " with trip count " << TripCount << "!\n"); 168 } else { 169 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 170 << " by " << Count); 171 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 172 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 173 } else if (TripMultiple != 1) { 174 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 175 } 176 DEBUG(dbgs() << "!\n"); 177 } 178 179 std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); 180 181 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 182 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 183 184 // For the first iteration of the loop, we should use the precloned values for 185 // PHI nodes. Insert associations now. 186 typedef DenseMap<const Value*, Value*> ValueToValueMapTy; 187 ValueToValueMapTy LastValueMap; 188 std::vector<PHINode*> OrigPHINode; 189 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 190 PHINode *PN = cast<PHINode>(I); 191 OrigPHINode.push_back(PN); 192 if (Instruction *I = 193 dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock))) 194 if (L->contains(I)) 195 LastValueMap[I] = I; 196 } 197 198 std::vector<BasicBlock*> Headers; 199 std::vector<BasicBlock*> Latches; 200 Headers.push_back(Header); 201 Latches.push_back(LatchBlock); 202 203 for (unsigned It = 1; It != Count; ++It) { 204 std::vector<BasicBlock*> NewBlocks; 205 206 for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(), 207 E = LoopBlocks.end(); BB != E; ++BB) { 208 ValueToValueMapTy ValueMap; 209 BasicBlock *New = CloneBasicBlock(*BB, ValueMap, "." + Twine(It)); 210 Header->getParent()->getBasicBlockList().push_back(New); 211 212 // Loop over all of the PHI nodes in the block, changing them to use the 213 // incoming values from the previous block. 214 if (*BB == Header) 215 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 216 PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]); 217 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 218 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 219 if (It > 1 && L->contains(InValI)) 220 InVal = LastValueMap[InValI]; 221 ValueMap[OrigPHINode[i]] = InVal; 222 New->getInstList().erase(NewPHI); 223 } 224 225 // Update our running map of newest clones 226 LastValueMap[*BB] = New; 227 for (ValueToValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end(); 228 VI != VE; ++VI) 229 LastValueMap[VI->first] = VI->second; 230 231 L->addBasicBlockToLoop(New, LI->getBase()); 232 233 // Add phi entries for newly created values to all exit blocks except 234 // the successor of the latch block. The successor of the exit block will 235 // be updated specially after unrolling all the way. 236 if (*BB != LatchBlock) 237 for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end(); 238 UI != UE;) { 239 Instruction *UseInst = cast<Instruction>(*UI); 240 ++UI; 241 if (isa<PHINode>(UseInst) && !L->contains(UseInst)) { 242 PHINode *phi = cast<PHINode>(UseInst); 243 Value *Incoming = phi->getIncomingValueForBlock(*BB); 244 phi->addIncoming(Incoming, New); 245 } 246 } 247 248 // Keep track of new headers and latches as we create them, so that 249 // we can insert the proper branches later. 250 if (*BB == Header) 251 Headers.push_back(New); 252 if (*BB == LatchBlock) { 253 Latches.push_back(New); 254 255 // Also, clear out the new latch's back edge so that it doesn't look 256 // like a new loop, so that it's amenable to being merged with adjacent 257 // blocks later on. 258 TerminatorInst *Term = New->getTerminator(); 259 assert(L->contains(Term->getSuccessor(!ContinueOnTrue))); 260 assert(Term->getSuccessor(ContinueOnTrue) == LoopExit); 261 Term->setSuccessor(!ContinueOnTrue, NULL); 262 } 263 264 NewBlocks.push_back(New); 265 } 266 267 // Remap all instructions in the most recent iteration 268 for (unsigned i = 0; i < NewBlocks.size(); ++i) 269 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 270 E = NewBlocks[i]->end(); I != E; ++I) 271 RemapInstruction(I, LastValueMap); 272 } 273 274 // The latch block exits the loop. If there are any PHI nodes in the 275 // successor blocks, update them to use the appropriate values computed as the 276 // last iteration of the loop. 277 if (Count != 1) { 278 SmallPtrSet<PHINode*, 8> Users; 279 for (Value::use_iterator UI = LatchBlock->use_begin(), 280 UE = LatchBlock->use_end(); UI != UE; ++UI) 281 if (PHINode *phi = dyn_cast<PHINode>(*UI)) 282 Users.insert(phi); 283 284 BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]); 285 for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end(); 286 SI != SE; ++SI) { 287 PHINode *PN = *SI; 288 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 289 // If this value was defined in the loop, take the value defined by the 290 // last iteration of the loop. 291 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 292 if (L->contains(InValI)) 293 InVal = LastValueMap[InVal]; 294 } 295 PN->addIncoming(InVal, LastIterationBB); 296 } 297 } 298 299 // Now, if we're doing complete unrolling, loop over the PHI nodes in the 300 // original block, setting them to their incoming values. 301 if (CompletelyUnroll) { 302 BasicBlock *Preheader = L->getLoopPreheader(); 303 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 304 PHINode *PN = OrigPHINode[i]; 305 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 306 Header->getInstList().erase(PN); 307 } 308 } 309 310 // Now that all the basic blocks for the unrolled iterations are in place, 311 // set up the branches to connect them. 312 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 313 // The original branch was replicated in each unrolled iteration. 314 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 315 316 // The branch destination. 317 unsigned j = (i + 1) % e; 318 BasicBlock *Dest = Headers[j]; 319 bool NeedConditional = true; 320 321 // For a complete unroll, make the last iteration end with a branch 322 // to the exit block. 323 if (CompletelyUnroll && j == 0) { 324 Dest = LoopExit; 325 NeedConditional = false; 326 } 327 328 // If we know the trip count or a multiple of it, we can safely use an 329 // unconditional branch for some iterations. 330 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 331 NeedConditional = false; 332 } 333 334 if (NeedConditional) { 335 // Update the conditional branch's successor for the following 336 // iteration. 337 Term->setSuccessor(!ContinueOnTrue, Dest); 338 } else { 339 Term->setUnconditionalDest(Dest); 340 // Merge adjacent basic blocks, if possible. 341 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) { 342 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 343 std::replace(Headers.begin(), Headers.end(), Dest, Fold); 344 } 345 } 346 } 347 348 // At this point, the code is well formed. We now do a quick sweep over the 349 // inserted code, doing constant propagation and dead code elimination as we 350 // go. 351 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 352 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 353 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 354 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 355 Instruction *Inst = I++; 356 357 if (isInstructionTriviallyDead(Inst)) 358 (*BB)->getInstList().erase(Inst); 359 else if (Constant *C = ConstantFoldInstruction(Inst)) { 360 Inst->replaceAllUsesWith(C); 361 (*BB)->getInstList().erase(Inst); 362 } 363 } 364 365 NumCompletelyUnrolled += CompletelyUnroll; 366 ++NumUnrolled; 367 // Remove the loop from the LoopPassManager if it's completely removed. 368 if (CompletelyUnroll && LPM != NULL) 369 LPM->deleteLoopFromQueue(L); 370 371 return true; 372 } 373