1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/CallSite.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/IR/ValueMap.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/GenericDomTree.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include "llvm/Transforms/Utils/LoopSimplify.h" 64 #include "llvm/Transforms/Utils/LoopUtils.h" 65 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 66 #include "llvm/Transforms/Utils/UnrollLoop.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <assert.h> 70 #include <type_traits> 71 #include <vector> 72 73 namespace llvm { 74 class DataLayout; 75 class Value; 76 } // namespace llvm 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-unroll" 81 82 // TODO: Should these be here or in LoopUnroll? 83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 85 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a " 86 "conditional latch (completely or otherwise)"); 87 88 static cl::opt<bool> 89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 90 cl::desc("Allow runtime unrolled loops to be unrolled " 91 "with epilog instead of prolog.")); 92 93 static cl::opt<bool> 94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 95 cl::desc("Verify domtree after unrolling"), 96 #ifdef EXPENSIVE_CHECKS 97 cl::init(true) 98 #else 99 cl::init(false) 100 #endif 101 ); 102 103 /// Check if unrolling created a situation where we need to insert phi nodes to 104 /// preserve LCSSA form. 105 /// \param Blocks is a vector of basic blocks representing unrolled loop. 106 /// \param L is the outer loop. 107 /// It's possible that some of the blocks are in L, and some are not. In this 108 /// case, if there is a use is outside L, and definition is inside L, we need to 109 /// insert a phi-node, otherwise LCSSA will be broken. 110 /// The function is just a helper function for llvm::UnrollLoop that returns 111 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 112 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 113 LoopInfo *LI) { 114 for (BasicBlock *BB : Blocks) { 115 if (LI->getLoopFor(BB) == L) 116 continue; 117 for (Instruction &I : *BB) { 118 for (Use &U : I.operands()) { 119 if (auto Def = dyn_cast<Instruction>(U)) { 120 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 121 if (!DefLoop) 122 continue; 123 if (DefLoop->contains(L)) 124 return true; 125 } 126 } 127 } 128 } 129 return false; 130 } 131 132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 133 /// and adds a mapping from the original loop to the new loop to NewLoops. 134 /// Returns nullptr if no new loop was created and a pointer to the 135 /// original loop OriginalBB was part of otherwise. 136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 137 BasicBlock *ClonedBB, LoopInfo *LI, 138 NewLoopsMap &NewLoops) { 139 // Figure out which loop New is in. 140 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 141 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 142 143 Loop *&NewLoop = NewLoops[OldLoop]; 144 if (!NewLoop) { 145 // Found a new sub-loop. 146 assert(OriginalBB == OldLoop->getHeader() && 147 "Header should be first in RPO"); 148 149 NewLoop = LI->AllocateLoop(); 150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 151 152 if (NewLoopParent) 153 NewLoopParent->addChildLoop(NewLoop); 154 else 155 LI->addTopLevelLoop(NewLoop); 156 157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 158 return OldLoop; 159 } else { 160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 161 return nullptr; 162 } 163 } 164 165 /// The function chooses which type of unroll (epilog or prolog) is more 166 /// profitabale. 167 /// Epilog unroll is more profitable when there is PHI that starts from 168 /// constant. In this case epilog will leave PHI start from constant, 169 /// but prolog will convert it to non-constant. 170 /// 171 /// loop: 172 /// PN = PHI [I, Latch], [CI, PreHeader] 173 /// I = foo(PN) 174 /// ... 175 /// 176 /// Epilog unroll case. 177 /// loop: 178 /// PN = PHI [I2, Latch], [CI, PreHeader] 179 /// I1 = foo(PN) 180 /// I2 = foo(I1) 181 /// ... 182 /// Prolog unroll case. 183 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 184 /// loop: 185 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 186 /// I1 = foo(PN) 187 /// I2 = foo(I1) 188 /// ... 189 /// 190 static bool isEpilogProfitable(Loop *L) { 191 BasicBlock *PreHeader = L->getLoopPreheader(); 192 BasicBlock *Header = L->getHeader(); 193 assert(PreHeader && Header); 194 for (const PHINode &PN : Header->phis()) { 195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 196 return true; 197 } 198 return false; 199 } 200 201 /// Perform some cleanup and simplifications on loops after unrolling. It is 202 /// useful to simplify the IV's in the new loop, as well as do a quick 203 /// simplify/dce pass of the instructions. 204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 205 ScalarEvolution *SE, DominatorTree *DT, 206 AssumptionCache *AC, 207 const TargetTransformInfo *TTI) { 208 // Simplify any new induction variables in the partially unrolled loop. 209 if (SE && SimplifyIVs) { 210 SmallVector<WeakTrackingVH, 16> DeadInsts; 211 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 212 213 // Aggressively clean up dead instructions that simplifyLoopIVs already 214 // identified. Any remaining should be cleaned up below. 215 while (!DeadInsts.empty()) { 216 Value *V = DeadInsts.pop_back_val(); 217 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 218 RecursivelyDeleteTriviallyDeadInstructions(Inst); 219 } 220 } 221 222 // At this point, the code is well formed. We now do a quick sweep over the 223 // inserted code, doing constant propagation and dead code elimination as we 224 // go. 225 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 226 for (BasicBlock *BB : L->getBlocks()) { 227 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 228 Instruction *Inst = &*I++; 229 230 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 231 if (LI->replacementPreservesLCSSAForm(Inst, V)) 232 Inst->replaceAllUsesWith(V); 233 if (isInstructionTriviallyDead(Inst)) 234 BB->getInstList().erase(Inst); 235 } 236 } 237 238 // TODO: after peeling or unrolling, previously loop variant conditions are 239 // likely to fold to constants, eagerly propagating those here will require 240 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 241 // appropriate. 242 } 243 244 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 245 /// can only fail when the loop's latch block is not terminated by a conditional 246 /// branch instruction. However, if the trip count (and multiple) are not known, 247 /// loop unrolling will mostly produce more code that is no faster. 248 /// 249 /// TripCount is the upper bound of the iteration on which control exits 250 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 251 /// via an early branch in other loop block or via LatchBlock terminator. This 252 /// is relaxed from the general definition of trip count which is the number of 253 /// times the loop header executes. Note that UnrollLoop assumes that the loop 254 /// counter test is in LatchBlock in order to remove unnecesssary instances of 255 /// the test. If control can exit the loop from the LatchBlock's terminator 256 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 257 /// 258 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 259 /// needs to be preserved. It is needed when we use trip count upper bound to 260 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 261 /// conditional branch needs to be preserved. 262 /// 263 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 264 /// execute without exiting the loop. 265 /// 266 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 267 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 268 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 269 /// iterations before branching into the unrolled loop. UnrollLoop will not 270 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 271 /// AllowExpensiveTripCount is false. 272 /// 273 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 274 /// number of iterations we want to peel off. 275 /// 276 /// The LoopInfo Analysis that is passed will be kept consistent. 277 /// 278 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 279 /// DominatorTree if they are non-null. 280 /// 281 /// If RemainderLoop is non-null, it will receive the remainder loop (if 282 /// required and not fully unrolled). 283 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 284 ScalarEvolution *SE, DominatorTree *DT, 285 AssumptionCache *AC, 286 const TargetTransformInfo *TTI, 287 OptimizationRemarkEmitter *ORE, 288 bool PreserveLCSSA, Loop **RemainderLoop) { 289 290 BasicBlock *Preheader = L->getLoopPreheader(); 291 if (!Preheader) { 292 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 293 return LoopUnrollResult::Unmodified; 294 } 295 296 BasicBlock *LatchBlock = L->getLoopLatch(); 297 if (!LatchBlock) { 298 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 299 return LoopUnrollResult::Unmodified; 300 } 301 302 // Loops with indirectbr cannot be cloned. 303 if (!L->isSafeToClone()) { 304 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 305 return LoopUnrollResult::Unmodified; 306 } 307 308 // The current loop unroll pass can unroll loops with a single latch or header 309 // that's a conditional branch exiting the loop. 310 // FIXME: The implementation can be extended to work with more complicated 311 // cases, e.g. loops with multiple latches. 312 BasicBlock *Header = L->getHeader(); 313 BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator()); 314 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 315 316 // FIXME: Support loops without conditional latch and multiple exiting blocks. 317 if (!BI || 318 (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() || 319 L->getExitingBlock() != Header))) { 320 LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional " 321 "branch in the latch or header.\n"); 322 return LoopUnrollResult::Unmodified; 323 } 324 325 auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) { 326 return BI->isConditional() && BI->getSuccessor(S1) == Header && 327 !L->contains(BI->getSuccessor(S2)); 328 }; 329 330 // If we have a conditional latch, it must exit the loop. 331 if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) && 332 !CheckLatchSuccessors(1, 0)) { 333 LLVM_DEBUG( 334 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 335 return LoopUnrollResult::Unmodified; 336 } 337 338 auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) { 339 return HeaderBI && HeaderBI->isConditional() && 340 L->contains(HeaderBI->getSuccessor(S1)) && 341 !L->contains(HeaderBI->getSuccessor(S2)); 342 }; 343 344 // If we do not have a conditional latch, the header must exit the loop. 345 if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() && 346 !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) { 347 LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop"); 348 return LoopUnrollResult::Unmodified; 349 } 350 351 if (Header->hasAddressTaken()) { 352 // The loop-rotate pass can be helpful to avoid this in many cases. 353 LLVM_DEBUG( 354 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 355 return LoopUnrollResult::Unmodified; 356 } 357 358 if (ULO.TripCount != 0) 359 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 360 if (ULO.TripMultiple != 1) 361 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 362 363 // Effectively "DCE" unrolled iterations that are beyond the tripcount 364 // and will never be executed. 365 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 366 ULO.Count = ULO.TripCount; 367 368 // Don't enter the unroll code if there is nothing to do. 369 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 370 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 371 return LoopUnrollResult::Unmodified; 372 } 373 374 assert(ULO.Count > 0); 375 assert(ULO.TripMultiple > 0); 376 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 377 378 // Are we eliminating the loop control altogether? 379 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 380 SmallVector<BasicBlock *, 4> ExitBlocks; 381 L->getExitBlocks(ExitBlocks); 382 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 383 384 // Go through all exits of L and see if there are any phi-nodes there. We just 385 // conservatively assume that they're inserted to preserve LCSSA form, which 386 // means that complete unrolling might break this form. We need to either fix 387 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 388 // now we just recompute LCSSA for the outer loop, but it should be possible 389 // to fix it in-place. 390 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 391 any_of(ExitBlocks, [](const BasicBlock *BB) { 392 return isa<PHINode>(BB->begin()); 393 }); 394 395 // We assume a run-time trip count if the compiler cannot 396 // figure out the loop trip count and the unroll-runtime 397 // flag is specified. 398 bool RuntimeTripCount = 399 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 400 401 assert((!RuntimeTripCount || !ULO.PeelCount) && 402 "Did not expect runtime trip-count unrolling " 403 "and peeling for the same loop"); 404 405 bool Peeled = false; 406 if (ULO.PeelCount) { 407 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 408 409 // Successful peeling may result in a change in the loop preheader/trip 410 // counts. If we later unroll the loop, we want these to be updated. 411 if (Peeled) { 412 // According to our guards and profitability checks the only 413 // meaningful exit should be latch block. Other exits go to deopt, 414 // so we do not worry about them. 415 BasicBlock *ExitingBlock = L->getLoopLatch(); 416 assert(ExitingBlock && "Loop without exiting block?"); 417 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 418 Preheader = L->getLoopPreheader(); 419 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 420 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 421 } 422 } 423 424 // Loops containing convergent instructions must have a count that divides 425 // their TripMultiple. 426 LLVM_DEBUG( 427 { 428 bool HasConvergent = false; 429 for (auto &BB : L->blocks()) 430 for (auto &I : *BB) 431 if (auto CS = CallSite(&I)) 432 HasConvergent |= CS.isConvergent(); 433 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 434 "Unroll count must divide trip multiple if loop contains a " 435 "convergent operation."); 436 }); 437 438 bool EpilogProfitability = 439 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 440 : isEpilogProfitable(L); 441 442 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 443 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 444 EpilogProfitability, ULO.UnrollRemainder, 445 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 446 PreserveLCSSA, RemainderLoop)) { 447 if (ULO.Force) 448 RuntimeTripCount = false; 449 else { 450 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 451 "generated when assuming runtime trip count\n"); 452 return LoopUnrollResult::Unmodified; 453 } 454 } 455 456 // If we know the trip count, we know the multiple... 457 unsigned BreakoutTrip = 0; 458 if (ULO.TripCount != 0) { 459 BreakoutTrip = ULO.TripCount % ULO.Count; 460 ULO.TripMultiple = 0; 461 } else { 462 // Figure out what multiple to use. 463 BreakoutTrip = ULO.TripMultiple = 464 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 465 } 466 467 using namespace ore; 468 // Report the unrolling decision. 469 if (CompletelyUnroll) { 470 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 471 << " with trip count " << ULO.TripCount << "!\n"); 472 if (ORE) 473 ORE->emit([&]() { 474 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 475 L->getHeader()) 476 << "completely unrolled loop with " 477 << NV("UnrollCount", ULO.TripCount) << " iterations"; 478 }); 479 } else if (ULO.PeelCount) { 480 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 481 << " with iteration count " << ULO.PeelCount << "!\n"); 482 if (ORE) 483 ORE->emit([&]() { 484 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 485 L->getHeader()) 486 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 487 << " iterations"; 488 }); 489 } else { 490 auto DiagBuilder = [&]() { 491 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 492 L->getHeader()); 493 return Diag << "unrolled loop by a factor of " 494 << NV("UnrollCount", ULO.Count); 495 }; 496 497 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 498 << ULO.Count); 499 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 500 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 501 if (ORE) 502 ORE->emit([&]() { 503 return DiagBuilder() << " with a breakout at trip " 504 << NV("BreakoutTrip", BreakoutTrip); 505 }); 506 } else if (ULO.TripMultiple != 1) { 507 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 508 if (ORE) 509 ORE->emit([&]() { 510 return DiagBuilder() 511 << " with " << NV("TripMultiple", ULO.TripMultiple) 512 << " trips per branch"; 513 }); 514 } else if (RuntimeTripCount) { 515 LLVM_DEBUG(dbgs() << " with run-time trip count"); 516 if (ORE) 517 ORE->emit( 518 [&]() { return DiagBuilder() << " with run-time trip count"; }); 519 } 520 LLVM_DEBUG(dbgs() << "!\n"); 521 } 522 523 // We are going to make changes to this loop. SCEV may be keeping cached info 524 // about it, in particular about backedge taken count. The changes we make 525 // are guaranteed to invalidate this information for our loop. It is tempting 526 // to only invalidate the loop being unrolled, but it is incorrect as long as 527 // all exiting branches from all inner loops have impact on the outer loops, 528 // and if something changes inside them then any of outer loops may also 529 // change. When we forget outermost loop, we also forget all contained loops 530 // and this is what we need here. 531 if (SE) { 532 if (ULO.ForgetAllSCEV) 533 SE->forgetAllLoops(); 534 else 535 SE->forgetTopmostLoop(L); 536 } 537 538 bool ContinueOnTrue; 539 bool LatchIsExiting = BI->isConditional(); 540 BasicBlock *LoopExit = nullptr; 541 if (LatchIsExiting) { 542 ContinueOnTrue = L->contains(BI->getSuccessor(0)); 543 LoopExit = BI->getSuccessor(ContinueOnTrue); 544 } else { 545 NumUnrolledWithHeader++; 546 ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0)); 547 LoopExit = HeaderBI->getSuccessor(ContinueOnTrue); 548 } 549 550 // For the first iteration of the loop, we should use the precloned values for 551 // PHI nodes. Insert associations now. 552 ValueToValueMapTy LastValueMap; 553 std::vector<PHINode*> OrigPHINode; 554 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 555 OrigPHINode.push_back(cast<PHINode>(I)); 556 } 557 558 std::vector<BasicBlock *> Headers; 559 std::vector<BasicBlock *> HeaderSucc; 560 std::vector<BasicBlock *> Latches; 561 Headers.push_back(Header); 562 Latches.push_back(LatchBlock); 563 564 if (!LatchIsExiting) { 565 auto *Term = cast<BranchInst>(Header->getTerminator()); 566 if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) { 567 assert(L->contains(Term->getSuccessor(0))); 568 HeaderSucc.push_back(Term->getSuccessor(0)); 569 } else { 570 assert(L->contains(Term->getSuccessor(1))); 571 HeaderSucc.push_back(Term->getSuccessor(1)); 572 } 573 } 574 575 // The current on-the-fly SSA update requires blocks to be processed in 576 // reverse postorder so that LastValueMap contains the correct value at each 577 // exit. 578 LoopBlocksDFS DFS(L); 579 DFS.perform(LI); 580 581 // Stash the DFS iterators before adding blocks to the loop. 582 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 583 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 584 585 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 586 587 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 588 // might break loop-simplified form for these loops (as they, e.g., would 589 // share the same exit blocks). We'll keep track of loops for which we can 590 // break this so that later we can re-simplify them. 591 SmallSetVector<Loop *, 4> LoopsToSimplify; 592 for (Loop *SubLoop : *L) 593 LoopsToSimplify.insert(SubLoop); 594 595 if (Header->getParent()->isDebugInfoForProfiling()) 596 for (BasicBlock *BB : L->getBlocks()) 597 for (Instruction &I : *BB) 598 if (!isa<DbgInfoIntrinsic>(&I)) 599 if (const DILocation *DIL = I.getDebugLoc()) { 600 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 601 if (NewDIL) 602 I.setDebugLoc(NewDIL.getValue()); 603 else 604 LLVM_DEBUG(dbgs() 605 << "Failed to create new discriminator: " 606 << DIL->getFilename() << " Line: " << DIL->getLine()); 607 } 608 609 for (unsigned It = 1; It != ULO.Count; ++It) { 610 SmallVector<BasicBlock *, 8> NewBlocks; 611 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 612 NewLoops[L] = L; 613 614 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 615 ValueToValueMapTy VMap; 616 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 617 Header->getParent()->getBasicBlockList().push_back(New); 618 619 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 620 "Header should not be in a sub-loop"); 621 // Tell LI about New. 622 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 623 if (OldLoop) 624 LoopsToSimplify.insert(NewLoops[OldLoop]); 625 626 if (*BB == Header) 627 // Loop over all of the PHI nodes in the block, changing them to use 628 // the incoming values from the previous block. 629 for (PHINode *OrigPHI : OrigPHINode) { 630 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 631 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 632 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 633 if (It > 1 && L->contains(InValI)) 634 InVal = LastValueMap[InValI]; 635 VMap[OrigPHI] = InVal; 636 New->getInstList().erase(NewPHI); 637 } 638 639 // Update our running map of newest clones 640 LastValueMap[*BB] = New; 641 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 642 VI != VE; ++VI) 643 LastValueMap[VI->first] = VI->second; 644 645 // Add phi entries for newly created values to all exit blocks. 646 for (BasicBlock *Succ : successors(*BB)) { 647 if (L->contains(Succ)) 648 continue; 649 for (PHINode &PHI : Succ->phis()) { 650 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 651 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 652 if (It != LastValueMap.end()) 653 Incoming = It->second; 654 PHI.addIncoming(Incoming, New); 655 } 656 } 657 // Keep track of new headers and latches as we create them, so that 658 // we can insert the proper branches later. 659 if (*BB == Header) 660 Headers.push_back(New); 661 if (*BB == LatchBlock) 662 Latches.push_back(New); 663 664 // Keep track of the successor of the new header in the current iteration. 665 for (auto *Pred : predecessors(*BB)) 666 if (Pred == Header) { 667 HeaderSucc.push_back(New); 668 break; 669 } 670 671 NewBlocks.push_back(New); 672 UnrolledLoopBlocks.push_back(New); 673 674 // Update DomTree: since we just copy the loop body, and each copy has a 675 // dedicated entry block (copy of the header block), this header's copy 676 // dominates all copied blocks. That means, dominance relations in the 677 // copied body are the same as in the original body. 678 if (DT) { 679 if (*BB == Header) 680 DT->addNewBlock(New, Latches[It - 1]); 681 else { 682 auto BBDomNode = DT->getNode(*BB); 683 auto BBIDom = BBDomNode->getIDom(); 684 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 685 DT->addNewBlock( 686 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 687 } 688 } 689 } 690 691 // Remap all instructions in the most recent iteration 692 remapInstructionsInBlocks(NewBlocks, LastValueMap); 693 for (BasicBlock *NewBlock : NewBlocks) { 694 for (Instruction &I : *NewBlock) { 695 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 696 if (II->getIntrinsicID() == Intrinsic::assume) 697 AC->registerAssumption(II); 698 } 699 } 700 } 701 702 // Loop over the PHI nodes in the original block, setting incoming values. 703 for (PHINode *PN : OrigPHINode) { 704 if (CompletelyUnroll) { 705 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 706 Header->getInstList().erase(PN); 707 } else if (ULO.Count > 1) { 708 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 709 // If this value was defined in the loop, take the value defined by the 710 // last iteration of the loop. 711 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 712 if (L->contains(InValI)) 713 InVal = LastValueMap[InVal]; 714 } 715 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 716 PN->addIncoming(InVal, Latches.back()); 717 } 718 } 719 720 auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest, 721 ArrayRef<BasicBlock *> NextBlocks, 722 BasicBlock *BlockInLoop, 723 bool NeedConditional) { 724 auto *Term = cast<BranchInst>(Src->getTerminator()); 725 if (NeedConditional) { 726 // Update the conditional branch's successor for the following 727 // iteration. 728 Term->setSuccessor(!ContinueOnTrue, Dest); 729 } else { 730 // Remove phi operands at this loop exit 731 if (Dest != LoopExit) { 732 BasicBlock *BB = Src; 733 for (BasicBlock *Succ : successors(BB)) { 734 // Preserve the incoming value from BB if we are jumping to the block 735 // in the current loop. 736 if (Succ == BlockInLoop) 737 continue; 738 for (PHINode &Phi : Succ->phis()) 739 Phi.removeIncomingValue(BB, false); 740 } 741 } 742 // Replace the conditional branch with an unconditional one. 743 BranchInst::Create(Dest, Term); 744 Term->eraseFromParent(); 745 } 746 }; 747 748 // Now that all the basic blocks for the unrolled iterations are in place, 749 // set up the branches to connect them. 750 if (LatchIsExiting) { 751 // Set up latches to branch to the new header in the unrolled iterations or 752 // the loop exit for the last latch in a fully unrolled loop. 753 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 754 // The branch destination. 755 unsigned j = (i + 1) % e; 756 BasicBlock *Dest = Headers[j]; 757 bool NeedConditional = true; 758 759 if (RuntimeTripCount && j != 0) { 760 NeedConditional = false; 761 } 762 763 // For a complete unroll, make the last iteration end with a branch 764 // to the exit block. 765 if (CompletelyUnroll) { 766 if (j == 0) 767 Dest = LoopExit; 768 // If using trip count upper bound to completely unroll, we need to keep 769 // the conditional branch except the last one because the loop may exit 770 // after any iteration. 771 assert(NeedConditional && 772 "NeedCondition cannot be modified by both complete " 773 "unrolling and runtime unrolling"); 774 NeedConditional = 775 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 776 } else if (j != BreakoutTrip && 777 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 778 // If we know the trip count or a multiple of it, we can safely use an 779 // unconditional branch for some iterations. 780 NeedConditional = false; 781 } 782 783 setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional); 784 } 785 } else { 786 // Setup headers to branch to their new successors in the unrolled 787 // iterations. 788 for (unsigned i = 0, e = Headers.size(); i != e; ++i) { 789 // The branch destination. 790 unsigned j = (i + 1) % e; 791 BasicBlock *Dest = HeaderSucc[i]; 792 bool NeedConditional = true; 793 794 if (RuntimeTripCount && j != 0) 795 NeedConditional = false; 796 797 if (CompletelyUnroll) 798 // We cannot drop the conditional branch for the last condition, as we 799 // may have to execute the loop body depending on the condition. 800 NeedConditional = j == 0 || ULO.PreserveCondBr; 801 else if (j != BreakoutTrip && 802 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 803 // If we know the trip count or a multiple of it, we can safely use an 804 // unconditional branch for some iterations. 805 NeedConditional = false; 806 807 setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional); 808 } 809 810 // Set up latches to branch to the new header in the unrolled iterations or 811 // the loop exit for the last latch in a fully unrolled loop. 812 813 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 814 // The original branch was replicated in each unrolled iteration. 815 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 816 817 // The branch destination. 818 unsigned j = (i + 1) % e; 819 BasicBlock *Dest = Headers[j]; 820 821 // When completely unrolling, the last latch becomes unreachable. 822 if (CompletelyUnroll && j == 0) 823 new UnreachableInst(Term->getContext(), Term); 824 else 825 // Replace the conditional branch with an unconditional one. 826 BranchInst::Create(Dest, Term); 827 828 Term->eraseFromParent(); 829 } 830 } 831 832 // Update dominators of blocks we might reach through exits. 833 // Immediate dominator of such block might change, because we add more 834 // routes which can lead to the exit: we can now reach it from the copied 835 // iterations too. 836 if (DT && ULO.Count > 1) { 837 for (auto *BB : OriginalLoopBlocks) { 838 auto *BBDomNode = DT->getNode(BB); 839 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 840 for (auto *ChildDomNode : BBDomNode->getChildren()) { 841 auto *ChildBB = ChildDomNode->getBlock(); 842 if (!L->contains(ChildBB)) 843 ChildrenToUpdate.push_back(ChildBB); 844 } 845 BasicBlock *NewIDom; 846 BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header; 847 auto &TermBlocks = LatchIsExiting ? Latches : Headers; 848 if (BB == TermBlock) { 849 // The latch is special because we emit unconditional branches in 850 // some cases where the original loop contained a conditional branch. 851 // Since the latch is always at the bottom of the loop, if the latch 852 // dominated an exit before unrolling, the new dominator of that exit 853 // must also be a latch. Specifically, the dominator is the first 854 // latch which ends in a conditional branch, or the last latch if 855 // there is no such latch. 856 // For loops exiting from the header, we limit the supported loops 857 // to have a single exiting block. 858 NewIDom = TermBlocks.back(); 859 for (BasicBlock *Iter : TermBlocks) { 860 Instruction *Term = Iter->getTerminator(); 861 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 862 NewIDom = Iter; 863 break; 864 } 865 } 866 } else { 867 // The new idom of the block will be the nearest common dominator 868 // of all copies of the previous idom. This is equivalent to the 869 // nearest common dominator of the previous idom and the first latch, 870 // which dominates all copies of the previous idom. 871 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 872 } 873 for (auto *ChildBB : ChildrenToUpdate) 874 DT->changeImmediateDominator(ChildBB, NewIDom); 875 } 876 } 877 878 assert(!DT || !UnrollVerifyDomtree || 879 DT->verify(DominatorTree::VerificationLevel::Fast)); 880 881 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 882 // Merge adjacent basic blocks, if possible. 883 for (BasicBlock *Latch : Latches) { 884 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 885 assert((Term || 886 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 887 "Need a branch as terminator, except when fully unrolling with " 888 "unconditional latch"); 889 if (Term && Term->isUnconditional()) { 890 BasicBlock *Dest = Term->getSuccessor(0); 891 BasicBlock *Fold = Dest->getUniquePredecessor(); 892 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 893 // Dest has been folded into Fold. Update our worklists accordingly. 894 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 895 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 896 UnrolledLoopBlocks.end(), Dest), 897 UnrolledLoopBlocks.end()); 898 } 899 } 900 } 901 // Apply updates to the DomTree. 902 DT = &DTU.getDomTree(); 903 904 // At this point, the code is well formed. We now simplify the unrolled loop, 905 // doing constant propagation and dead code elimination as we go. 906 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 907 SE, DT, AC, TTI); 908 909 NumCompletelyUnrolled += CompletelyUnroll; 910 ++NumUnrolled; 911 912 Loop *OuterL = L->getParentLoop(); 913 // Update LoopInfo if the loop is completely removed. 914 if (CompletelyUnroll) 915 LI->erase(L); 916 917 // After complete unrolling most of the blocks should be contained in OuterL. 918 // However, some of them might happen to be out of OuterL (e.g. if they 919 // precede a loop exit). In this case we might need to insert PHI nodes in 920 // order to preserve LCSSA form. 921 // We don't need to check this if we already know that we need to fix LCSSA 922 // form. 923 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 924 // it should be possible to fix it in-place. 925 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 926 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 927 928 // If we have a pass and a DominatorTree we should re-simplify impacted loops 929 // to ensure subsequent analyses can rely on this form. We want to simplify 930 // at least one layer outside of the loop that was unrolled so that any 931 // changes to the parent loop exposed by the unrolling are considered. 932 if (DT) { 933 if (OuterL) { 934 // OuterL includes all loops for which we can break loop-simplify, so 935 // it's sufficient to simplify only it (it'll recursively simplify inner 936 // loops too). 937 if (NeedToFixLCSSA) { 938 // LCSSA must be performed on the outermost affected loop. The unrolled 939 // loop's last loop latch is guaranteed to be in the outermost loop 940 // after LoopInfo's been updated by LoopInfo::erase. 941 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 942 Loop *FixLCSSALoop = OuterL; 943 if (!FixLCSSALoop->contains(LatchLoop)) 944 while (FixLCSSALoop->getParentLoop() != LatchLoop) 945 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 946 947 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 948 } else if (PreserveLCSSA) { 949 assert(OuterL->isLCSSAForm(*DT) && 950 "Loops should be in LCSSA form after loop-unroll."); 951 } 952 953 // TODO: That potentially might be compile-time expensive. We should try 954 // to fix the loop-simplified form incrementally. 955 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 956 } else { 957 // Simplify loops for which we might've broken loop-simplify form. 958 for (Loop *SubLoop : LoopsToSimplify) 959 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 960 } 961 } 962 963 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 964 : LoopUnrollResult::PartiallyUnrolled; 965 } 966 967 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 968 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 969 /// such metadata node exists, then nullptr is returned. 970 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 971 // First operand should refer to the loop id itself. 972 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 973 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 974 975 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 976 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 977 if (!MD) 978 continue; 979 980 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 981 if (!S) 982 continue; 983 984 if (Name.equals(S->getString())) 985 return MD; 986 } 987 return nullptr; 988 } 989