1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 /// Convert the instruction operands from referencing the current values into 55 /// those specified by VMap. 56 static inline void remapInstruction(Instruction *I, 57 ValueToValueMapTy &VMap) { 58 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 59 Value *Op = I->getOperand(op); 60 ValueToValueMapTy::iterator It = VMap.find(Op); 61 if (It != VMap.end()) 62 I->setOperand(op, It->second); 63 } 64 65 if (PHINode *PN = dyn_cast<PHINode>(I)) { 66 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 67 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 68 if (It != VMap.end()) 69 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 70 } 71 } 72 } 73 74 /// Folds a basic block into its predecessor if it only has one predecessor, and 75 /// that predecessor only has one successor. 76 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 77 /// successful references to the containing loop must be removed from 78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 79 /// references to the eliminated BB. The argument ForgottenLoops contains a set 80 /// of loops that have already been forgotten to prevent redundant, expensive 81 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 82 static BasicBlock * 83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 84 SmallPtrSetImpl<Loop *> &ForgottenLoops, 85 DominatorTree *DT) { 86 // Merge basic blocks into their predecessor if there is only one distinct 87 // pred, and if there is only one distinct successor of the predecessor, and 88 // if there are no PHI nodes. 89 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 90 if (!OnlyPred) return nullptr; 91 92 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 93 return nullptr; 94 95 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 96 97 // Resolve any PHI nodes at the start of the block. They are all 98 // guaranteed to have exactly one entry if they exist, unless there are 99 // multiple duplicate (but guaranteed to be equal) entries for the 100 // incoming edges. This occurs when there are multiple edges from 101 // OnlyPred to OnlySucc. 102 FoldSingleEntryPHINodes(BB); 103 104 // Delete the unconditional branch from the predecessor... 105 OnlyPred->getInstList().pop_back(); 106 107 // Make all PHI nodes that referred to BB now refer to Pred as their 108 // source... 109 BB->replaceAllUsesWith(OnlyPred); 110 111 // Move all definitions in the successor to the predecessor... 112 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 113 114 // OldName will be valid until erased. 115 StringRef OldName = BB->getName(); 116 117 // Erase the old block and update dominator info. 118 if (DT) 119 if (DomTreeNode *DTN = DT->getNode(BB)) { 120 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 121 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 122 for (auto *DI : Children) 123 DT->changeImmediateDominator(DI, PredDTN); 124 125 DT->eraseNode(BB); 126 } 127 128 // ScalarEvolution holds references to loop exit blocks. 129 if (SE) { 130 if (Loop *L = LI->getLoopFor(BB)) { 131 if (ForgottenLoops.insert(L).second) 132 SE->forgetLoop(L); 133 } 134 } 135 LI->removeBlock(BB); 136 137 // Inherit predecessor's name if it exists... 138 if (!OldName.empty() && !OnlyPred->hasName()) 139 OnlyPred->setName(OldName); 140 141 BB->eraseFromParent(); 142 143 return OnlyPred; 144 } 145 146 /// Check if unrolling created a situation where we need to insert phi nodes to 147 /// preserve LCSSA form. 148 /// \param Blocks is a vector of basic blocks representing unrolled loop. 149 /// \param L is the outer loop. 150 /// It's possible that some of the blocks are in L, and some are not. In this 151 /// case, if there is a use is outside L, and definition is inside L, we need to 152 /// insert a phi-node, otherwise LCSSA will be broken. 153 /// The function is just a helper function for llvm::UnrollLoop that returns 154 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 156 LoopInfo *LI) { 157 for (BasicBlock *BB : Blocks) { 158 if (LI->getLoopFor(BB) == L) 159 continue; 160 for (Instruction &I : *BB) { 161 for (Use &U : I.operands()) { 162 if (auto Def = dyn_cast<Instruction>(U)) { 163 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 164 if (!DefLoop) 165 continue; 166 if (DefLoop->contains(L)) 167 return true; 168 } 169 } 170 } 171 } 172 return false; 173 } 174 175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 177 /// can only fail when the loop's latch block is not terminated by a conditional 178 /// branch instruction. However, if the trip count (and multiple) are not known, 179 /// loop unrolling will mostly produce more code that is no faster. 180 /// 181 /// TripCount is generally defined as the number of times the loop header 182 /// executes. UnrollLoop relaxes the definition to permit early exits: here 183 /// TripCount is the iteration on which control exits LatchBlock if no early 184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 185 /// terminates LatchBlock in order to remove unnecesssary instances of the 186 /// test. In other words, control may exit the loop prior to TripCount 187 /// iterations via an early branch, but control may not exit the loop from the 188 /// LatchBlock's terminator prior to TripCount iterations. 189 /// 190 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 191 /// needs to be preserved. It is needed when we use trip count upper bound to 192 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 193 /// conditional branch needs to be preserved. 194 /// 195 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 196 /// execute without exiting the loop. 197 /// 198 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 199 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 200 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 201 /// iterations before branching into the unrolled loop. UnrollLoop will not 202 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 203 /// AllowExpensiveTripCount is false. 204 /// 205 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 206 /// number of iterations we want to peel off. 207 /// 208 /// The LoopInfo Analysis that is passed will be kept consistent. 209 /// 210 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 211 /// DominatorTree if they are non-null. 212 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 213 bool AllowRuntime, bool AllowExpensiveTripCount, 214 bool PreserveCondBr, bool PreserveOnlyFirst, 215 unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI, 216 ScalarEvolution *SE, DominatorTree *DT, 217 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, 218 bool PreserveLCSSA) { 219 220 BasicBlock *Preheader = L->getLoopPreheader(); 221 if (!Preheader) { 222 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 223 return false; 224 } 225 226 BasicBlock *LatchBlock = L->getLoopLatch(); 227 if (!LatchBlock) { 228 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 229 return false; 230 } 231 232 // Loops with indirectbr cannot be cloned. 233 if (!L->isSafeToClone()) { 234 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 235 return false; 236 } 237 238 BasicBlock *Header = L->getHeader(); 239 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 240 241 if (!BI || BI->isUnconditional()) { 242 // The loop-rotate pass can be helpful to avoid this in many cases. 243 DEBUG(dbgs() << 244 " Can't unroll; loop not terminated by a conditional branch.\n"); 245 return false; 246 } 247 248 if (Header->hasAddressTaken()) { 249 // The loop-rotate pass can be helpful to avoid this in many cases. 250 DEBUG(dbgs() << 251 " Won't unroll loop: address of header block is taken.\n"); 252 return false; 253 } 254 255 if (TripCount != 0) 256 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 257 if (TripMultiple != 1) 258 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 259 260 // Effectively "DCE" unrolled iterations that are beyond the tripcount 261 // and will never be executed. 262 if (TripCount != 0 && Count > TripCount) 263 Count = TripCount; 264 265 // Don't enter the unroll code if there is nothing to do. 266 if (TripCount == 0 && Count < 2 && PeelCount == 0) 267 return false; 268 269 assert(Count > 0); 270 assert(TripMultiple > 0); 271 assert(TripCount == 0 || TripCount % TripMultiple == 0); 272 273 // Are we eliminating the loop control altogether? 274 bool CompletelyUnroll = Count == TripCount; 275 SmallVector<BasicBlock *, 4> ExitBlocks; 276 L->getExitBlocks(ExitBlocks); 277 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 278 279 // Go through all exits of L and see if there are any phi-nodes there. We just 280 // conservatively assume that they're inserted to preserve LCSSA form, which 281 // means that complete unrolling might break this form. We need to either fix 282 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 283 // now we just recompute LCSSA for the outer loop, but it should be possible 284 // to fix it in-place. 285 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 286 any_of(ExitBlocks, [](const BasicBlock *BB) { 287 return isa<PHINode>(BB->begin()); 288 }); 289 290 // We assume a run-time trip count if the compiler cannot 291 // figure out the loop trip count and the unroll-runtime 292 // flag is specified. 293 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 294 295 assert((!RuntimeTripCount || !PeelCount) && 296 "Did not expect runtime trip-count unrolling " 297 "and peeling for the same loop"); 298 299 if (PeelCount) 300 peelLoop(L, PeelCount, LI, SE, DT, PreserveLCSSA); 301 302 // Loops containing convergent instructions must have a count that divides 303 // their TripMultiple. 304 DEBUG( 305 { 306 bool HasConvergent = false; 307 for (auto &BB : L->blocks()) 308 for (auto &I : *BB) 309 if (auto CS = CallSite(&I)) 310 HasConvergent |= CS.isConvergent(); 311 assert((!HasConvergent || TripMultiple % Count == 0) && 312 "Unroll count must divide trip multiple if loop contains a " 313 "convergent operation."); 314 }); 315 316 if (RuntimeTripCount && TripMultiple % Count != 0 && 317 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 318 UnrollRuntimeEpilog, LI, SE, DT, 319 PreserveLCSSA)) { 320 if (Force) 321 RuntimeTripCount = false; 322 else 323 return false; 324 } 325 326 // Notify ScalarEvolution that the loop will be substantially changed, 327 // if not outright eliminated. 328 if (SE) 329 SE->forgetLoop(L); 330 331 // If we know the trip count, we know the multiple... 332 unsigned BreakoutTrip = 0; 333 if (TripCount != 0) { 334 BreakoutTrip = TripCount % Count; 335 TripMultiple = 0; 336 } else { 337 // Figure out what multiple to use. 338 BreakoutTrip = TripMultiple = 339 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 340 } 341 342 using namespace ore; 343 // Report the unrolling decision. 344 if (CompletelyUnroll) { 345 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 346 << " with trip count " << TripCount << "!\n"); 347 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 348 L->getHeader()) 349 << "completely unrolled loop with " 350 << NV("UnrollCount", TripCount) << " iterations"); 351 } else if (PeelCount) { 352 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 353 << " with iteration count " << PeelCount << "!\n"); 354 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 355 L->getHeader()) 356 << " peeled loop by " << NV("PeelCount", PeelCount) 357 << " iterations"); 358 } else { 359 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 360 L->getHeader()); 361 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 362 363 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 364 << " by " << Count); 365 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 366 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 367 ORE->emit(Diag << " with a breakout at trip " 368 << NV("BreakoutTrip", BreakoutTrip)); 369 } else if (TripMultiple != 1) { 370 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 371 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 372 << " trips per branch"); 373 } else if (RuntimeTripCount) { 374 DEBUG(dbgs() << " with run-time trip count"); 375 ORE->emit(Diag << " with run-time trip count"); 376 } 377 DEBUG(dbgs() << "!\n"); 378 } 379 380 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 381 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 382 383 // For the first iteration of the loop, we should use the precloned values for 384 // PHI nodes. Insert associations now. 385 ValueToValueMapTy LastValueMap; 386 std::vector<PHINode*> OrigPHINode; 387 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 388 OrigPHINode.push_back(cast<PHINode>(I)); 389 } 390 391 std::vector<BasicBlock*> Headers; 392 std::vector<BasicBlock*> Latches; 393 Headers.push_back(Header); 394 Latches.push_back(LatchBlock); 395 396 // The current on-the-fly SSA update requires blocks to be processed in 397 // reverse postorder so that LastValueMap contains the correct value at each 398 // exit. 399 LoopBlocksDFS DFS(L); 400 DFS.perform(LI); 401 402 // Stash the DFS iterators before adding blocks to the loop. 403 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 404 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 405 406 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 407 408 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 409 // might break loop-simplified form for these loops (as they, e.g., would 410 // share the same exit blocks). We'll keep track of loops for which we can 411 // break this so that later we can re-simplify them. 412 SmallSetVector<Loop *, 4> LoopsToSimplify; 413 for (Loop *SubLoop : *L) 414 LoopsToSimplify.insert(SubLoop); 415 416 for (unsigned It = 1; It != Count; ++It) { 417 std::vector<BasicBlock*> NewBlocks; 418 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 419 NewLoops[L] = L; 420 421 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 422 ValueToValueMapTy VMap; 423 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 424 Header->getParent()->getBasicBlockList().push_back(New); 425 426 // Tell LI about New. 427 if (*BB == Header) { 428 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 429 L->addBasicBlockToLoop(New, *LI); 430 } else { 431 // Figure out which loop New is in. 432 const Loop *OldLoop = LI->getLoopFor(*BB); 433 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 434 435 Loop *&NewLoop = NewLoops[OldLoop]; 436 if (!NewLoop) { 437 // Found a new sub-loop. 438 assert(*BB == OldLoop->getHeader() && 439 "Header should be first in RPO"); 440 441 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 442 assert(NewLoopParent && 443 "Expected parent loop before sub-loop in RPO"); 444 NewLoop = new Loop; 445 NewLoopParent->addChildLoop(NewLoop); 446 LoopsToSimplify.insert(NewLoop); 447 448 // Forget the old loop, since its inputs may have changed. 449 if (SE) 450 SE->forgetLoop(OldLoop); 451 } 452 NewLoop->addBasicBlockToLoop(New, *LI); 453 } 454 455 if (*BB == Header) 456 // Loop over all of the PHI nodes in the block, changing them to use 457 // the incoming values from the previous block. 458 for (PHINode *OrigPHI : OrigPHINode) { 459 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 460 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 461 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 462 if (It > 1 && L->contains(InValI)) 463 InVal = LastValueMap[InValI]; 464 VMap[OrigPHI] = InVal; 465 New->getInstList().erase(NewPHI); 466 } 467 468 // Update our running map of newest clones 469 LastValueMap[*BB] = New; 470 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 471 VI != VE; ++VI) 472 LastValueMap[VI->first] = VI->second; 473 474 // Add phi entries for newly created values to all exit blocks. 475 for (BasicBlock *Succ : successors(*BB)) { 476 if (L->contains(Succ)) 477 continue; 478 for (BasicBlock::iterator BBI = Succ->begin(); 479 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 480 Value *Incoming = phi->getIncomingValueForBlock(*BB); 481 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 482 if (It != LastValueMap.end()) 483 Incoming = It->second; 484 phi->addIncoming(Incoming, New); 485 } 486 } 487 // Keep track of new headers and latches as we create them, so that 488 // we can insert the proper branches later. 489 if (*BB == Header) 490 Headers.push_back(New); 491 if (*BB == LatchBlock) 492 Latches.push_back(New); 493 494 NewBlocks.push_back(New); 495 UnrolledLoopBlocks.push_back(New); 496 497 // Update DomTree: since we just copy the loop body, and each copy has a 498 // dedicated entry block (copy of the header block), this header's copy 499 // dominates all copied blocks. That means, dominance relations in the 500 // copied body are the same as in the original body. 501 if (DT) { 502 if (*BB == Header) 503 DT->addNewBlock(New, Latches[It - 1]); 504 else { 505 auto BBDomNode = DT->getNode(*BB); 506 auto BBIDom = BBDomNode->getIDom(); 507 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 508 DT->addNewBlock( 509 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 510 } 511 } 512 } 513 514 // Remap all instructions in the most recent iteration 515 for (BasicBlock *NewBlock : NewBlocks) { 516 for (Instruction &I : *NewBlock) { 517 ::remapInstruction(&I, LastValueMap); 518 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 519 if (II->getIntrinsicID() == Intrinsic::assume) 520 AC->registerAssumption(II); 521 } 522 } 523 } 524 525 // Loop over the PHI nodes in the original block, setting incoming values. 526 for (PHINode *PN : OrigPHINode) { 527 if (CompletelyUnroll) { 528 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 529 Header->getInstList().erase(PN); 530 } 531 else if (Count > 1) { 532 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 533 // If this value was defined in the loop, take the value defined by the 534 // last iteration of the loop. 535 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 536 if (L->contains(InValI)) 537 InVal = LastValueMap[InVal]; 538 } 539 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 540 PN->addIncoming(InVal, Latches.back()); 541 } 542 } 543 544 // Now that all the basic blocks for the unrolled iterations are in place, 545 // set up the branches to connect them. 546 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 547 // The original branch was replicated in each unrolled iteration. 548 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 549 550 // The branch destination. 551 unsigned j = (i + 1) % e; 552 BasicBlock *Dest = Headers[j]; 553 bool NeedConditional = true; 554 555 if (RuntimeTripCount && j != 0) { 556 NeedConditional = false; 557 } 558 559 // For a complete unroll, make the last iteration end with a branch 560 // to the exit block. 561 if (CompletelyUnroll) { 562 if (j == 0) 563 Dest = LoopExit; 564 // If using trip count upper bound to completely unroll, we need to keep 565 // the conditional branch except the last one because the loop may exit 566 // after any iteration. 567 assert(NeedConditional && 568 "NeedCondition cannot be modified by both complete " 569 "unrolling and runtime unrolling"); 570 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 571 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 572 // If we know the trip count or a multiple of it, we can safely use an 573 // unconditional branch for some iterations. 574 NeedConditional = false; 575 } 576 577 if (NeedConditional) { 578 // Update the conditional branch's successor for the following 579 // iteration. 580 Term->setSuccessor(!ContinueOnTrue, Dest); 581 } else { 582 // Remove phi operands at this loop exit 583 if (Dest != LoopExit) { 584 BasicBlock *BB = Latches[i]; 585 for (BasicBlock *Succ: successors(BB)) { 586 if (Succ == Headers[i]) 587 continue; 588 for (BasicBlock::iterator BBI = Succ->begin(); 589 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 590 Phi->removeIncomingValue(BB, false); 591 } 592 } 593 } 594 // Replace the conditional branch with an unconditional one. 595 BranchInst::Create(Dest, Term); 596 Term->eraseFromParent(); 597 } 598 } 599 // Update dominators of blocks we might reach through exits. 600 // Immediate dominator of such block might change, because we add more 601 // routes which can lead to the exit: we can now reach it from the copied 602 // iterations too. Thus, the new idom of the block will be the nearest 603 // common dominator of the previous idom and common dominator of all copies of 604 // the previous idom. This is equivalent to the nearest common dominator of 605 // the previous idom and the first latch, which dominates all copies of the 606 // previous idom. 607 if (DT && Count > 1) { 608 for (auto *BB : OriginalLoopBlocks) { 609 auto *BBDomNode = DT->getNode(BB); 610 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 611 for (auto *ChildDomNode : BBDomNode->getChildren()) { 612 auto *ChildBB = ChildDomNode->getBlock(); 613 if (!L->contains(ChildBB)) 614 ChildrenToUpdate.push_back(ChildBB); 615 } 616 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]); 617 for (auto *ChildBB : ChildrenToUpdate) 618 DT->changeImmediateDominator(ChildBB, NewIDom); 619 } 620 } 621 622 // Merge adjacent basic blocks, if possible. 623 SmallPtrSet<Loop *, 4> ForgottenLoops; 624 for (BasicBlock *Latch : Latches) { 625 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 626 if (Term->isUnconditional()) { 627 BasicBlock *Dest = Term->getSuccessor(0); 628 if (BasicBlock *Fold = 629 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 630 // Dest has been folded into Fold. Update our worklists accordingly. 631 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 632 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 633 UnrolledLoopBlocks.end(), Dest), 634 UnrolledLoopBlocks.end()); 635 } 636 } 637 } 638 639 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 640 // updating domtree after partial loop unrolling should also be easy. 641 if (DT && !CompletelyUnroll) 642 DT->recalculate(*L->getHeader()->getParent()); 643 else if (DT) 644 DEBUG(DT->verifyDomTree()); 645 646 // Simplify any new induction variables in the partially unrolled loop. 647 if (SE && !CompletelyUnroll && Count > 1) { 648 SmallVector<WeakVH, 16> DeadInsts; 649 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 650 651 // Aggressively clean up dead instructions that simplifyLoopIVs already 652 // identified. Any remaining should be cleaned up below. 653 while (!DeadInsts.empty()) 654 if (Instruction *Inst = 655 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 656 RecursivelyDeleteTriviallyDeadInstructions(Inst); 657 } 658 659 // At this point, the code is well formed. We now do a quick sweep over the 660 // inserted code, doing constant propagation and dead code elimination as we 661 // go. 662 const DataLayout &DL = Header->getModule()->getDataLayout(); 663 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 664 for (BasicBlock *BB : NewLoopBlocks) { 665 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 666 Instruction *Inst = &*I++; 667 668 if (Value *V = SimplifyInstruction(Inst, DL)) 669 if (LI->replacementPreservesLCSSAForm(Inst, V)) 670 Inst->replaceAllUsesWith(V); 671 if (isInstructionTriviallyDead(Inst)) 672 BB->getInstList().erase(Inst); 673 } 674 } 675 676 NumCompletelyUnrolled += CompletelyUnroll; 677 ++NumUnrolled; 678 679 Loop *OuterL = L->getParentLoop(); 680 // Update LoopInfo if the loop is completely removed. 681 if (CompletelyUnroll) 682 LI->markAsRemoved(L); 683 684 // After complete unrolling most of the blocks should be contained in OuterL. 685 // However, some of them might happen to be out of OuterL (e.g. if they 686 // precede a loop exit). In this case we might need to insert PHI nodes in 687 // order to preserve LCSSA form. 688 // We don't need to check this if we already know that we need to fix LCSSA 689 // form. 690 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 691 // it should be possible to fix it in-place. 692 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 693 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 694 695 // If we have a pass and a DominatorTree we should re-simplify impacted loops 696 // to ensure subsequent analyses can rely on this form. We want to simplify 697 // at least one layer outside of the loop that was unrolled so that any 698 // changes to the parent loop exposed by the unrolling are considered. 699 if (DT) { 700 if (!OuterL && !CompletelyUnroll) 701 OuterL = L; 702 if (OuterL) { 703 // OuterL includes all loops for which we can break loop-simplify, so 704 // it's sufficient to simplify only it (it'll recursively simplify inner 705 // loops too). 706 // TODO: That potentially might be compile-time expensive. We should try 707 // to fix the loop-simplified form incrementally. 708 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 709 710 // LCSSA must be performed on the outermost affected loop. The unrolled 711 // loop's last loop latch is guaranteed to be in the outermost loop after 712 // LoopInfo's been updated by markAsRemoved. 713 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 714 if (!OuterL->contains(LatchLoop)) 715 while (OuterL->getParentLoop() != LatchLoop) 716 OuterL = OuterL->getParentLoop(); 717 718 if (NeedToFixLCSSA) 719 formLCSSARecursively(*OuterL, *DT, LI, SE); 720 else 721 assert(OuterL->isLCSSAForm(*DT) && 722 "Loops should be in LCSSA form after loop-unroll."); 723 } else { 724 // Simplify loops for which we might've broken loop-simplify form. 725 for (Loop *SubLoop : LoopsToSimplify) 726 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 727 } 728 } 729 730 return true; 731 } 732 733 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 734 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 735 /// such metadata node exists, then nullptr is returned. 736 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 737 // First operand should refer to the loop id itself. 738 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 739 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 740 741 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 742 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 743 if (!MD) 744 continue; 745 746 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 747 if (!S) 748 continue; 749 750 if (Name.equals(S->getString())) 751 return MD; 752 } 753 return nullptr; 754 } 755