1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51                     cl::desc("Allow runtime unrolled loops to be unrolled "
52                              "with epilog instead of prolog."));
53 
54 /// Convert the instruction operands from referencing the current values into
55 /// those specified by VMap.
56 static inline void remapInstruction(Instruction *I,
57                                     ValueToValueMapTy &VMap) {
58   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
59     Value *Op = I->getOperand(op);
60     ValueToValueMapTy::iterator It = VMap.find(Op);
61     if (It != VMap.end())
62       I->setOperand(op, It->second);
63   }
64 
65   if (PHINode *PN = dyn_cast<PHINode>(I)) {
66     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
67       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
68       if (It != VMap.end())
69         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
70     }
71   }
72 }
73 
74 /// Folds a basic block into its predecessor if it only has one predecessor, and
75 /// that predecessor only has one successor.
76 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
77 /// successful references to the containing loop must be removed from
78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
79 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
80 /// of loops that have already been forgotten to prevent redundant, expensive
81 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
82 static BasicBlock *
83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
84                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
85                          DominatorTree *DT) {
86   // Merge basic blocks into their predecessor if there is only one distinct
87   // pred, and if there is only one distinct successor of the predecessor, and
88   // if there are no PHI nodes.
89   BasicBlock *OnlyPred = BB->getSinglePredecessor();
90   if (!OnlyPred) return nullptr;
91 
92   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
93     return nullptr;
94 
95   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
96 
97   // Resolve any PHI nodes at the start of the block.  They are all
98   // guaranteed to have exactly one entry if they exist, unless there are
99   // multiple duplicate (but guaranteed to be equal) entries for the
100   // incoming edges.  This occurs when there are multiple edges from
101   // OnlyPred to OnlySucc.
102   FoldSingleEntryPHINodes(BB);
103 
104   // Delete the unconditional branch from the predecessor...
105   OnlyPred->getInstList().pop_back();
106 
107   // Make all PHI nodes that referred to BB now refer to Pred as their
108   // source...
109   BB->replaceAllUsesWith(OnlyPred);
110 
111   // Move all definitions in the successor to the predecessor...
112   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
113 
114   // OldName will be valid until erased.
115   StringRef OldName = BB->getName();
116 
117   // Erase the old block and update dominator info.
118   if (DT)
119     if (DomTreeNode *DTN = DT->getNode(BB)) {
120       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
121       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
122       for (auto *DI : Children)
123         DT->changeImmediateDominator(DI, PredDTN);
124 
125       DT->eraseNode(BB);
126     }
127 
128   // ScalarEvolution holds references to loop exit blocks.
129   if (SE) {
130     if (Loop *L = LI->getLoopFor(BB)) {
131       if (ForgottenLoops.insert(L).second)
132         SE->forgetLoop(L);
133     }
134   }
135   LI->removeBlock(BB);
136 
137   // Inherit predecessor's name if it exists...
138   if (!OldName.empty() && !OnlyPred->hasName())
139     OnlyPred->setName(OldName);
140 
141   BB->eraseFromParent();
142 
143   return OnlyPred;
144 }
145 
146 /// Check if unrolling created a situation where we need to insert phi nodes to
147 /// preserve LCSSA form.
148 /// \param Blocks is a vector of basic blocks representing unrolled loop.
149 /// \param L is the outer loop.
150 /// It's possible that some of the blocks are in L, and some are not. In this
151 /// case, if there is a use is outside L, and definition is inside L, we need to
152 /// insert a phi-node, otherwise LCSSA will be broken.
153 /// The function is just a helper function for llvm::UnrollLoop that returns
154 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
156                                      LoopInfo *LI) {
157   for (BasicBlock *BB : Blocks) {
158     if (LI->getLoopFor(BB) == L)
159       continue;
160     for (Instruction &I : *BB) {
161       for (Use &U : I.operands()) {
162         if (auto Def = dyn_cast<Instruction>(U)) {
163           Loop *DefLoop = LI->getLoopFor(Def->getParent());
164           if (!DefLoop)
165             continue;
166           if (DefLoop->contains(L))
167             return true;
168         }
169       }
170     }
171   }
172   return false;
173 }
174 
175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
177 /// can only fail when the loop's latch block is not terminated by a conditional
178 /// branch instruction. However, if the trip count (and multiple) are not known,
179 /// loop unrolling will mostly produce more code that is no faster.
180 ///
181 /// TripCount is generally defined as the number of times the loop header
182 /// executes. UnrollLoop relaxes the definition to permit early exits: here
183 /// TripCount is the iteration on which control exits LatchBlock if no early
184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
185 /// terminates LatchBlock in order to remove unnecesssary instances of the
186 /// test. In other words, control may exit the loop prior to TripCount
187 /// iterations via an early branch, but control may not exit the loop from the
188 /// LatchBlock's terminator prior to TripCount iterations.
189 ///
190 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
191 /// needs to be preserved.  It is needed when we use trip count upper bound to
192 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
193 /// conditional branch needs to be preserved.
194 ///
195 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
196 /// execute without exiting the loop.
197 ///
198 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
199 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
200 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
201 /// iterations before branching into the unrolled loop.  UnrollLoop will not
202 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
203 /// AllowExpensiveTripCount is false.
204 ///
205 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
206 /// number of iterations we want to peel off.
207 ///
208 /// The LoopInfo Analysis that is passed will be kept consistent.
209 ///
210 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
211 /// DominatorTree if they are non-null.
212 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
213                       bool AllowRuntime, bool AllowExpensiveTripCount,
214                       bool PreserveCondBr, bool PreserveOnlyFirst,
215                       unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI,
216                       ScalarEvolution *SE, DominatorTree *DT,
217                       AssumptionCache *AC, OptimizationRemarkEmitter *ORE,
218                       bool PreserveLCSSA) {
219 
220   BasicBlock *Preheader = L->getLoopPreheader();
221   if (!Preheader) {
222     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
223     return false;
224   }
225 
226   BasicBlock *LatchBlock = L->getLoopLatch();
227   if (!LatchBlock) {
228     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
229     return false;
230   }
231 
232   // Loops with indirectbr cannot be cloned.
233   if (!L->isSafeToClone()) {
234     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
235     return false;
236   }
237 
238   BasicBlock *Header = L->getHeader();
239   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
240 
241   if (!BI || BI->isUnconditional()) {
242     // The loop-rotate pass can be helpful to avoid this in many cases.
243     DEBUG(dbgs() <<
244              "  Can't unroll; loop not terminated by a conditional branch.\n");
245     return false;
246   }
247 
248   if (Header->hasAddressTaken()) {
249     // The loop-rotate pass can be helpful to avoid this in many cases.
250     DEBUG(dbgs() <<
251           "  Won't unroll loop: address of header block is taken.\n");
252     return false;
253   }
254 
255   if (TripCount != 0)
256     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
257   if (TripMultiple != 1)
258     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
259 
260   // Effectively "DCE" unrolled iterations that are beyond the tripcount
261   // and will never be executed.
262   if (TripCount != 0 && Count > TripCount)
263     Count = TripCount;
264 
265   // Don't enter the unroll code if there is nothing to do.
266   if (TripCount == 0 && Count < 2 && PeelCount == 0)
267     return false;
268 
269   assert(Count > 0);
270   assert(TripMultiple > 0);
271   assert(TripCount == 0 || TripCount % TripMultiple == 0);
272 
273   // Are we eliminating the loop control altogether?
274   bool CompletelyUnroll = Count == TripCount;
275   SmallVector<BasicBlock *, 4> ExitBlocks;
276   L->getExitBlocks(ExitBlocks);
277   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
278 
279   // Go through all exits of L and see if there are any phi-nodes there. We just
280   // conservatively assume that they're inserted to preserve LCSSA form, which
281   // means that complete unrolling might break this form. We need to either fix
282   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
283   // now we just recompute LCSSA for the outer loop, but it should be possible
284   // to fix it in-place.
285   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
286                         any_of(ExitBlocks, [](const BasicBlock *BB) {
287                           return isa<PHINode>(BB->begin());
288                         });
289 
290   // We assume a run-time trip count if the compiler cannot
291   // figure out the loop trip count and the unroll-runtime
292   // flag is specified.
293   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
294 
295   assert((!RuntimeTripCount || !PeelCount) &&
296          "Did not expect runtime trip-count unrolling "
297          "and peeling for the same loop");
298 
299   if (PeelCount)
300     peelLoop(L, PeelCount, LI, SE, DT, PreserveLCSSA);
301 
302   // Loops containing convergent instructions must have a count that divides
303   // their TripMultiple.
304   DEBUG(
305       {
306         bool HasConvergent = false;
307         for (auto &BB : L->blocks())
308           for (auto &I : *BB)
309             if (auto CS = CallSite(&I))
310               HasConvergent |= CS.isConvergent();
311         assert((!HasConvergent || TripMultiple % Count == 0) &&
312                "Unroll count must divide trip multiple if loop contains a "
313                "convergent operation.");
314       });
315 
316   if (RuntimeTripCount && TripMultiple % Count != 0 &&
317       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
318                                   UnrollRuntimeEpilog, LI, SE, DT,
319                                   PreserveLCSSA)) {
320     if (Force)
321       RuntimeTripCount = false;
322     else
323       return false;
324   }
325 
326   // Notify ScalarEvolution that the loop will be substantially changed,
327   // if not outright eliminated.
328   if (SE)
329     SE->forgetLoop(L);
330 
331   // If we know the trip count, we know the multiple...
332   unsigned BreakoutTrip = 0;
333   if (TripCount != 0) {
334     BreakoutTrip = TripCount % Count;
335     TripMultiple = 0;
336   } else {
337     // Figure out what multiple to use.
338     BreakoutTrip = TripMultiple =
339       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
340   }
341 
342   using namespace ore;
343   // Report the unrolling decision.
344   if (CompletelyUnroll) {
345     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
346           << " with trip count " << TripCount << "!\n");
347     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
348                                  L->getHeader())
349               << "completely unrolled loop with "
350               << NV("UnrollCount", TripCount) << " iterations");
351   } else if (PeelCount) {
352     DEBUG(dbgs() << "PEELING loop %" << Header->getName()
353                  << " with iteration count " << PeelCount << "!\n");
354     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
355                                  L->getHeader())
356               << " peeled loop by " << NV("PeelCount", PeelCount)
357               << " iterations");
358   } else {
359     OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
360                             L->getHeader());
361     Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count);
362 
363     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
364           << " by " << Count);
365     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
366       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
367       ORE->emit(Diag << " with a breakout at trip "
368                      << NV("BreakoutTrip", BreakoutTrip));
369     } else if (TripMultiple != 1) {
370       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
371       ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple)
372                      << " trips per branch");
373     } else if (RuntimeTripCount) {
374       DEBUG(dbgs() << " with run-time trip count");
375       ORE->emit(Diag << " with run-time trip count");
376     }
377     DEBUG(dbgs() << "!\n");
378   }
379 
380   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
381   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
382 
383   // For the first iteration of the loop, we should use the precloned values for
384   // PHI nodes.  Insert associations now.
385   ValueToValueMapTy LastValueMap;
386   std::vector<PHINode*> OrigPHINode;
387   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
388     OrigPHINode.push_back(cast<PHINode>(I));
389   }
390 
391   std::vector<BasicBlock*> Headers;
392   std::vector<BasicBlock*> Latches;
393   Headers.push_back(Header);
394   Latches.push_back(LatchBlock);
395 
396   // The current on-the-fly SSA update requires blocks to be processed in
397   // reverse postorder so that LastValueMap contains the correct value at each
398   // exit.
399   LoopBlocksDFS DFS(L);
400   DFS.perform(LI);
401 
402   // Stash the DFS iterators before adding blocks to the loop.
403   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
404   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
405 
406   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
407 
408   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
409   // might break loop-simplified form for these loops (as they, e.g., would
410   // share the same exit blocks). We'll keep track of loops for which we can
411   // break this so that later we can re-simplify them.
412   SmallSetVector<Loop *, 4> LoopsToSimplify;
413   for (Loop *SubLoop : *L)
414     LoopsToSimplify.insert(SubLoop);
415 
416   for (unsigned It = 1; It != Count; ++It) {
417     std::vector<BasicBlock*> NewBlocks;
418     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
419     NewLoops[L] = L;
420 
421     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
422       ValueToValueMapTy VMap;
423       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
424       Header->getParent()->getBasicBlockList().push_back(New);
425 
426       // Tell LI about New.
427       if (*BB == Header) {
428         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
429         L->addBasicBlockToLoop(New, *LI);
430       } else {
431         // Figure out which loop New is in.
432         const Loop *OldLoop = LI->getLoopFor(*BB);
433         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
434 
435         Loop *&NewLoop = NewLoops[OldLoop];
436         if (!NewLoop) {
437           // Found a new sub-loop.
438           assert(*BB == OldLoop->getHeader() &&
439                  "Header should be first in RPO");
440 
441           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
442           assert(NewLoopParent &&
443                  "Expected parent loop before sub-loop in RPO");
444           NewLoop = new Loop;
445           NewLoopParent->addChildLoop(NewLoop);
446           LoopsToSimplify.insert(NewLoop);
447 
448           // Forget the old loop, since its inputs may have changed.
449           if (SE)
450             SE->forgetLoop(OldLoop);
451         }
452         NewLoop->addBasicBlockToLoop(New, *LI);
453       }
454 
455       if (*BB == Header)
456         // Loop over all of the PHI nodes in the block, changing them to use
457         // the incoming values from the previous block.
458         for (PHINode *OrigPHI : OrigPHINode) {
459           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
460           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
461           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
462             if (It > 1 && L->contains(InValI))
463               InVal = LastValueMap[InValI];
464           VMap[OrigPHI] = InVal;
465           New->getInstList().erase(NewPHI);
466         }
467 
468       // Update our running map of newest clones
469       LastValueMap[*BB] = New;
470       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
471            VI != VE; ++VI)
472         LastValueMap[VI->first] = VI->second;
473 
474       // Add phi entries for newly created values to all exit blocks.
475       for (BasicBlock *Succ : successors(*BB)) {
476         if (L->contains(Succ))
477           continue;
478         for (BasicBlock::iterator BBI = Succ->begin();
479              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
480           Value *Incoming = phi->getIncomingValueForBlock(*BB);
481           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
482           if (It != LastValueMap.end())
483             Incoming = It->second;
484           phi->addIncoming(Incoming, New);
485         }
486       }
487       // Keep track of new headers and latches as we create them, so that
488       // we can insert the proper branches later.
489       if (*BB == Header)
490         Headers.push_back(New);
491       if (*BB == LatchBlock)
492         Latches.push_back(New);
493 
494       NewBlocks.push_back(New);
495       UnrolledLoopBlocks.push_back(New);
496 
497       // Update DomTree: since we just copy the loop body, and each copy has a
498       // dedicated entry block (copy of the header block), this header's copy
499       // dominates all copied blocks. That means, dominance relations in the
500       // copied body are the same as in the original body.
501       if (DT) {
502         if (*BB == Header)
503           DT->addNewBlock(New, Latches[It - 1]);
504         else {
505           auto BBDomNode = DT->getNode(*BB);
506           auto BBIDom = BBDomNode->getIDom();
507           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
508           DT->addNewBlock(
509               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
510         }
511       }
512     }
513 
514     // Remap all instructions in the most recent iteration
515     for (BasicBlock *NewBlock : NewBlocks) {
516       for (Instruction &I : *NewBlock) {
517         ::remapInstruction(&I, LastValueMap);
518         if (auto *II = dyn_cast<IntrinsicInst>(&I))
519           if (II->getIntrinsicID() == Intrinsic::assume)
520             AC->registerAssumption(II);
521       }
522     }
523   }
524 
525   // Loop over the PHI nodes in the original block, setting incoming values.
526   for (PHINode *PN : OrigPHINode) {
527     if (CompletelyUnroll) {
528       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
529       Header->getInstList().erase(PN);
530     }
531     else if (Count > 1) {
532       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
533       // If this value was defined in the loop, take the value defined by the
534       // last iteration of the loop.
535       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
536         if (L->contains(InValI))
537           InVal = LastValueMap[InVal];
538       }
539       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
540       PN->addIncoming(InVal, Latches.back());
541     }
542   }
543 
544   // Now that all the basic blocks for the unrolled iterations are in place,
545   // set up the branches to connect them.
546   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
547     // The original branch was replicated in each unrolled iteration.
548     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
549 
550     // The branch destination.
551     unsigned j = (i + 1) % e;
552     BasicBlock *Dest = Headers[j];
553     bool NeedConditional = true;
554 
555     if (RuntimeTripCount && j != 0) {
556       NeedConditional = false;
557     }
558 
559     // For a complete unroll, make the last iteration end with a branch
560     // to the exit block.
561     if (CompletelyUnroll) {
562       if (j == 0)
563         Dest = LoopExit;
564       // If using trip count upper bound to completely unroll, we need to keep
565       // the conditional branch except the last one because the loop may exit
566       // after any iteration.
567       assert(NeedConditional &&
568              "NeedCondition cannot be modified by both complete "
569              "unrolling and runtime unrolling");
570       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
571     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
572       // If we know the trip count or a multiple of it, we can safely use an
573       // unconditional branch for some iterations.
574       NeedConditional = false;
575     }
576 
577     if (NeedConditional) {
578       // Update the conditional branch's successor for the following
579       // iteration.
580       Term->setSuccessor(!ContinueOnTrue, Dest);
581     } else {
582       // Remove phi operands at this loop exit
583       if (Dest != LoopExit) {
584         BasicBlock *BB = Latches[i];
585         for (BasicBlock *Succ: successors(BB)) {
586           if (Succ == Headers[i])
587             continue;
588           for (BasicBlock::iterator BBI = Succ->begin();
589                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
590             Phi->removeIncomingValue(BB, false);
591           }
592         }
593       }
594       // Replace the conditional branch with an unconditional one.
595       BranchInst::Create(Dest, Term);
596       Term->eraseFromParent();
597     }
598   }
599   // Update dominators of blocks we might reach through exits.
600   // Immediate dominator of such block might change, because we add more
601   // routes which can lead to the exit: we can now reach it from the copied
602   // iterations too. Thus, the new idom of the block will be the nearest
603   // common dominator of the previous idom and common dominator of all copies of
604   // the previous idom. This is equivalent to the nearest common dominator of
605   // the previous idom and the first latch, which dominates all copies of the
606   // previous idom.
607   if (DT && Count > 1) {
608     for (auto *BB : OriginalLoopBlocks) {
609       auto *BBDomNode = DT->getNode(BB);
610       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
611       for (auto *ChildDomNode : BBDomNode->getChildren()) {
612         auto *ChildBB = ChildDomNode->getBlock();
613         if (!L->contains(ChildBB))
614           ChildrenToUpdate.push_back(ChildBB);
615       }
616       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
617       for (auto *ChildBB : ChildrenToUpdate)
618         DT->changeImmediateDominator(ChildBB, NewIDom);
619     }
620   }
621 
622   // Merge adjacent basic blocks, if possible.
623   SmallPtrSet<Loop *, 4> ForgottenLoops;
624   for (BasicBlock *Latch : Latches) {
625     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
626     if (Term->isUnconditional()) {
627       BasicBlock *Dest = Term->getSuccessor(0);
628       if (BasicBlock *Fold =
629               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
630         // Dest has been folded into Fold. Update our worklists accordingly.
631         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
632         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
633                                              UnrolledLoopBlocks.end(), Dest),
634                                  UnrolledLoopBlocks.end());
635       }
636     }
637   }
638 
639   // FIXME: We only preserve DT info for complete unrolling now. Incrementally
640   // updating domtree after partial loop unrolling should also be easy.
641   if (DT && !CompletelyUnroll)
642     DT->recalculate(*L->getHeader()->getParent());
643   else if (DT)
644     DEBUG(DT->verifyDomTree());
645 
646   // Simplify any new induction variables in the partially unrolled loop.
647   if (SE && !CompletelyUnroll && Count > 1) {
648     SmallVector<WeakVH, 16> DeadInsts;
649     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
650 
651     // Aggressively clean up dead instructions that simplifyLoopIVs already
652     // identified. Any remaining should be cleaned up below.
653     while (!DeadInsts.empty())
654       if (Instruction *Inst =
655               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
656         RecursivelyDeleteTriviallyDeadInstructions(Inst);
657   }
658 
659   // At this point, the code is well formed.  We now do a quick sweep over the
660   // inserted code, doing constant propagation and dead code elimination as we
661   // go.
662   const DataLayout &DL = Header->getModule()->getDataLayout();
663   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
664   for (BasicBlock *BB : NewLoopBlocks) {
665     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
666       Instruction *Inst = &*I++;
667 
668       if (Value *V = SimplifyInstruction(Inst, DL))
669         if (LI->replacementPreservesLCSSAForm(Inst, V))
670           Inst->replaceAllUsesWith(V);
671       if (isInstructionTriviallyDead(Inst))
672         BB->getInstList().erase(Inst);
673     }
674   }
675 
676   NumCompletelyUnrolled += CompletelyUnroll;
677   ++NumUnrolled;
678 
679   Loop *OuterL = L->getParentLoop();
680   // Update LoopInfo if the loop is completely removed.
681   if (CompletelyUnroll)
682     LI->markAsRemoved(L);
683 
684   // After complete unrolling most of the blocks should be contained in OuterL.
685   // However, some of them might happen to be out of OuterL (e.g. if they
686   // precede a loop exit). In this case we might need to insert PHI nodes in
687   // order to preserve LCSSA form.
688   // We don't need to check this if we already know that we need to fix LCSSA
689   // form.
690   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
691   // it should be possible to fix it in-place.
692   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
693     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
694 
695   // If we have a pass and a DominatorTree we should re-simplify impacted loops
696   // to ensure subsequent analyses can rely on this form. We want to simplify
697   // at least one layer outside of the loop that was unrolled so that any
698   // changes to the parent loop exposed by the unrolling are considered.
699   if (DT) {
700     if (!OuterL && !CompletelyUnroll)
701       OuterL = L;
702     if (OuterL) {
703       // OuterL includes all loops for which we can break loop-simplify, so
704       // it's sufficient to simplify only it (it'll recursively simplify inner
705       // loops too).
706       // TODO: That potentially might be compile-time expensive. We should try
707       // to fix the loop-simplified form incrementally.
708       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
709 
710       // LCSSA must be performed on the outermost affected loop. The unrolled
711       // loop's last loop latch is guaranteed to be in the outermost loop after
712       // LoopInfo's been updated by markAsRemoved.
713       Loop *LatchLoop = LI->getLoopFor(Latches.back());
714       if (!OuterL->contains(LatchLoop))
715         while (OuterL->getParentLoop() != LatchLoop)
716           OuterL = OuterL->getParentLoop();
717 
718       if (NeedToFixLCSSA)
719         formLCSSARecursively(*OuterL, *DT, LI, SE);
720       else
721         assert(OuterL->isLCSSAForm(*DT) &&
722                "Loops should be in LCSSA form after loop-unroll.");
723     } else {
724       // Simplify loops for which we might've broken loop-simplify form.
725       for (Loop *SubLoop : LoopsToSimplify)
726         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
727     }
728   }
729 
730   return true;
731 }
732 
733 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
734 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
735 /// such metadata node exists, then nullptr is returned.
736 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
737   // First operand should refer to the loop id itself.
738   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
739   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
740 
741   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
742     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
743     if (!MD)
744       continue;
745 
746     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
747     if (!S)
748       continue;
749 
750     if (Name.equals(S->getString()))
751       return MD;
752   }
753   return nullptr;
754 }
755