1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopIterator.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopSimplify.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 static cl::opt<bool> 55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 56 cl::desc("Verify domtree after unrolling"), 57 #ifdef NDEBUG 58 cl::init(false) 59 #else 60 cl::init(true) 61 #endif 62 ); 63 64 /// Convert the instruction operands from referencing the current values into 65 /// those specified by VMap. 66 static inline void remapInstruction(Instruction *I, 67 ValueToValueMapTy &VMap) { 68 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 69 Value *Op = I->getOperand(op); 70 71 // Unwrap arguments of dbg.value intrinsics. 72 bool Wrapped = false; 73 if (auto *V = dyn_cast<MetadataAsValue>(Op)) 74 if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) { 75 Op = Unwrapped->getValue(); 76 Wrapped = true; 77 } 78 79 auto wrap = [&](Value *V) { 80 auto &C = I->getContext(); 81 return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V; 82 }; 83 84 ValueToValueMapTy::iterator It = VMap.find(Op); 85 if (It != VMap.end()) 86 I->setOperand(op, wrap(It->second)); 87 } 88 89 if (PHINode *PN = dyn_cast<PHINode>(I)) { 90 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 91 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 92 if (It != VMap.end()) 93 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 94 } 95 } 96 } 97 98 /// Folds a basic block into its predecessor if it only has one predecessor, and 99 /// that predecessor only has one successor. 100 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 101 /// successful references to the containing loop must be removed from 102 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 103 /// references to the eliminated BB. The argument ForgottenLoops contains a set 104 /// of loops that have already been forgotten to prevent redundant, expensive 105 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 106 static BasicBlock * 107 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 108 SmallPtrSetImpl<Loop *> &ForgottenLoops, 109 DominatorTree *DT) { 110 // Merge basic blocks into their predecessor if there is only one distinct 111 // pred, and if there is only one distinct successor of the predecessor, and 112 // if there are no PHI nodes. 113 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 114 if (!OnlyPred) return nullptr; 115 116 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 117 return nullptr; 118 119 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 120 121 // Resolve any PHI nodes at the start of the block. They are all 122 // guaranteed to have exactly one entry if they exist, unless there are 123 // multiple duplicate (but guaranteed to be equal) entries for the 124 // incoming edges. This occurs when there are multiple edges from 125 // OnlyPred to OnlySucc. 126 FoldSingleEntryPHINodes(BB); 127 128 // Delete the unconditional branch from the predecessor... 129 OnlyPred->getInstList().pop_back(); 130 131 // Make all PHI nodes that referred to BB now refer to Pred as their 132 // source... 133 BB->replaceAllUsesWith(OnlyPred); 134 135 // Move all definitions in the successor to the predecessor... 136 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 137 138 // OldName will be valid until erased. 139 StringRef OldName = BB->getName(); 140 141 // Erase the old block and update dominator info. 142 if (DT) 143 if (DomTreeNode *DTN = DT->getNode(BB)) { 144 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 145 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 146 for (auto *DI : Children) 147 DT->changeImmediateDominator(DI, PredDTN); 148 149 DT->eraseNode(BB); 150 } 151 152 // ScalarEvolution holds references to loop exit blocks. 153 if (SE) { 154 if (Loop *L = LI->getLoopFor(BB)) { 155 if (ForgottenLoops.insert(L).second) 156 SE->forgetLoop(L); 157 } 158 } 159 LI->removeBlock(BB); 160 161 // Inherit predecessor's name if it exists... 162 if (!OldName.empty() && !OnlyPred->hasName()) 163 OnlyPred->setName(OldName); 164 165 BB->eraseFromParent(); 166 167 return OnlyPred; 168 } 169 170 /// Check if unrolling created a situation where we need to insert phi nodes to 171 /// preserve LCSSA form. 172 /// \param Blocks is a vector of basic blocks representing unrolled loop. 173 /// \param L is the outer loop. 174 /// It's possible that some of the blocks are in L, and some are not. In this 175 /// case, if there is a use is outside L, and definition is inside L, we need to 176 /// insert a phi-node, otherwise LCSSA will be broken. 177 /// The function is just a helper function for llvm::UnrollLoop that returns 178 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 179 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 180 LoopInfo *LI) { 181 for (BasicBlock *BB : Blocks) { 182 if (LI->getLoopFor(BB) == L) 183 continue; 184 for (Instruction &I : *BB) { 185 for (Use &U : I.operands()) { 186 if (auto Def = dyn_cast<Instruction>(U)) { 187 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 188 if (!DefLoop) 189 continue; 190 if (DefLoop->contains(L)) 191 return true; 192 } 193 } 194 } 195 } 196 return false; 197 } 198 199 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 200 /// and adds a mapping from the original loop to the new loop to NewLoops. 201 /// Returns nullptr if no new loop was created and a pointer to the 202 /// original loop OriginalBB was part of otherwise. 203 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 204 BasicBlock *ClonedBB, LoopInfo *LI, 205 NewLoopsMap &NewLoops) { 206 // Figure out which loop New is in. 207 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 208 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 209 210 Loop *&NewLoop = NewLoops[OldLoop]; 211 if (!NewLoop) { 212 // Found a new sub-loop. 213 assert(OriginalBB == OldLoop->getHeader() && 214 "Header should be first in RPO"); 215 216 NewLoop = LI->AllocateLoop(); 217 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 218 219 if (NewLoopParent) 220 NewLoopParent->addChildLoop(NewLoop); 221 else 222 LI->addTopLevelLoop(NewLoop); 223 224 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 225 return OldLoop; 226 } else { 227 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 228 return nullptr; 229 } 230 } 231 232 /// The function chooses which type of unroll (epilog or prolog) is more 233 /// profitabale. 234 /// Epilog unroll is more profitable when there is PHI that starts from 235 /// constant. In this case epilog will leave PHI start from constant, 236 /// but prolog will convert it to non-constant. 237 /// 238 /// loop: 239 /// PN = PHI [I, Latch], [CI, PreHeader] 240 /// I = foo(PN) 241 /// ... 242 /// 243 /// Epilog unroll case. 244 /// loop: 245 /// PN = PHI [I2, Latch], [CI, PreHeader] 246 /// I1 = foo(PN) 247 /// I2 = foo(I1) 248 /// ... 249 /// Prolog unroll case. 250 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 251 /// loop: 252 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 253 /// I1 = foo(PN) 254 /// I2 = foo(I1) 255 /// ... 256 /// 257 static bool isEpilogProfitable(Loop *L) { 258 BasicBlock *PreHeader = L->getLoopPreheader(); 259 BasicBlock *Header = L->getHeader(); 260 assert(PreHeader && Header); 261 for (Instruction &BBI : *Header) { 262 PHINode *PN = dyn_cast<PHINode>(&BBI); 263 if (!PN) 264 break; 265 if (isa<ConstantInt>(PN->getIncomingValueForBlock(PreHeader))) 266 return true; 267 } 268 return false; 269 } 270 271 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 272 /// can only fail when the loop's latch block is not terminated by a conditional 273 /// branch instruction. However, if the trip count (and multiple) are not known, 274 /// loop unrolling will mostly produce more code that is no faster. 275 /// 276 /// TripCount is the upper bound of the iteration on which control exits 277 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 278 /// via an early branch in other loop block or via LatchBlock terminator. This 279 /// is relaxed from the general definition of trip count which is the number of 280 /// times the loop header executes. Note that UnrollLoop assumes that the loop 281 /// counter test is in LatchBlock in order to remove unnecesssary instances of 282 /// the test. If control can exit the loop from the LatchBlock's terminator 283 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 284 /// 285 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 286 /// needs to be preserved. It is needed when we use trip count upper bound to 287 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 288 /// conditional branch needs to be preserved. 289 /// 290 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 291 /// execute without exiting the loop. 292 /// 293 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 294 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 295 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 296 /// iterations before branching into the unrolled loop. UnrollLoop will not 297 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 298 /// AllowExpensiveTripCount is false. 299 /// 300 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 301 /// number of iterations we want to peel off. 302 /// 303 /// The LoopInfo Analysis that is passed will be kept consistent. 304 /// 305 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 306 /// DominatorTree if they are non-null. 307 LoopUnrollResult llvm::UnrollLoop( 308 Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime, 309 bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst, 310 unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder, 311 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 312 OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) { 313 314 BasicBlock *Preheader = L->getLoopPreheader(); 315 if (!Preheader) { 316 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 317 return LoopUnrollResult::Unmodified; 318 } 319 320 BasicBlock *LatchBlock = L->getLoopLatch(); 321 if (!LatchBlock) { 322 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 323 return LoopUnrollResult::Unmodified; 324 } 325 326 // Loops with indirectbr cannot be cloned. 327 if (!L->isSafeToClone()) { 328 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 329 return LoopUnrollResult::Unmodified; 330 } 331 332 // The current loop unroll pass can only unroll loops with a single latch 333 // that's a conditional branch exiting the loop. 334 // FIXME: The implementation can be extended to work with more complicated 335 // cases, e.g. loops with multiple latches. 336 BasicBlock *Header = L->getHeader(); 337 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 338 339 if (!BI || BI->isUnconditional()) { 340 // The loop-rotate pass can be helpful to avoid this in many cases. 341 DEBUG(dbgs() << 342 " Can't unroll; loop not terminated by a conditional branch.\n"); 343 return LoopUnrollResult::Unmodified; 344 } 345 346 auto CheckSuccessors = [&](unsigned S1, unsigned S2) { 347 return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2)); 348 }; 349 350 if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) { 351 DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch" 352 " exiting the loop can be unrolled\n"); 353 return LoopUnrollResult::Unmodified; 354 } 355 356 if (Header->hasAddressTaken()) { 357 // The loop-rotate pass can be helpful to avoid this in many cases. 358 DEBUG(dbgs() << 359 " Won't unroll loop: address of header block is taken.\n"); 360 return LoopUnrollResult::Unmodified; 361 } 362 363 if (TripCount != 0) 364 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 365 if (TripMultiple != 1) 366 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 367 368 // Effectively "DCE" unrolled iterations that are beyond the tripcount 369 // and will never be executed. 370 if (TripCount != 0 && Count > TripCount) 371 Count = TripCount; 372 373 // Don't enter the unroll code if there is nothing to do. 374 if (TripCount == 0 && Count < 2 && PeelCount == 0) { 375 DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 376 return LoopUnrollResult::Unmodified; 377 } 378 379 assert(Count > 0); 380 assert(TripMultiple > 0); 381 assert(TripCount == 0 || TripCount % TripMultiple == 0); 382 383 // Are we eliminating the loop control altogether? 384 bool CompletelyUnroll = Count == TripCount; 385 SmallVector<BasicBlock *, 4> ExitBlocks; 386 L->getExitBlocks(ExitBlocks); 387 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 388 389 // Go through all exits of L and see if there are any phi-nodes there. We just 390 // conservatively assume that they're inserted to preserve LCSSA form, which 391 // means that complete unrolling might break this form. We need to either fix 392 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 393 // now we just recompute LCSSA for the outer loop, but it should be possible 394 // to fix it in-place. 395 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 396 any_of(ExitBlocks, [](const BasicBlock *BB) { 397 return isa<PHINode>(BB->begin()); 398 }); 399 400 // We assume a run-time trip count if the compiler cannot 401 // figure out the loop trip count and the unroll-runtime 402 // flag is specified. 403 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 404 405 assert((!RuntimeTripCount || !PeelCount) && 406 "Did not expect runtime trip-count unrolling " 407 "and peeling for the same loop"); 408 409 if (PeelCount) { 410 bool Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA); 411 412 // Successful peeling may result in a change in the loop preheader/trip 413 // counts. If we later unroll the loop, we want these to be updated. 414 if (Peeled) { 415 BasicBlock *ExitingBlock = L->getExitingBlock(); 416 assert(ExitingBlock && "Loop without exiting block?"); 417 Preheader = L->getLoopPreheader(); 418 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 419 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 420 } 421 } 422 423 // Loops containing convergent instructions must have a count that divides 424 // their TripMultiple. 425 DEBUG( 426 { 427 bool HasConvergent = false; 428 for (auto &BB : L->blocks()) 429 for (auto &I : *BB) 430 if (auto CS = CallSite(&I)) 431 HasConvergent |= CS.isConvergent(); 432 assert((!HasConvergent || TripMultiple % Count == 0) && 433 "Unroll count must divide trip multiple if loop contains a " 434 "convergent operation."); 435 }); 436 437 bool EpilogProfitability = 438 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 439 : isEpilogProfitable(L); 440 441 if (RuntimeTripCount && TripMultiple % Count != 0 && 442 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 443 EpilogProfitability, UnrollRemainder, LI, SE, 444 DT, AC, PreserveLCSSA)) { 445 if (Force) 446 RuntimeTripCount = false; 447 else { 448 DEBUG( 449 dbgs() << "Wont unroll; remainder loop could not be generated" 450 "when assuming runtime trip count\n"); 451 return LoopUnrollResult::Unmodified; 452 } 453 } 454 455 // Notify ScalarEvolution that the loop will be substantially changed, 456 // if not outright eliminated. 457 if (SE) 458 SE->forgetLoop(L); 459 460 // If we know the trip count, we know the multiple... 461 unsigned BreakoutTrip = 0; 462 if (TripCount != 0) { 463 BreakoutTrip = TripCount % Count; 464 TripMultiple = 0; 465 } else { 466 // Figure out what multiple to use. 467 BreakoutTrip = TripMultiple = 468 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 469 } 470 471 using namespace ore; 472 // Report the unrolling decision. 473 if (CompletelyUnroll) { 474 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 475 << " with trip count " << TripCount << "!\n"); 476 if (ORE) 477 ORE->emit([&]() { 478 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 479 L->getHeader()) 480 << "completely unrolled loop with " 481 << NV("UnrollCount", TripCount) << " iterations"; 482 }); 483 } else if (PeelCount) { 484 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 485 << " with iteration count " << PeelCount << "!\n"); 486 if (ORE) 487 ORE->emit([&]() { 488 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 489 L->getHeader()) 490 << " peeled loop by " << NV("PeelCount", PeelCount) 491 << " iterations"; 492 }); 493 } else { 494 auto DiagBuilder = [&]() { 495 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 496 L->getHeader()); 497 return Diag << "unrolled loop by a factor of " 498 << NV("UnrollCount", Count); 499 }; 500 501 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 502 << " by " << Count); 503 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 504 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 505 if (ORE) 506 ORE->emit([&]() { 507 return DiagBuilder() << " with a breakout at trip " 508 << NV("BreakoutTrip", BreakoutTrip); 509 }); 510 } else if (TripMultiple != 1) { 511 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 512 if (ORE) 513 ORE->emit([&]() { 514 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) 515 << " trips per branch"; 516 }); 517 } else if (RuntimeTripCount) { 518 DEBUG(dbgs() << " with run-time trip count"); 519 if (ORE) 520 ORE->emit( 521 [&]() { return DiagBuilder() << " with run-time trip count"; }); 522 } 523 DEBUG(dbgs() << "!\n"); 524 } 525 526 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 527 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 528 529 // For the first iteration of the loop, we should use the precloned values for 530 // PHI nodes. Insert associations now. 531 ValueToValueMapTy LastValueMap; 532 std::vector<PHINode*> OrigPHINode; 533 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 534 OrigPHINode.push_back(cast<PHINode>(I)); 535 } 536 537 std::vector<BasicBlock*> Headers; 538 std::vector<BasicBlock*> Latches; 539 Headers.push_back(Header); 540 Latches.push_back(LatchBlock); 541 542 // The current on-the-fly SSA update requires blocks to be processed in 543 // reverse postorder so that LastValueMap contains the correct value at each 544 // exit. 545 LoopBlocksDFS DFS(L); 546 DFS.perform(LI); 547 548 // Stash the DFS iterators before adding blocks to the loop. 549 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 550 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 551 552 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 553 554 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 555 // might break loop-simplified form for these loops (as they, e.g., would 556 // share the same exit blocks). We'll keep track of loops for which we can 557 // break this so that later we can re-simplify them. 558 SmallSetVector<Loop *, 4> LoopsToSimplify; 559 for (Loop *SubLoop : *L) 560 LoopsToSimplify.insert(SubLoop); 561 562 if (Header->getParent()->isDebugInfoForProfiling()) 563 for (BasicBlock *BB : L->getBlocks()) 564 for (Instruction &I : *BB) 565 if (!isa<DbgInfoIntrinsic>(&I)) 566 if (const DILocation *DIL = I.getDebugLoc()) 567 I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count)); 568 569 for (unsigned It = 1; It != Count; ++It) { 570 std::vector<BasicBlock*> NewBlocks; 571 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 572 NewLoops[L] = L; 573 574 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 575 ValueToValueMapTy VMap; 576 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 577 Header->getParent()->getBasicBlockList().push_back(New); 578 579 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 580 "Header should not be in a sub-loop"); 581 // Tell LI about New. 582 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 583 if (OldLoop) { 584 LoopsToSimplify.insert(NewLoops[OldLoop]); 585 586 // Forget the old loop, since its inputs may have changed. 587 if (SE) 588 SE->forgetLoop(OldLoop); 589 } 590 591 if (*BB == Header) 592 // Loop over all of the PHI nodes in the block, changing them to use 593 // the incoming values from the previous block. 594 for (PHINode *OrigPHI : OrigPHINode) { 595 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 596 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 597 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 598 if (It > 1 && L->contains(InValI)) 599 InVal = LastValueMap[InValI]; 600 VMap[OrigPHI] = InVal; 601 New->getInstList().erase(NewPHI); 602 } 603 604 // Update our running map of newest clones 605 LastValueMap[*BB] = New; 606 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 607 VI != VE; ++VI) 608 LastValueMap[VI->first] = VI->second; 609 610 // Add phi entries for newly created values to all exit blocks. 611 for (BasicBlock *Succ : successors(*BB)) { 612 if (L->contains(Succ)) 613 continue; 614 for (BasicBlock::iterator BBI = Succ->begin(); 615 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 616 Value *Incoming = phi->getIncomingValueForBlock(*BB); 617 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 618 if (It != LastValueMap.end()) 619 Incoming = It->second; 620 phi->addIncoming(Incoming, New); 621 } 622 } 623 // Keep track of new headers and latches as we create them, so that 624 // we can insert the proper branches later. 625 if (*BB == Header) 626 Headers.push_back(New); 627 if (*BB == LatchBlock) 628 Latches.push_back(New); 629 630 NewBlocks.push_back(New); 631 UnrolledLoopBlocks.push_back(New); 632 633 // Update DomTree: since we just copy the loop body, and each copy has a 634 // dedicated entry block (copy of the header block), this header's copy 635 // dominates all copied blocks. That means, dominance relations in the 636 // copied body are the same as in the original body. 637 if (DT) { 638 if (*BB == Header) 639 DT->addNewBlock(New, Latches[It - 1]); 640 else { 641 auto BBDomNode = DT->getNode(*BB); 642 auto BBIDom = BBDomNode->getIDom(); 643 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 644 DT->addNewBlock( 645 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 646 } 647 } 648 } 649 650 // Remap all instructions in the most recent iteration 651 for (BasicBlock *NewBlock : NewBlocks) { 652 for (Instruction &I : *NewBlock) { 653 ::remapInstruction(&I, LastValueMap); 654 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 655 if (II->getIntrinsicID() == Intrinsic::assume) 656 AC->registerAssumption(II); 657 } 658 } 659 } 660 661 // Loop over the PHI nodes in the original block, setting incoming values. 662 for (PHINode *PN : OrigPHINode) { 663 if (CompletelyUnroll) { 664 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 665 Header->getInstList().erase(PN); 666 } 667 else if (Count > 1) { 668 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 669 // If this value was defined in the loop, take the value defined by the 670 // last iteration of the loop. 671 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 672 if (L->contains(InValI)) 673 InVal = LastValueMap[InVal]; 674 } 675 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 676 PN->addIncoming(InVal, Latches.back()); 677 } 678 } 679 680 // Now that all the basic blocks for the unrolled iterations are in place, 681 // set up the branches to connect them. 682 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 683 // The original branch was replicated in each unrolled iteration. 684 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 685 686 // The branch destination. 687 unsigned j = (i + 1) % e; 688 BasicBlock *Dest = Headers[j]; 689 bool NeedConditional = true; 690 691 if (RuntimeTripCount && j != 0) { 692 NeedConditional = false; 693 } 694 695 // For a complete unroll, make the last iteration end with a branch 696 // to the exit block. 697 if (CompletelyUnroll) { 698 if (j == 0) 699 Dest = LoopExit; 700 // If using trip count upper bound to completely unroll, we need to keep 701 // the conditional branch except the last one because the loop may exit 702 // after any iteration. 703 assert(NeedConditional && 704 "NeedCondition cannot be modified by both complete " 705 "unrolling and runtime unrolling"); 706 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 707 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 708 // If we know the trip count or a multiple of it, we can safely use an 709 // unconditional branch for some iterations. 710 NeedConditional = false; 711 } 712 713 if (NeedConditional) { 714 // Update the conditional branch's successor for the following 715 // iteration. 716 Term->setSuccessor(!ContinueOnTrue, Dest); 717 } else { 718 // Remove phi operands at this loop exit 719 if (Dest != LoopExit) { 720 BasicBlock *BB = Latches[i]; 721 for (BasicBlock *Succ: successors(BB)) { 722 if (Succ == Headers[i]) 723 continue; 724 for (BasicBlock::iterator BBI = Succ->begin(); 725 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 726 Phi->removeIncomingValue(BB, false); 727 } 728 } 729 } 730 // Replace the conditional branch with an unconditional one. 731 BranchInst::Create(Dest, Term); 732 Term->eraseFromParent(); 733 } 734 } 735 736 // Update dominators of blocks we might reach through exits. 737 // Immediate dominator of such block might change, because we add more 738 // routes which can lead to the exit: we can now reach it from the copied 739 // iterations too. 740 if (DT && Count > 1) { 741 for (auto *BB : OriginalLoopBlocks) { 742 auto *BBDomNode = DT->getNode(BB); 743 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 744 for (auto *ChildDomNode : BBDomNode->getChildren()) { 745 auto *ChildBB = ChildDomNode->getBlock(); 746 if (!L->contains(ChildBB)) 747 ChildrenToUpdate.push_back(ChildBB); 748 } 749 BasicBlock *NewIDom; 750 if (BB == LatchBlock) { 751 // The latch is special because we emit unconditional branches in 752 // some cases where the original loop contained a conditional branch. 753 // Since the latch is always at the bottom of the loop, if the latch 754 // dominated an exit before unrolling, the new dominator of that exit 755 // must also be a latch. Specifically, the dominator is the first 756 // latch which ends in a conditional branch, or the last latch if 757 // there is no such latch. 758 NewIDom = Latches.back(); 759 for (BasicBlock *IterLatch : Latches) { 760 TerminatorInst *Term = IterLatch->getTerminator(); 761 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 762 NewIDom = IterLatch; 763 break; 764 } 765 } 766 } else { 767 // The new idom of the block will be the nearest common dominator 768 // of all copies of the previous idom. This is equivalent to the 769 // nearest common dominator of the previous idom and the first latch, 770 // which dominates all copies of the previous idom. 771 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 772 } 773 for (auto *ChildBB : ChildrenToUpdate) 774 DT->changeImmediateDominator(ChildBB, NewIDom); 775 } 776 } 777 778 if (DT && UnrollVerifyDomtree) 779 DT->verifyDomTree(); 780 781 // Merge adjacent basic blocks, if possible. 782 SmallPtrSet<Loop *, 4> ForgottenLoops; 783 for (BasicBlock *Latch : Latches) { 784 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 785 if (Term->isUnconditional()) { 786 BasicBlock *Dest = Term->getSuccessor(0); 787 if (BasicBlock *Fold = 788 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 789 // Dest has been folded into Fold. Update our worklists accordingly. 790 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 791 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 792 UnrolledLoopBlocks.end(), Dest), 793 UnrolledLoopBlocks.end()); 794 } 795 } 796 } 797 798 // Simplify any new induction variables in the partially unrolled loop. 799 if (SE && !CompletelyUnroll && Count > 1) { 800 SmallVector<WeakTrackingVH, 16> DeadInsts; 801 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 802 803 // Aggressively clean up dead instructions that simplifyLoopIVs already 804 // identified. Any remaining should be cleaned up below. 805 while (!DeadInsts.empty()) 806 if (Instruction *Inst = 807 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 808 RecursivelyDeleteTriviallyDeadInstructions(Inst); 809 } 810 811 // At this point, the code is well formed. We now do a quick sweep over the 812 // inserted code, doing constant propagation and dead code elimination as we 813 // go. 814 const DataLayout &DL = Header->getModule()->getDataLayout(); 815 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 816 for (BasicBlock *BB : NewLoopBlocks) { 817 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 818 Instruction *Inst = &*I++; 819 820 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 821 if (LI->replacementPreservesLCSSAForm(Inst, V)) 822 Inst->replaceAllUsesWith(V); 823 if (isInstructionTriviallyDead(Inst)) 824 BB->getInstList().erase(Inst); 825 } 826 } 827 828 // TODO: after peeling or unrolling, previously loop variant conditions are 829 // likely to fold to constants, eagerly propagating those here will require 830 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 831 // appropriate. 832 833 NumCompletelyUnrolled += CompletelyUnroll; 834 ++NumUnrolled; 835 836 Loop *OuterL = L->getParentLoop(); 837 // Update LoopInfo if the loop is completely removed. 838 if (CompletelyUnroll) 839 LI->erase(L); 840 841 // After complete unrolling most of the blocks should be contained in OuterL. 842 // However, some of them might happen to be out of OuterL (e.g. if they 843 // precede a loop exit). In this case we might need to insert PHI nodes in 844 // order to preserve LCSSA form. 845 // We don't need to check this if we already know that we need to fix LCSSA 846 // form. 847 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 848 // it should be possible to fix it in-place. 849 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 850 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 851 852 // If we have a pass and a DominatorTree we should re-simplify impacted loops 853 // to ensure subsequent analyses can rely on this form. We want to simplify 854 // at least one layer outside of the loop that was unrolled so that any 855 // changes to the parent loop exposed by the unrolling are considered. 856 if (DT) { 857 if (OuterL) { 858 // OuterL includes all loops for which we can break loop-simplify, so 859 // it's sufficient to simplify only it (it'll recursively simplify inner 860 // loops too). 861 if (NeedToFixLCSSA) { 862 // LCSSA must be performed on the outermost affected loop. The unrolled 863 // loop's last loop latch is guaranteed to be in the outermost loop 864 // after LoopInfo's been updated by LoopInfo::erase. 865 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 866 Loop *FixLCSSALoop = OuterL; 867 if (!FixLCSSALoop->contains(LatchLoop)) 868 while (FixLCSSALoop->getParentLoop() != LatchLoop) 869 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 870 871 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 872 } else if (PreserveLCSSA) { 873 assert(OuterL->isLCSSAForm(*DT) && 874 "Loops should be in LCSSA form after loop-unroll."); 875 } 876 877 // TODO: That potentially might be compile-time expensive. We should try 878 // to fix the loop-simplified form incrementally. 879 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 880 } else { 881 // Simplify loops for which we might've broken loop-simplify form. 882 for (Loop *SubLoop : LoopsToSimplify) 883 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 884 } 885 } 886 887 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 888 : LoopUnrollResult::PartiallyUnrolled; 889 } 890 891 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 892 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 893 /// such metadata node exists, then nullptr is returned. 894 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 895 // First operand should refer to the loop id itself. 896 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 897 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 898 899 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 900 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 901 if (!MD) 902 continue; 903 904 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 905 if (!S) 906 continue; 907 908 if (Name.equals(S->getString())) 909 return MD; 910 } 911 return nullptr; 912 } 913