1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "loop-unroll"
42 
43 // TODO: Should these be here or in LoopUnroll?
44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
46 
47 static cl::opt<bool>
48 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(true), cl::Hidden,
49                     cl::desc("Allow runtime unrolled loops to be unrolled "
50                              "with epilog instead of prolog."));
51 
52 /// Convert the instruction operands from referencing the current values into
53 /// those specified by VMap.
54 static inline void remapInstruction(Instruction *I,
55                                     ValueToValueMapTy &VMap) {
56   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
57     Value *Op = I->getOperand(op);
58     ValueToValueMapTy::iterator It = VMap.find(Op);
59     if (It != VMap.end())
60       I->setOperand(op, It->second);
61   }
62 
63   if (PHINode *PN = dyn_cast<PHINode>(I)) {
64     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
65       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
66       if (It != VMap.end())
67         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
68     }
69   }
70 }
71 
72 /// Folds a basic block into its predecessor if it only has one predecessor, and
73 /// that predecessor only has one successor.
74 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
75 /// successful references to the containing loop must be removed from
76 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
77 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
78 /// of loops that have already been forgotten to prevent redundant, expensive
79 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
80 static BasicBlock *
81 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
82                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
83                          DominatorTree *DT) {
84   // Merge basic blocks into their predecessor if there is only one distinct
85   // pred, and if there is only one distinct successor of the predecessor, and
86   // if there are no PHI nodes.
87   BasicBlock *OnlyPred = BB->getSinglePredecessor();
88   if (!OnlyPred) return nullptr;
89 
90   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
91     return nullptr;
92 
93   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
94 
95   // Resolve any PHI nodes at the start of the block.  They are all
96   // guaranteed to have exactly one entry if they exist, unless there are
97   // multiple duplicate (but guaranteed to be equal) entries for the
98   // incoming edges.  This occurs when there are multiple edges from
99   // OnlyPred to OnlySucc.
100   FoldSingleEntryPHINodes(BB);
101 
102   // Delete the unconditional branch from the predecessor...
103   OnlyPred->getInstList().pop_back();
104 
105   // Make all PHI nodes that referred to BB now refer to Pred as their
106   // source...
107   BB->replaceAllUsesWith(OnlyPred);
108 
109   // Move all definitions in the successor to the predecessor...
110   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
111 
112   // OldName will be valid until erased.
113   StringRef OldName = BB->getName();
114 
115   // Erase the old block and update dominator info.
116   if (DT)
117     if (DomTreeNode *DTN = DT->getNode(BB)) {
118       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
119       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
120       for (auto *DI : Children)
121         DT->changeImmediateDominator(DI, PredDTN);
122 
123       DT->eraseNode(BB);
124     }
125 
126   // ScalarEvolution holds references to loop exit blocks.
127   if (SE) {
128     if (Loop *L = LI->getLoopFor(BB)) {
129       if (ForgottenLoops.insert(L).second)
130         SE->forgetLoop(L);
131     }
132   }
133   LI->removeBlock(BB);
134 
135   // Inherit predecessor's name if it exists...
136   if (!OldName.empty() && !OnlyPred->hasName())
137     OnlyPred->setName(OldName);
138 
139   BB->eraseFromParent();
140 
141   return OnlyPred;
142 }
143 
144 /// Check if unrolling created a situation where we need to insert phi nodes to
145 /// preserve LCSSA form.
146 /// \param Blocks is a vector of basic blocks representing unrolled loop.
147 /// \param L is the outer loop.
148 /// It's possible that some of the blocks are in L, and some are not. In this
149 /// case, if there is a use is outside L, and definition is inside L, we need to
150 /// insert a phi-node, otherwise LCSSA will be broken.
151 /// The function is just a helper function for llvm::UnrollLoop that returns
152 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
153 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
154                                      LoopInfo *LI) {
155   for (BasicBlock *BB : Blocks) {
156     if (LI->getLoopFor(BB) == L)
157       continue;
158     for (Instruction &I : *BB) {
159       for (Use &U : I.operands()) {
160         if (auto Def = dyn_cast<Instruction>(U)) {
161           Loop *DefLoop = LI->getLoopFor(Def->getParent());
162           if (!DefLoop)
163             continue;
164           if (DefLoop->contains(L))
165             return true;
166         }
167       }
168     }
169   }
170   return false;
171 }
172 
173 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
174 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
175 /// can only fail when the loop's latch block is not terminated by a conditional
176 /// branch instruction. However, if the trip count (and multiple) are not known,
177 /// loop unrolling will mostly produce more code that is no faster.
178 ///
179 /// TripCount is generally defined as the number of times the loop header
180 /// executes. UnrollLoop relaxes the definition to permit early exits: here
181 /// TripCount is the iteration on which control exits LatchBlock if no early
182 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
183 /// terminates LatchBlock in order to remove unnecesssary instances of the
184 /// test. In other words, control may exit the loop prior to TripCount
185 /// iterations via an early branch, but control may not exit the loop from the
186 /// LatchBlock's terminator prior to TripCount iterations.
187 ///
188 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
189 /// execute without exiting the loop.
190 ///
191 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
192 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
193 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
194 /// iterations before branching into the unrolled loop.  UnrollLoop will not
195 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
196 /// AllowExpensiveTripCount is false.
197 ///
198 /// The LoopInfo Analysis that is passed will be kept consistent.
199 ///
200 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
201 /// DominatorTree if they are non-null.
202 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
203                       bool AllowRuntime, bool AllowExpensiveTripCount,
204                       unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
205                       DominatorTree *DT, AssumptionCache *AC,
206                       bool PreserveLCSSA) {
207   BasicBlock *Preheader = L->getLoopPreheader();
208   if (!Preheader) {
209     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
210     return false;
211   }
212 
213   BasicBlock *LatchBlock = L->getLoopLatch();
214   if (!LatchBlock) {
215     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
216     return false;
217   }
218 
219   // Loops with indirectbr cannot be cloned.
220   if (!L->isSafeToClone()) {
221     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
222     return false;
223   }
224 
225   BasicBlock *Header = L->getHeader();
226   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
227 
228   if (!BI || BI->isUnconditional()) {
229     // The loop-rotate pass can be helpful to avoid this in many cases.
230     DEBUG(dbgs() <<
231              "  Can't unroll; loop not terminated by a conditional branch.\n");
232     return false;
233   }
234 
235   if (Header->hasAddressTaken()) {
236     // The loop-rotate pass can be helpful to avoid this in many cases.
237     DEBUG(dbgs() <<
238           "  Won't unroll loop: address of header block is taken.\n");
239     return false;
240   }
241 
242   if (TripCount != 0)
243     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
244   if (TripMultiple != 1)
245     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
246 
247   // Effectively "DCE" unrolled iterations that are beyond the tripcount
248   // and will never be executed.
249   if (TripCount != 0 && Count > TripCount)
250     Count = TripCount;
251 
252   // Don't enter the unroll code if there is nothing to do. This way we don't
253   // need to support "partial unrolling by 1".
254   if (TripCount == 0 && Count < 2)
255     return false;
256 
257   assert(Count > 0);
258   assert(TripMultiple > 0);
259   assert(TripCount == 0 || TripCount % TripMultiple == 0);
260 
261   // Are we eliminating the loop control altogether?
262   bool CompletelyUnroll = Count == TripCount;
263   SmallVector<BasicBlock *, 4> ExitBlocks;
264   L->getExitBlocks(ExitBlocks);
265   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
266 
267   // Go through all exits of L and see if there are any phi-nodes there. We just
268   // conservatively assume that they're inserted to preserve LCSSA form, which
269   // means that complete unrolling might break this form. We need to either fix
270   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
271   // now we just recompute LCSSA for the outer loop, but it should be possible
272   // to fix it in-place.
273   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
274       std::any_of(ExitBlocks.begin(), ExitBlocks.end(),
275                   [&](BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
276 
277   // We assume a run-time trip count if the compiler cannot
278   // figure out the loop trip count and the unroll-runtime
279   // flag is specified.
280   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
281 
282   // Loops containing convergent instructions must have a count that divides
283   // their TripMultiple.
284   DEBUG(
285       {
286         bool HasConvergent = false;
287         for (auto &BB
288              : L->blocks())
289           for (auto &I : *BB)
290             if (auto CS = CallSite(&I))
291               HasConvergent |= CS.isConvergent();
292         assert((!HasConvergent || TripMultiple % Count == 0) &&
293                "Unroll count must divide trip multiple if loop contains a "
294                "convergent "
295                "operation.");
296       });
297   // Don't output the runtime loop remainder if Count is a multiple of
298   // TripMultiple.  Such a remainder is never needed, and is unsafe if the loop
299   // contains a convergent instruction.
300   if (RuntimeTripCount && TripMultiple % Count != 0 &&
301       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
302                                   UnrollRuntimeEpilog, LI, SE, DT,
303                                   PreserveLCSSA))
304     return false;
305 
306   // Notify ScalarEvolution that the loop will be substantially changed,
307   // if not outright eliminated.
308   if (SE)
309     SE->forgetLoop(L);
310 
311   // If we know the trip count, we know the multiple...
312   unsigned BreakoutTrip = 0;
313   if (TripCount != 0) {
314     BreakoutTrip = TripCount % Count;
315     TripMultiple = 0;
316   } else {
317     // Figure out what multiple to use.
318     BreakoutTrip = TripMultiple =
319       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
320   }
321 
322   // Report the unrolling decision.
323   DebugLoc LoopLoc = L->getStartLoc();
324   Function *F = Header->getParent();
325   LLVMContext &Ctx = F->getContext();
326 
327   if (CompletelyUnroll) {
328     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
329           << " with trip count " << TripCount << "!\n");
330     emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
331                            Twine("completely unrolled loop with ") +
332                                Twine(TripCount) + " iterations");
333   } else {
334     auto EmitDiag = [&](const Twine &T) {
335       emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
336                              "unrolled loop by a factor of " + Twine(Count) +
337                                  T);
338     };
339 
340     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
341           << " by " << Count);
342     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
343       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
344       EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
345     } else if (TripMultiple != 1) {
346       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
347       EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
348     } else if (RuntimeTripCount) {
349       DEBUG(dbgs() << " with run-time trip count");
350       EmitDiag(" with run-time trip count");
351     }
352     DEBUG(dbgs() << "!\n");
353   }
354 
355   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
356   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
357 
358   // For the first iteration of the loop, we should use the precloned values for
359   // PHI nodes.  Insert associations now.
360   ValueToValueMapTy LastValueMap;
361   std::vector<PHINode*> OrigPHINode;
362   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
363     OrigPHINode.push_back(cast<PHINode>(I));
364   }
365 
366   std::vector<BasicBlock*> Headers;
367   std::vector<BasicBlock*> Latches;
368   Headers.push_back(Header);
369   Latches.push_back(LatchBlock);
370 
371   // The current on-the-fly SSA update requires blocks to be processed in
372   // reverse postorder so that LastValueMap contains the correct value at each
373   // exit.
374   LoopBlocksDFS DFS(L);
375   DFS.perform(LI);
376 
377   // Stash the DFS iterators before adding blocks to the loop.
378   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
379   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
380 
381   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
382   for (unsigned It = 1; It != Count; ++It) {
383     std::vector<BasicBlock*> NewBlocks;
384     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
385     NewLoops[L] = L;
386 
387     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
388       ValueToValueMapTy VMap;
389       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
390       Header->getParent()->getBasicBlockList().push_back(New);
391 
392       // Tell LI about New.
393       if (*BB == Header) {
394         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
395         L->addBasicBlockToLoop(New, *LI);
396       } else {
397         // Figure out which loop New is in.
398         const Loop *OldLoop = LI->getLoopFor(*BB);
399         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
400 
401         Loop *&NewLoop = NewLoops[OldLoop];
402         if (!NewLoop) {
403           // Found a new sub-loop.
404           assert(*BB == OldLoop->getHeader() &&
405                  "Header should be first in RPO");
406 
407           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
408           assert(NewLoopParent &&
409                  "Expected parent loop before sub-loop in RPO");
410           NewLoop = new Loop;
411           NewLoopParent->addChildLoop(NewLoop);
412 
413           // Forget the old loop, since its inputs may have changed.
414           if (SE)
415             SE->forgetLoop(OldLoop);
416         }
417         NewLoop->addBasicBlockToLoop(New, *LI);
418       }
419 
420       if (*BB == Header)
421         // Loop over all of the PHI nodes in the block, changing them to use
422         // the incoming values from the previous block.
423         for (PHINode *OrigPHI : OrigPHINode) {
424           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
425           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
426           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
427             if (It > 1 && L->contains(InValI))
428               InVal = LastValueMap[InValI];
429           VMap[OrigPHI] = InVal;
430           New->getInstList().erase(NewPHI);
431         }
432 
433       // Update our running map of newest clones
434       LastValueMap[*BB] = New;
435       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
436            VI != VE; ++VI)
437         LastValueMap[VI->first] = VI->second;
438 
439       // Add phi entries for newly created values to all exit blocks.
440       for (BasicBlock *Succ : successors(*BB)) {
441         if (L->contains(Succ))
442           continue;
443         for (BasicBlock::iterator BBI = Succ->begin();
444              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
445           Value *Incoming = phi->getIncomingValueForBlock(*BB);
446           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
447           if (It != LastValueMap.end())
448             Incoming = It->second;
449           phi->addIncoming(Incoming, New);
450         }
451       }
452       // Keep track of new headers and latches as we create them, so that
453       // we can insert the proper branches later.
454       if (*BB == Header)
455         Headers.push_back(New);
456       if (*BB == LatchBlock)
457         Latches.push_back(New);
458 
459       NewBlocks.push_back(New);
460       UnrolledLoopBlocks.push_back(New);
461 
462       // Update DomTree: since we just copy the loop body, and each copy has a
463       // dedicated entry block (copy of the header block), this header's copy
464       // dominates all copied blocks. That means, dominance relations in the
465       // copied body are the same as in the original body.
466       if (DT) {
467         if (*BB == Header)
468           DT->addNewBlock(New, Latches[It - 1]);
469         else {
470           auto BBDomNode = DT->getNode(*BB);
471           auto BBIDom = BBDomNode->getIDom();
472           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
473           DT->addNewBlock(
474               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
475         }
476       }
477     }
478 
479     // Remap all instructions in the most recent iteration
480     for (BasicBlock *NewBlock : NewBlocks)
481       for (Instruction &I : *NewBlock)
482         ::remapInstruction(&I, LastValueMap);
483   }
484 
485   // Loop over the PHI nodes in the original block, setting incoming values.
486   for (PHINode *PN : OrigPHINode) {
487     if (CompletelyUnroll) {
488       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
489       Header->getInstList().erase(PN);
490     }
491     else if (Count > 1) {
492       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
493       // If this value was defined in the loop, take the value defined by the
494       // last iteration of the loop.
495       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
496         if (L->contains(InValI))
497           InVal = LastValueMap[InVal];
498       }
499       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
500       PN->addIncoming(InVal, Latches.back());
501     }
502   }
503 
504   // Now that all the basic blocks for the unrolled iterations are in place,
505   // set up the branches to connect them.
506   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
507     // The original branch was replicated in each unrolled iteration.
508     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
509 
510     // The branch destination.
511     unsigned j = (i + 1) % e;
512     BasicBlock *Dest = Headers[j];
513     bool NeedConditional = true;
514 
515     if (RuntimeTripCount && j != 0) {
516       NeedConditional = false;
517     }
518 
519     // For a complete unroll, make the last iteration end with a branch
520     // to the exit block.
521     if (CompletelyUnroll) {
522       if (j == 0)
523         Dest = LoopExit;
524       NeedConditional = false;
525     }
526 
527     // If we know the trip count or a multiple of it, we can safely use an
528     // unconditional branch for some iterations.
529     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
530       NeedConditional = false;
531     }
532 
533     if (NeedConditional) {
534       // Update the conditional branch's successor for the following
535       // iteration.
536       Term->setSuccessor(!ContinueOnTrue, Dest);
537     } else {
538       // Remove phi operands at this loop exit
539       if (Dest != LoopExit) {
540         BasicBlock *BB = Latches[i];
541         for (BasicBlock *Succ: successors(BB)) {
542           if (Succ == Headers[i])
543             continue;
544           for (BasicBlock::iterator BBI = Succ->begin();
545                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
546             Phi->removeIncomingValue(BB, false);
547           }
548         }
549       }
550       // Replace the conditional branch with an unconditional one.
551       BranchInst::Create(Dest, Term);
552       Term->eraseFromParent();
553     }
554   }
555   // Update dominators of blocks we might reach through exits.
556   // Immediate dominator of such block might change, because we add more
557   // routes which can lead to the exit: we can now reach it from the copied
558   // iterations too. Thus, the new idom of the block will be the nearest
559   // common dominator of the previous idom and common dominator of all copies of
560   // the previous idom. This is equivalent to the nearest common dominator of
561   // the previous idom and the first latch, which dominates all copies of the
562   // previous idom.
563   if (DT && Count > 1) {
564     for (auto *BB : OriginalLoopBlocks) {
565       auto *BBDomNode = DT->getNode(BB);
566       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
567       for (auto *ChildDomNode : BBDomNode->getChildren()) {
568         auto *ChildBB = ChildDomNode->getBlock();
569         if (!L->contains(ChildBB))
570           ChildrenToUpdate.push_back(ChildBB);
571       }
572       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
573       for (auto *ChildBB : ChildrenToUpdate)
574         DT->changeImmediateDominator(ChildBB, NewIDom);
575     }
576   }
577 
578   // Merge adjacent basic blocks, if possible.
579   SmallPtrSet<Loop *, 4> ForgottenLoops;
580   for (BasicBlock *Latch : Latches) {
581     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
582     if (Term->isUnconditional()) {
583       BasicBlock *Dest = Term->getSuccessor(0);
584       if (BasicBlock *Fold =
585               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
586         // Dest has been folded into Fold. Update our worklists accordingly.
587         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
588         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
589                                              UnrolledLoopBlocks.end(), Dest),
590                                  UnrolledLoopBlocks.end());
591       }
592     }
593   }
594 
595   // FIXME: We could register any cloned assumptions instead of clearing the
596   // whole function's cache.
597   AC->clear();
598 
599   // FIXME: We only preserve DT info for complete unrolling now. Incrementally
600   // updating domtree after partial loop unrolling should also be easy.
601   if (DT && !CompletelyUnroll)
602     DT->recalculate(*L->getHeader()->getParent());
603   else
604     DEBUG(DT->verifyDomTree());
605 
606   // Simplify any new induction variables in the partially unrolled loop.
607   if (SE && !CompletelyUnroll) {
608     SmallVector<WeakVH, 16> DeadInsts;
609     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
610 
611     // Aggressively clean up dead instructions that simplifyLoopIVs already
612     // identified. Any remaining should be cleaned up below.
613     while (!DeadInsts.empty())
614       if (Instruction *Inst =
615               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
616         RecursivelyDeleteTriviallyDeadInstructions(Inst);
617   }
618 
619   // At this point, the code is well formed.  We now do a quick sweep over the
620   // inserted code, doing constant propagation and dead code elimination as we
621   // go.
622   const DataLayout &DL = Header->getModule()->getDataLayout();
623   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
624   for (BasicBlock *BB : NewLoopBlocks)
625     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
626       Instruction *Inst = &*I++;
627 
628       if (isInstructionTriviallyDead(Inst))
629         BB->getInstList().erase(Inst);
630       else if (Value *V = SimplifyInstruction(Inst, DL))
631         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
632           Inst->replaceAllUsesWith(V);
633           BB->getInstList().erase(Inst);
634         }
635     }
636 
637   NumCompletelyUnrolled += CompletelyUnroll;
638   ++NumUnrolled;
639 
640   Loop *OuterL = L->getParentLoop();
641   // Update LoopInfo if the loop is completely removed.
642   if (CompletelyUnroll)
643     LI->markAsRemoved(L);
644 
645   // After complete unrolling most of the blocks should be contained in OuterL.
646   // However, some of them might happen to be out of OuterL (e.g. if they
647   // precede a loop exit). In this case we might need to insert PHI nodes in
648   // order to preserve LCSSA form.
649   // We don't need to check this if we already know that we need to fix LCSSA
650   // form.
651   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
652   // it should be possible to fix it in-place.
653   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
654     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
655 
656   // If we have a pass and a DominatorTree we should re-simplify impacted loops
657   // to ensure subsequent analyses can rely on this form. We want to simplify
658   // at least one layer outside of the loop that was unrolled so that any
659   // changes to the parent loop exposed by the unrolling are considered.
660   if (DT) {
661     if (!OuterL && !CompletelyUnroll)
662       OuterL = L;
663     if (OuterL) {
664       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
665 
666       // LCSSA must be performed on the outermost affected loop. The unrolled
667       // loop's last loop latch is guaranteed to be in the outermost loop after
668       // LoopInfo's been updated by markAsRemoved.
669       Loop *LatchLoop = LI->getLoopFor(Latches.back());
670       if (!OuterL->contains(LatchLoop))
671         while (OuterL->getParentLoop() != LatchLoop)
672           OuterL = OuterL->getParentLoop();
673 
674       if (NeedToFixLCSSA)
675         formLCSSARecursively(*OuterL, *DT, LI, SE);
676       else
677         assert(OuterL->isLCSSAForm(*DT) &&
678                "Loops should be in LCSSA form after loop-unroll.");
679     }
680   }
681 
682   return true;
683 }
684 
685 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
686 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
687 /// such metadata node exists, then nullptr is returned.
688 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
689   // First operand should refer to the loop id itself.
690   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
691   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
692 
693   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
694     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
695     if (!MD)
696       continue;
697 
698     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
699     if (!S)
700       continue;
701 
702     if (Name.equals(S->getString()))
703       return MD;
704   }
705   return nullptr;
706 }
707