1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 /// Convert the instruction operands from referencing the current values into 55 /// those specified by VMap. 56 static inline void remapInstruction(Instruction *I, 57 ValueToValueMapTy &VMap) { 58 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 59 Value *Op = I->getOperand(op); 60 ValueToValueMapTy::iterator It = VMap.find(Op); 61 if (It != VMap.end()) 62 I->setOperand(op, It->second); 63 } 64 65 if (PHINode *PN = dyn_cast<PHINode>(I)) { 66 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 67 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 68 if (It != VMap.end()) 69 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 70 } 71 } 72 } 73 74 /// Folds a basic block into its predecessor if it only has one predecessor, and 75 /// that predecessor only has one successor. 76 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 77 /// successful references to the containing loop must be removed from 78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 79 /// references to the eliminated BB. The argument ForgottenLoops contains a set 80 /// of loops that have already been forgotten to prevent redundant, expensive 81 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 82 static BasicBlock * 83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 84 SmallPtrSetImpl<Loop *> &ForgottenLoops, 85 DominatorTree *DT) { 86 // Merge basic blocks into their predecessor if there is only one distinct 87 // pred, and if there is only one distinct successor of the predecessor, and 88 // if there are no PHI nodes. 89 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 90 if (!OnlyPred) return nullptr; 91 92 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 93 return nullptr; 94 95 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 96 97 // Resolve any PHI nodes at the start of the block. They are all 98 // guaranteed to have exactly one entry if they exist, unless there are 99 // multiple duplicate (but guaranteed to be equal) entries for the 100 // incoming edges. This occurs when there are multiple edges from 101 // OnlyPred to OnlySucc. 102 FoldSingleEntryPHINodes(BB); 103 104 // Delete the unconditional branch from the predecessor... 105 OnlyPred->getInstList().pop_back(); 106 107 // Make all PHI nodes that referred to BB now refer to Pred as their 108 // source... 109 BB->replaceAllUsesWith(OnlyPred); 110 111 // Move all definitions in the successor to the predecessor... 112 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 113 114 // OldName will be valid until erased. 115 StringRef OldName = BB->getName(); 116 117 // Erase the old block and update dominator info. 118 if (DT) 119 if (DomTreeNode *DTN = DT->getNode(BB)) { 120 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 121 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 122 for (auto *DI : Children) 123 DT->changeImmediateDominator(DI, PredDTN); 124 125 DT->eraseNode(BB); 126 } 127 128 // ScalarEvolution holds references to loop exit blocks. 129 if (SE) { 130 if (Loop *L = LI->getLoopFor(BB)) { 131 if (ForgottenLoops.insert(L).second) 132 SE->forgetLoop(L); 133 } 134 } 135 LI->removeBlock(BB); 136 137 // Inherit predecessor's name if it exists... 138 if (!OldName.empty() && !OnlyPred->hasName()) 139 OnlyPred->setName(OldName); 140 141 BB->eraseFromParent(); 142 143 return OnlyPred; 144 } 145 146 /// Check if unrolling created a situation where we need to insert phi nodes to 147 /// preserve LCSSA form. 148 /// \param Blocks is a vector of basic blocks representing unrolled loop. 149 /// \param L is the outer loop. 150 /// It's possible that some of the blocks are in L, and some are not. In this 151 /// case, if there is a use is outside L, and definition is inside L, we need to 152 /// insert a phi-node, otherwise LCSSA will be broken. 153 /// The function is just a helper function for llvm::UnrollLoop that returns 154 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 156 LoopInfo *LI) { 157 for (BasicBlock *BB : Blocks) { 158 if (LI->getLoopFor(BB) == L) 159 continue; 160 for (Instruction &I : *BB) { 161 for (Use &U : I.operands()) { 162 if (auto Def = dyn_cast<Instruction>(U)) { 163 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 164 if (!DefLoop) 165 continue; 166 if (DefLoop->contains(L)) 167 return true; 168 } 169 } 170 } 171 } 172 return false; 173 } 174 175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 177 /// can only fail when the loop's latch block is not terminated by a conditional 178 /// branch instruction. However, if the trip count (and multiple) are not known, 179 /// loop unrolling will mostly produce more code that is no faster. 180 /// 181 /// TripCount is generally defined as the number of times the loop header 182 /// executes. UnrollLoop relaxes the definition to permit early exits: here 183 /// TripCount is the iteration on which control exits LatchBlock if no early 184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 185 /// terminates LatchBlock in order to remove unnecesssary instances of the 186 /// test. In other words, control may exit the loop prior to TripCount 187 /// iterations via an early branch, but control may not exit the loop from the 188 /// LatchBlock's terminator prior to TripCount iterations. 189 /// 190 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 191 /// execute without exiting the loop. 192 /// 193 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 194 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 195 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 196 /// iterations before branching into the unrolled loop. UnrollLoop will not 197 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 198 /// AllowExpensiveTripCount is false. 199 /// 200 /// The LoopInfo Analysis that is passed will be kept consistent. 201 /// 202 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 203 /// DominatorTree if they are non-null. 204 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 205 bool AllowRuntime, bool AllowExpensiveTripCount, 206 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE, 207 DominatorTree *DT, AssumptionCache *AC, 208 OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) { 209 BasicBlock *Preheader = L->getLoopPreheader(); 210 if (!Preheader) { 211 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 212 return false; 213 } 214 215 BasicBlock *LatchBlock = L->getLoopLatch(); 216 if (!LatchBlock) { 217 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 218 return false; 219 } 220 221 // Loops with indirectbr cannot be cloned. 222 if (!L->isSafeToClone()) { 223 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 224 return false; 225 } 226 227 BasicBlock *Header = L->getHeader(); 228 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 229 230 if (!BI || BI->isUnconditional()) { 231 // The loop-rotate pass can be helpful to avoid this in many cases. 232 DEBUG(dbgs() << 233 " Can't unroll; loop not terminated by a conditional branch.\n"); 234 return false; 235 } 236 237 if (Header->hasAddressTaken()) { 238 // The loop-rotate pass can be helpful to avoid this in many cases. 239 DEBUG(dbgs() << 240 " Won't unroll loop: address of header block is taken.\n"); 241 return false; 242 } 243 244 if (TripCount != 0) 245 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 246 if (TripMultiple != 1) 247 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 248 249 // Effectively "DCE" unrolled iterations that are beyond the tripcount 250 // and will never be executed. 251 if (TripCount != 0 && Count > TripCount) 252 Count = TripCount; 253 254 // Don't enter the unroll code if there is nothing to do. This way we don't 255 // need to support "partial unrolling by 1". 256 if (TripCount == 0 && Count < 2) 257 return false; 258 259 assert(Count > 0); 260 assert(TripMultiple > 0); 261 assert(TripCount == 0 || TripCount % TripMultiple == 0); 262 263 // Are we eliminating the loop control altogether? 264 bool CompletelyUnroll = Count == TripCount; 265 SmallVector<BasicBlock *, 4> ExitBlocks; 266 L->getExitBlocks(ExitBlocks); 267 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 268 269 // Go through all exits of L and see if there are any phi-nodes there. We just 270 // conservatively assume that they're inserted to preserve LCSSA form, which 271 // means that complete unrolling might break this form. We need to either fix 272 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 273 // now we just recompute LCSSA for the outer loop, but it should be possible 274 // to fix it in-place. 275 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 276 any_of(ExitBlocks, [](const BasicBlock *BB) { 277 return isa<PHINode>(BB->begin()); 278 }); 279 280 // We assume a run-time trip count if the compiler cannot 281 // figure out the loop trip count and the unroll-runtime 282 // flag is specified. 283 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 284 285 // Loops containing convergent instructions must have a count that divides 286 // their TripMultiple. 287 DEBUG( 288 { 289 bool HasConvergent = false; 290 for (auto &BB : L->blocks()) 291 for (auto &I : *BB) 292 if (auto CS = CallSite(&I)) 293 HasConvergent |= CS.isConvergent(); 294 assert((!HasConvergent || TripMultiple % Count == 0) && 295 "Unroll count must divide trip multiple if loop contains a " 296 "convergent operation."); 297 }); 298 // Don't output the runtime loop remainder if Count is a multiple of 299 // TripMultiple. Such a remainder is never needed, and is unsafe if the loop 300 // contains a convergent instruction. 301 if (RuntimeTripCount && TripMultiple % Count != 0 && 302 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 303 UnrollRuntimeEpilog, LI, SE, DT, 304 PreserveLCSSA)) { 305 if (Force) 306 RuntimeTripCount = false; 307 else 308 return false; 309 } 310 311 // Notify ScalarEvolution that the loop will be substantially changed, 312 // if not outright eliminated. 313 if (SE) 314 SE->forgetLoop(L); 315 316 // If we know the trip count, we know the multiple... 317 unsigned BreakoutTrip = 0; 318 if (TripCount != 0) { 319 BreakoutTrip = TripCount % Count; 320 TripMultiple = 0; 321 } else { 322 // Figure out what multiple to use. 323 BreakoutTrip = TripMultiple = 324 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 325 } 326 327 using namespace ore; 328 // Report the unrolling decision. 329 if (CompletelyUnroll) { 330 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 331 << " with trip count " << TripCount << "!\n"); 332 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 333 L->getHeader()) 334 << "completely unrolled loop with " 335 << NV("UnrollCount", TripCount) << " iterations"); 336 } else { 337 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 338 L->getHeader()); 339 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 340 341 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 342 << " by " << Count); 343 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 344 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 345 ORE->emit(Diag << " with a breakout at trip " 346 << NV("BreakoutTrip", BreakoutTrip)); 347 } else if (TripMultiple != 1) { 348 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 349 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 350 << " trips per branch"); 351 } else if (RuntimeTripCount) { 352 DEBUG(dbgs() << " with run-time trip count"); 353 ORE->emit(Diag << " with run-time trip count"); 354 } 355 DEBUG(dbgs() << "!\n"); 356 } 357 358 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 359 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 360 361 // For the first iteration of the loop, we should use the precloned values for 362 // PHI nodes. Insert associations now. 363 ValueToValueMapTy LastValueMap; 364 std::vector<PHINode*> OrigPHINode; 365 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 366 OrigPHINode.push_back(cast<PHINode>(I)); 367 } 368 369 std::vector<BasicBlock*> Headers; 370 std::vector<BasicBlock*> Latches; 371 Headers.push_back(Header); 372 Latches.push_back(LatchBlock); 373 374 // The current on-the-fly SSA update requires blocks to be processed in 375 // reverse postorder so that LastValueMap contains the correct value at each 376 // exit. 377 LoopBlocksDFS DFS(L); 378 DFS.perform(LI); 379 380 // Stash the DFS iterators before adding blocks to the loop. 381 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 382 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 383 384 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 385 386 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 387 // might break loop-simplified form for these loops (as they, e.g., would 388 // share the same exit blocks). We'll keep track of loops for which we can 389 // break this so that later we can re-simplify them. 390 SmallSetVector<Loop *, 4> LoopsToSimplify; 391 for (Loop *SubLoop : *L) 392 LoopsToSimplify.insert(SubLoop); 393 394 for (unsigned It = 1; It != Count; ++It) { 395 std::vector<BasicBlock*> NewBlocks; 396 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 397 NewLoops[L] = L; 398 399 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 400 ValueToValueMapTy VMap; 401 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 402 Header->getParent()->getBasicBlockList().push_back(New); 403 404 // Tell LI about New. 405 if (*BB == Header) { 406 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 407 L->addBasicBlockToLoop(New, *LI); 408 } else { 409 // Figure out which loop New is in. 410 const Loop *OldLoop = LI->getLoopFor(*BB); 411 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 412 413 Loop *&NewLoop = NewLoops[OldLoop]; 414 if (!NewLoop) { 415 // Found a new sub-loop. 416 assert(*BB == OldLoop->getHeader() && 417 "Header should be first in RPO"); 418 419 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 420 assert(NewLoopParent && 421 "Expected parent loop before sub-loop in RPO"); 422 NewLoop = new Loop; 423 NewLoopParent->addChildLoop(NewLoop); 424 LoopsToSimplify.insert(NewLoop); 425 426 // Forget the old loop, since its inputs may have changed. 427 if (SE) 428 SE->forgetLoop(OldLoop); 429 } 430 NewLoop->addBasicBlockToLoop(New, *LI); 431 } 432 433 if (*BB == Header) 434 // Loop over all of the PHI nodes in the block, changing them to use 435 // the incoming values from the previous block. 436 for (PHINode *OrigPHI : OrigPHINode) { 437 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 438 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 439 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 440 if (It > 1 && L->contains(InValI)) 441 InVal = LastValueMap[InValI]; 442 VMap[OrigPHI] = InVal; 443 New->getInstList().erase(NewPHI); 444 } 445 446 // Update our running map of newest clones 447 LastValueMap[*BB] = New; 448 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 449 VI != VE; ++VI) 450 LastValueMap[VI->first] = VI->second; 451 452 // Add phi entries for newly created values to all exit blocks. 453 for (BasicBlock *Succ : successors(*BB)) { 454 if (L->contains(Succ)) 455 continue; 456 for (BasicBlock::iterator BBI = Succ->begin(); 457 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 458 Value *Incoming = phi->getIncomingValueForBlock(*BB); 459 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 460 if (It != LastValueMap.end()) 461 Incoming = It->second; 462 phi->addIncoming(Incoming, New); 463 } 464 } 465 // Keep track of new headers and latches as we create them, so that 466 // we can insert the proper branches later. 467 if (*BB == Header) 468 Headers.push_back(New); 469 if (*BB == LatchBlock) 470 Latches.push_back(New); 471 472 NewBlocks.push_back(New); 473 UnrolledLoopBlocks.push_back(New); 474 475 // Update DomTree: since we just copy the loop body, and each copy has a 476 // dedicated entry block (copy of the header block), this header's copy 477 // dominates all copied blocks. That means, dominance relations in the 478 // copied body are the same as in the original body. 479 if (DT) { 480 if (*BB == Header) 481 DT->addNewBlock(New, Latches[It - 1]); 482 else { 483 auto BBDomNode = DT->getNode(*BB); 484 auto BBIDom = BBDomNode->getIDom(); 485 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 486 DT->addNewBlock( 487 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 488 } 489 } 490 } 491 492 // Remap all instructions in the most recent iteration 493 for (BasicBlock *NewBlock : NewBlocks) { 494 for (Instruction &I : *NewBlock) { 495 ::remapInstruction(&I, LastValueMap); 496 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 497 if (II->getIntrinsicID() == Intrinsic::assume) 498 AC->registerAssumption(II); 499 } 500 } 501 } 502 503 // Loop over the PHI nodes in the original block, setting incoming values. 504 for (PHINode *PN : OrigPHINode) { 505 if (CompletelyUnroll) { 506 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 507 Header->getInstList().erase(PN); 508 } 509 else if (Count > 1) { 510 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 511 // If this value was defined in the loop, take the value defined by the 512 // last iteration of the loop. 513 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 514 if (L->contains(InValI)) 515 InVal = LastValueMap[InVal]; 516 } 517 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 518 PN->addIncoming(InVal, Latches.back()); 519 } 520 } 521 522 // Now that all the basic blocks for the unrolled iterations are in place, 523 // set up the branches to connect them. 524 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 525 // The original branch was replicated in each unrolled iteration. 526 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 527 528 // The branch destination. 529 unsigned j = (i + 1) % e; 530 BasicBlock *Dest = Headers[j]; 531 bool NeedConditional = true; 532 533 if (RuntimeTripCount && j != 0) { 534 NeedConditional = false; 535 } 536 537 // For a complete unroll, make the last iteration end with a branch 538 // to the exit block. 539 if (CompletelyUnroll) { 540 if (j == 0) 541 Dest = LoopExit; 542 NeedConditional = false; 543 } 544 545 // If we know the trip count or a multiple of it, we can safely use an 546 // unconditional branch for some iterations. 547 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 548 NeedConditional = false; 549 } 550 551 if (NeedConditional) { 552 // Update the conditional branch's successor for the following 553 // iteration. 554 Term->setSuccessor(!ContinueOnTrue, Dest); 555 } else { 556 // Remove phi operands at this loop exit 557 if (Dest != LoopExit) { 558 BasicBlock *BB = Latches[i]; 559 for (BasicBlock *Succ: successors(BB)) { 560 if (Succ == Headers[i]) 561 continue; 562 for (BasicBlock::iterator BBI = Succ->begin(); 563 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 564 Phi->removeIncomingValue(BB, false); 565 } 566 } 567 } 568 // Replace the conditional branch with an unconditional one. 569 BranchInst::Create(Dest, Term); 570 Term->eraseFromParent(); 571 } 572 } 573 // Update dominators of blocks we might reach through exits. 574 // Immediate dominator of such block might change, because we add more 575 // routes which can lead to the exit: we can now reach it from the copied 576 // iterations too. Thus, the new idom of the block will be the nearest 577 // common dominator of the previous idom and common dominator of all copies of 578 // the previous idom. This is equivalent to the nearest common dominator of 579 // the previous idom and the first latch, which dominates all copies of the 580 // previous idom. 581 if (DT && Count > 1) { 582 for (auto *BB : OriginalLoopBlocks) { 583 auto *BBDomNode = DT->getNode(BB); 584 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 585 for (auto *ChildDomNode : BBDomNode->getChildren()) { 586 auto *ChildBB = ChildDomNode->getBlock(); 587 if (!L->contains(ChildBB)) 588 ChildrenToUpdate.push_back(ChildBB); 589 } 590 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]); 591 for (auto *ChildBB : ChildrenToUpdate) 592 DT->changeImmediateDominator(ChildBB, NewIDom); 593 } 594 } 595 596 // Merge adjacent basic blocks, if possible. 597 SmallPtrSet<Loop *, 4> ForgottenLoops; 598 for (BasicBlock *Latch : Latches) { 599 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 600 if (Term->isUnconditional()) { 601 BasicBlock *Dest = Term->getSuccessor(0); 602 if (BasicBlock *Fold = 603 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 604 // Dest has been folded into Fold. Update our worklists accordingly. 605 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 606 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 607 UnrolledLoopBlocks.end(), Dest), 608 UnrolledLoopBlocks.end()); 609 } 610 } 611 } 612 613 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 614 // updating domtree after partial loop unrolling should also be easy. 615 if (DT && !CompletelyUnroll) 616 DT->recalculate(*L->getHeader()->getParent()); 617 else if (DT) 618 DEBUG(DT->verifyDomTree()); 619 620 // Simplify any new induction variables in the partially unrolled loop. 621 if (SE && !CompletelyUnroll) { 622 SmallVector<WeakVH, 16> DeadInsts; 623 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 624 625 // Aggressively clean up dead instructions that simplifyLoopIVs already 626 // identified. Any remaining should be cleaned up below. 627 while (!DeadInsts.empty()) 628 if (Instruction *Inst = 629 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 630 RecursivelyDeleteTriviallyDeadInstructions(Inst); 631 } 632 633 // At this point, the code is well formed. We now do a quick sweep over the 634 // inserted code, doing constant propagation and dead code elimination as we 635 // go. 636 const DataLayout &DL = Header->getModule()->getDataLayout(); 637 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 638 for (BasicBlock *BB : NewLoopBlocks) { 639 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 640 Instruction *Inst = &*I++; 641 642 if (Value *V = SimplifyInstruction(Inst, DL)) 643 if (LI->replacementPreservesLCSSAForm(Inst, V)) 644 Inst->replaceAllUsesWith(V); 645 if (isInstructionTriviallyDead(Inst)) 646 BB->getInstList().erase(Inst); 647 } 648 } 649 650 NumCompletelyUnrolled += CompletelyUnroll; 651 ++NumUnrolled; 652 653 Loop *OuterL = L->getParentLoop(); 654 // Update LoopInfo if the loop is completely removed. 655 if (CompletelyUnroll) 656 LI->markAsRemoved(L); 657 658 // After complete unrolling most of the blocks should be contained in OuterL. 659 // However, some of them might happen to be out of OuterL (e.g. if they 660 // precede a loop exit). In this case we might need to insert PHI nodes in 661 // order to preserve LCSSA form. 662 // We don't need to check this if we already know that we need to fix LCSSA 663 // form. 664 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 665 // it should be possible to fix it in-place. 666 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 667 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 668 669 // If we have a pass and a DominatorTree we should re-simplify impacted loops 670 // to ensure subsequent analyses can rely on this form. We want to simplify 671 // at least one layer outside of the loop that was unrolled so that any 672 // changes to the parent loop exposed by the unrolling are considered. 673 if (DT) { 674 if (!OuterL && !CompletelyUnroll) 675 OuterL = L; 676 if (OuterL) { 677 // OuterL includes all loops for which we can break loop-simplify, so 678 // it's sufficient to simplify only it (it'll recursively simplify inner 679 // loops too). 680 // TODO: That potentially might be compile-time expensive. We should try 681 // to fix the loop-simplified form incrementally. 682 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 683 684 // LCSSA must be performed on the outermost affected loop. The unrolled 685 // loop's last loop latch is guaranteed to be in the outermost loop after 686 // LoopInfo's been updated by markAsRemoved. 687 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 688 if (!OuterL->contains(LatchLoop)) 689 while (OuterL->getParentLoop() != LatchLoop) 690 OuterL = OuterL->getParentLoop(); 691 692 if (NeedToFixLCSSA) 693 formLCSSARecursively(*OuterL, *DT, LI, SE); 694 else 695 assert(OuterL->isLCSSAForm(*DT) && 696 "Loops should be in LCSSA form after loop-unroll."); 697 } else { 698 // Simplify loops for which we might've broken loop-simplify form. 699 for (Loop *SubLoop : LoopsToSimplify) 700 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 701 } 702 } 703 704 return true; 705 } 706 707 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 708 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 709 /// such metadata node exists, then nullptr is returned. 710 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 711 // First operand should refer to the loop id itself. 712 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 713 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 714 715 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 716 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 717 if (!MD) 718 continue; 719 720 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 721 if (!S) 722 continue; 723 724 if (Name.equals(S->getString())) 725 return MD; 726 } 727 return nullptr; 728 } 729