1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51                     cl::desc("Allow runtime unrolled loops to be unrolled "
52                              "with epilog instead of prolog."));
53 
54 /// Convert the instruction operands from referencing the current values into
55 /// those specified by VMap.
56 static inline void remapInstruction(Instruction *I,
57                                     ValueToValueMapTy &VMap) {
58   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
59     Value *Op = I->getOperand(op);
60     ValueToValueMapTy::iterator It = VMap.find(Op);
61     if (It != VMap.end())
62       I->setOperand(op, It->second);
63   }
64 
65   if (PHINode *PN = dyn_cast<PHINode>(I)) {
66     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
67       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
68       if (It != VMap.end())
69         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
70     }
71   }
72 }
73 
74 /// Folds a basic block into its predecessor if it only has one predecessor, and
75 /// that predecessor only has one successor.
76 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
77 /// successful references to the containing loop must be removed from
78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
79 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
80 /// of loops that have already been forgotten to prevent redundant, expensive
81 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
82 static BasicBlock *
83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
84                          SmallPtrSetImpl<Loop *> &ForgottenLoops,
85                          DominatorTree *DT) {
86   // Merge basic blocks into their predecessor if there is only one distinct
87   // pred, and if there is only one distinct successor of the predecessor, and
88   // if there are no PHI nodes.
89   BasicBlock *OnlyPred = BB->getSinglePredecessor();
90   if (!OnlyPred) return nullptr;
91 
92   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
93     return nullptr;
94 
95   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
96 
97   // Resolve any PHI nodes at the start of the block.  They are all
98   // guaranteed to have exactly one entry if they exist, unless there are
99   // multiple duplicate (but guaranteed to be equal) entries for the
100   // incoming edges.  This occurs when there are multiple edges from
101   // OnlyPred to OnlySucc.
102   FoldSingleEntryPHINodes(BB);
103 
104   // Delete the unconditional branch from the predecessor...
105   OnlyPred->getInstList().pop_back();
106 
107   // Make all PHI nodes that referred to BB now refer to Pred as their
108   // source...
109   BB->replaceAllUsesWith(OnlyPred);
110 
111   // Move all definitions in the successor to the predecessor...
112   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
113 
114   // OldName will be valid until erased.
115   StringRef OldName = BB->getName();
116 
117   // Erase the old block and update dominator info.
118   if (DT)
119     if (DomTreeNode *DTN = DT->getNode(BB)) {
120       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
121       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
122       for (auto *DI : Children)
123         DT->changeImmediateDominator(DI, PredDTN);
124 
125       DT->eraseNode(BB);
126     }
127 
128   // ScalarEvolution holds references to loop exit blocks.
129   if (SE) {
130     if (Loop *L = LI->getLoopFor(BB)) {
131       if (ForgottenLoops.insert(L).second)
132         SE->forgetLoop(L);
133     }
134   }
135   LI->removeBlock(BB);
136 
137   // Inherit predecessor's name if it exists...
138   if (!OldName.empty() && !OnlyPred->hasName())
139     OnlyPred->setName(OldName);
140 
141   BB->eraseFromParent();
142 
143   return OnlyPred;
144 }
145 
146 /// Check if unrolling created a situation where we need to insert phi nodes to
147 /// preserve LCSSA form.
148 /// \param Blocks is a vector of basic blocks representing unrolled loop.
149 /// \param L is the outer loop.
150 /// It's possible that some of the blocks are in L, and some are not. In this
151 /// case, if there is a use is outside L, and definition is inside L, we need to
152 /// insert a phi-node, otherwise LCSSA will be broken.
153 /// The function is just a helper function for llvm::UnrollLoop that returns
154 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
156                                      LoopInfo *LI) {
157   for (BasicBlock *BB : Blocks) {
158     if (LI->getLoopFor(BB) == L)
159       continue;
160     for (Instruction &I : *BB) {
161       for (Use &U : I.operands()) {
162         if (auto Def = dyn_cast<Instruction>(U)) {
163           Loop *DefLoop = LI->getLoopFor(Def->getParent());
164           if (!DefLoop)
165             continue;
166           if (DefLoop->contains(L))
167             return true;
168         }
169       }
170     }
171   }
172   return false;
173 }
174 
175 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
176 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
177 /// can only fail when the loop's latch block is not terminated by a conditional
178 /// branch instruction. However, if the trip count (and multiple) are not known,
179 /// loop unrolling will mostly produce more code that is no faster.
180 ///
181 /// TripCount is generally defined as the number of times the loop header
182 /// executes. UnrollLoop relaxes the definition to permit early exits: here
183 /// TripCount is the iteration on which control exits LatchBlock if no early
184 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
185 /// terminates LatchBlock in order to remove unnecesssary instances of the
186 /// test. In other words, control may exit the loop prior to TripCount
187 /// iterations via an early branch, but control may not exit the loop from the
188 /// LatchBlock's terminator prior to TripCount iterations.
189 ///
190 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
191 /// execute without exiting the loop.
192 ///
193 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
194 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
195 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
196 /// iterations before branching into the unrolled loop.  UnrollLoop will not
197 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
198 /// AllowExpensiveTripCount is false.
199 ///
200 /// The LoopInfo Analysis that is passed will be kept consistent.
201 ///
202 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
203 /// DominatorTree if they are non-null.
204 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
205                       bool AllowRuntime, bool AllowExpensiveTripCount,
206                       unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
207                       DominatorTree *DT, AssumptionCache *AC,
208                       OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
209   BasicBlock *Preheader = L->getLoopPreheader();
210   if (!Preheader) {
211     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
212     return false;
213   }
214 
215   BasicBlock *LatchBlock = L->getLoopLatch();
216   if (!LatchBlock) {
217     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
218     return false;
219   }
220 
221   // Loops with indirectbr cannot be cloned.
222   if (!L->isSafeToClone()) {
223     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
224     return false;
225   }
226 
227   BasicBlock *Header = L->getHeader();
228   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
229 
230   if (!BI || BI->isUnconditional()) {
231     // The loop-rotate pass can be helpful to avoid this in many cases.
232     DEBUG(dbgs() <<
233              "  Can't unroll; loop not terminated by a conditional branch.\n");
234     return false;
235   }
236 
237   if (Header->hasAddressTaken()) {
238     // The loop-rotate pass can be helpful to avoid this in many cases.
239     DEBUG(dbgs() <<
240           "  Won't unroll loop: address of header block is taken.\n");
241     return false;
242   }
243 
244   if (TripCount != 0)
245     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
246   if (TripMultiple != 1)
247     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
248 
249   // Effectively "DCE" unrolled iterations that are beyond the tripcount
250   // and will never be executed.
251   if (TripCount != 0 && Count > TripCount)
252     Count = TripCount;
253 
254   // Don't enter the unroll code if there is nothing to do. This way we don't
255   // need to support "partial unrolling by 1".
256   if (TripCount == 0 && Count < 2)
257     return false;
258 
259   assert(Count > 0);
260   assert(TripMultiple > 0);
261   assert(TripCount == 0 || TripCount % TripMultiple == 0);
262 
263   // Are we eliminating the loop control altogether?
264   bool CompletelyUnroll = Count == TripCount;
265   SmallVector<BasicBlock *, 4> ExitBlocks;
266   L->getExitBlocks(ExitBlocks);
267   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
268 
269   // Go through all exits of L and see if there are any phi-nodes there. We just
270   // conservatively assume that they're inserted to preserve LCSSA form, which
271   // means that complete unrolling might break this form. We need to either fix
272   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
273   // now we just recompute LCSSA for the outer loop, but it should be possible
274   // to fix it in-place.
275   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
276                         any_of(ExitBlocks, [](const BasicBlock *BB) {
277                           return isa<PHINode>(BB->begin());
278                         });
279 
280   // We assume a run-time trip count if the compiler cannot
281   // figure out the loop trip count and the unroll-runtime
282   // flag is specified.
283   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
284 
285   // Loops containing convergent instructions must have a count that divides
286   // their TripMultiple.
287   DEBUG(
288       {
289         bool HasConvergent = false;
290         for (auto &BB : L->blocks())
291           for (auto &I : *BB)
292             if (auto CS = CallSite(&I))
293               HasConvergent |= CS.isConvergent();
294         assert((!HasConvergent || TripMultiple % Count == 0) &&
295                "Unroll count must divide trip multiple if loop contains a "
296                "convergent operation.");
297       });
298   // Don't output the runtime loop remainder if Count is a multiple of
299   // TripMultiple.  Such a remainder is never needed, and is unsafe if the loop
300   // contains a convergent instruction.
301   if (RuntimeTripCount && TripMultiple % Count != 0 &&
302       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
303                                   UnrollRuntimeEpilog, LI, SE, DT,
304                                   PreserveLCSSA)) {
305     if (Force)
306       RuntimeTripCount = false;
307     else
308       return false;
309   }
310 
311   // Notify ScalarEvolution that the loop will be substantially changed,
312   // if not outright eliminated.
313   if (SE)
314     SE->forgetLoop(L);
315 
316   // If we know the trip count, we know the multiple...
317   unsigned BreakoutTrip = 0;
318   if (TripCount != 0) {
319     BreakoutTrip = TripCount % Count;
320     TripMultiple = 0;
321   } else {
322     // Figure out what multiple to use.
323     BreakoutTrip = TripMultiple =
324       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
325   }
326 
327   using namespace ore;
328   // Report the unrolling decision.
329   if (CompletelyUnroll) {
330     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
331           << " with trip count " << TripCount << "!\n");
332     ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
333                                  L->getHeader())
334               << "completely unrolled loop with "
335               << NV("UnrollCount", TripCount) << " iterations");
336   } else {
337     OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
338                             L->getHeader());
339     Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count);
340 
341     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
342           << " by " << Count);
343     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
344       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
345       ORE->emit(Diag << " with a breakout at trip "
346                      << NV("BreakoutTrip", BreakoutTrip));
347     } else if (TripMultiple != 1) {
348       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
349       ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple)
350                      << " trips per branch");
351     } else if (RuntimeTripCount) {
352       DEBUG(dbgs() << " with run-time trip count");
353       ORE->emit(Diag << " with run-time trip count");
354     }
355     DEBUG(dbgs() << "!\n");
356   }
357 
358   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
359   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
360 
361   // For the first iteration of the loop, we should use the precloned values for
362   // PHI nodes.  Insert associations now.
363   ValueToValueMapTy LastValueMap;
364   std::vector<PHINode*> OrigPHINode;
365   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
366     OrigPHINode.push_back(cast<PHINode>(I));
367   }
368 
369   std::vector<BasicBlock*> Headers;
370   std::vector<BasicBlock*> Latches;
371   Headers.push_back(Header);
372   Latches.push_back(LatchBlock);
373 
374   // The current on-the-fly SSA update requires blocks to be processed in
375   // reverse postorder so that LastValueMap contains the correct value at each
376   // exit.
377   LoopBlocksDFS DFS(L);
378   DFS.perform(LI);
379 
380   // Stash the DFS iterators before adding blocks to the loop.
381   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
382   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
383 
384   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
385 
386   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
387   // might break loop-simplified form for these loops (as they, e.g., would
388   // share the same exit blocks). We'll keep track of loops for which we can
389   // break this so that later we can re-simplify them.
390   SmallSetVector<Loop *, 4> LoopsToSimplify;
391   for (Loop *SubLoop : *L)
392     LoopsToSimplify.insert(SubLoop);
393 
394   for (unsigned It = 1; It != Count; ++It) {
395     std::vector<BasicBlock*> NewBlocks;
396     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
397     NewLoops[L] = L;
398 
399     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
400       ValueToValueMapTy VMap;
401       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
402       Header->getParent()->getBasicBlockList().push_back(New);
403 
404       // Tell LI about New.
405       if (*BB == Header) {
406         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
407         L->addBasicBlockToLoop(New, *LI);
408       } else {
409         // Figure out which loop New is in.
410         const Loop *OldLoop = LI->getLoopFor(*BB);
411         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
412 
413         Loop *&NewLoop = NewLoops[OldLoop];
414         if (!NewLoop) {
415           // Found a new sub-loop.
416           assert(*BB == OldLoop->getHeader() &&
417                  "Header should be first in RPO");
418 
419           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
420           assert(NewLoopParent &&
421                  "Expected parent loop before sub-loop in RPO");
422           NewLoop = new Loop;
423           NewLoopParent->addChildLoop(NewLoop);
424           LoopsToSimplify.insert(NewLoop);
425 
426           // Forget the old loop, since its inputs may have changed.
427           if (SE)
428             SE->forgetLoop(OldLoop);
429         }
430         NewLoop->addBasicBlockToLoop(New, *LI);
431       }
432 
433       if (*BB == Header)
434         // Loop over all of the PHI nodes in the block, changing them to use
435         // the incoming values from the previous block.
436         for (PHINode *OrigPHI : OrigPHINode) {
437           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
438           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
439           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
440             if (It > 1 && L->contains(InValI))
441               InVal = LastValueMap[InValI];
442           VMap[OrigPHI] = InVal;
443           New->getInstList().erase(NewPHI);
444         }
445 
446       // Update our running map of newest clones
447       LastValueMap[*BB] = New;
448       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
449            VI != VE; ++VI)
450         LastValueMap[VI->first] = VI->second;
451 
452       // Add phi entries for newly created values to all exit blocks.
453       for (BasicBlock *Succ : successors(*BB)) {
454         if (L->contains(Succ))
455           continue;
456         for (BasicBlock::iterator BBI = Succ->begin();
457              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
458           Value *Incoming = phi->getIncomingValueForBlock(*BB);
459           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
460           if (It != LastValueMap.end())
461             Incoming = It->second;
462           phi->addIncoming(Incoming, New);
463         }
464       }
465       // Keep track of new headers and latches as we create them, so that
466       // we can insert the proper branches later.
467       if (*BB == Header)
468         Headers.push_back(New);
469       if (*BB == LatchBlock)
470         Latches.push_back(New);
471 
472       NewBlocks.push_back(New);
473       UnrolledLoopBlocks.push_back(New);
474 
475       // Update DomTree: since we just copy the loop body, and each copy has a
476       // dedicated entry block (copy of the header block), this header's copy
477       // dominates all copied blocks. That means, dominance relations in the
478       // copied body are the same as in the original body.
479       if (DT) {
480         if (*BB == Header)
481           DT->addNewBlock(New, Latches[It - 1]);
482         else {
483           auto BBDomNode = DT->getNode(*BB);
484           auto BBIDom = BBDomNode->getIDom();
485           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
486           DT->addNewBlock(
487               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
488         }
489       }
490     }
491 
492     // Remap all instructions in the most recent iteration
493     for (BasicBlock *NewBlock : NewBlocks) {
494       for (Instruction &I : *NewBlock) {
495         ::remapInstruction(&I, LastValueMap);
496         if (auto *II = dyn_cast<IntrinsicInst>(&I))
497           if (II->getIntrinsicID() == Intrinsic::assume)
498             AC->registerAssumption(II);
499       }
500     }
501   }
502 
503   // Loop over the PHI nodes in the original block, setting incoming values.
504   for (PHINode *PN : OrigPHINode) {
505     if (CompletelyUnroll) {
506       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
507       Header->getInstList().erase(PN);
508     }
509     else if (Count > 1) {
510       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
511       // If this value was defined in the loop, take the value defined by the
512       // last iteration of the loop.
513       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
514         if (L->contains(InValI))
515           InVal = LastValueMap[InVal];
516       }
517       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
518       PN->addIncoming(InVal, Latches.back());
519     }
520   }
521 
522   // Now that all the basic blocks for the unrolled iterations are in place,
523   // set up the branches to connect them.
524   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
525     // The original branch was replicated in each unrolled iteration.
526     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
527 
528     // The branch destination.
529     unsigned j = (i + 1) % e;
530     BasicBlock *Dest = Headers[j];
531     bool NeedConditional = true;
532 
533     if (RuntimeTripCount && j != 0) {
534       NeedConditional = false;
535     }
536 
537     // For a complete unroll, make the last iteration end with a branch
538     // to the exit block.
539     if (CompletelyUnroll) {
540       if (j == 0)
541         Dest = LoopExit;
542       NeedConditional = false;
543     }
544 
545     // If we know the trip count or a multiple of it, we can safely use an
546     // unconditional branch for some iterations.
547     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
548       NeedConditional = false;
549     }
550 
551     if (NeedConditional) {
552       // Update the conditional branch's successor for the following
553       // iteration.
554       Term->setSuccessor(!ContinueOnTrue, Dest);
555     } else {
556       // Remove phi operands at this loop exit
557       if (Dest != LoopExit) {
558         BasicBlock *BB = Latches[i];
559         for (BasicBlock *Succ: successors(BB)) {
560           if (Succ == Headers[i])
561             continue;
562           for (BasicBlock::iterator BBI = Succ->begin();
563                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
564             Phi->removeIncomingValue(BB, false);
565           }
566         }
567       }
568       // Replace the conditional branch with an unconditional one.
569       BranchInst::Create(Dest, Term);
570       Term->eraseFromParent();
571     }
572   }
573   // Update dominators of blocks we might reach through exits.
574   // Immediate dominator of such block might change, because we add more
575   // routes which can lead to the exit: we can now reach it from the copied
576   // iterations too. Thus, the new idom of the block will be the nearest
577   // common dominator of the previous idom and common dominator of all copies of
578   // the previous idom. This is equivalent to the nearest common dominator of
579   // the previous idom and the first latch, which dominates all copies of the
580   // previous idom.
581   if (DT && Count > 1) {
582     for (auto *BB : OriginalLoopBlocks) {
583       auto *BBDomNode = DT->getNode(BB);
584       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
585       for (auto *ChildDomNode : BBDomNode->getChildren()) {
586         auto *ChildBB = ChildDomNode->getBlock();
587         if (!L->contains(ChildBB))
588           ChildrenToUpdate.push_back(ChildBB);
589       }
590       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
591       for (auto *ChildBB : ChildrenToUpdate)
592         DT->changeImmediateDominator(ChildBB, NewIDom);
593     }
594   }
595 
596   // Merge adjacent basic blocks, if possible.
597   SmallPtrSet<Loop *, 4> ForgottenLoops;
598   for (BasicBlock *Latch : Latches) {
599     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
600     if (Term->isUnconditional()) {
601       BasicBlock *Dest = Term->getSuccessor(0);
602       if (BasicBlock *Fold =
603               foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
604         // Dest has been folded into Fold. Update our worklists accordingly.
605         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
606         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
607                                              UnrolledLoopBlocks.end(), Dest),
608                                  UnrolledLoopBlocks.end());
609       }
610     }
611   }
612 
613   // FIXME: We only preserve DT info for complete unrolling now. Incrementally
614   // updating domtree after partial loop unrolling should also be easy.
615   if (DT && !CompletelyUnroll)
616     DT->recalculate(*L->getHeader()->getParent());
617   else if (DT)
618     DEBUG(DT->verifyDomTree());
619 
620   // Simplify any new induction variables in the partially unrolled loop.
621   if (SE && !CompletelyUnroll) {
622     SmallVector<WeakVH, 16> DeadInsts;
623     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
624 
625     // Aggressively clean up dead instructions that simplifyLoopIVs already
626     // identified. Any remaining should be cleaned up below.
627     while (!DeadInsts.empty())
628       if (Instruction *Inst =
629               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
630         RecursivelyDeleteTriviallyDeadInstructions(Inst);
631   }
632 
633   // At this point, the code is well formed.  We now do a quick sweep over the
634   // inserted code, doing constant propagation and dead code elimination as we
635   // go.
636   const DataLayout &DL = Header->getModule()->getDataLayout();
637   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
638   for (BasicBlock *BB : NewLoopBlocks) {
639     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
640       Instruction *Inst = &*I++;
641 
642       if (Value *V = SimplifyInstruction(Inst, DL))
643         if (LI->replacementPreservesLCSSAForm(Inst, V))
644           Inst->replaceAllUsesWith(V);
645       if (isInstructionTriviallyDead(Inst))
646         BB->getInstList().erase(Inst);
647     }
648   }
649 
650   NumCompletelyUnrolled += CompletelyUnroll;
651   ++NumUnrolled;
652 
653   Loop *OuterL = L->getParentLoop();
654   // Update LoopInfo if the loop is completely removed.
655   if (CompletelyUnroll)
656     LI->markAsRemoved(L);
657 
658   // After complete unrolling most of the blocks should be contained in OuterL.
659   // However, some of them might happen to be out of OuterL (e.g. if they
660   // precede a loop exit). In this case we might need to insert PHI nodes in
661   // order to preserve LCSSA form.
662   // We don't need to check this if we already know that we need to fix LCSSA
663   // form.
664   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
665   // it should be possible to fix it in-place.
666   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
667     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
668 
669   // If we have a pass and a DominatorTree we should re-simplify impacted loops
670   // to ensure subsequent analyses can rely on this form. We want to simplify
671   // at least one layer outside of the loop that was unrolled so that any
672   // changes to the parent loop exposed by the unrolling are considered.
673   if (DT) {
674     if (!OuterL && !CompletelyUnroll)
675       OuterL = L;
676     if (OuterL) {
677       // OuterL includes all loops for which we can break loop-simplify, so
678       // it's sufficient to simplify only it (it'll recursively simplify inner
679       // loops too).
680       // TODO: That potentially might be compile-time expensive. We should try
681       // to fix the loop-simplified form incrementally.
682       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
683 
684       // LCSSA must be performed on the outermost affected loop. The unrolled
685       // loop's last loop latch is guaranteed to be in the outermost loop after
686       // LoopInfo's been updated by markAsRemoved.
687       Loop *LatchLoop = LI->getLoopFor(Latches.back());
688       if (!OuterL->contains(LatchLoop))
689         while (OuterL->getParentLoop() != LatchLoop)
690           OuterL = OuterL->getParentLoop();
691 
692       if (NeedToFixLCSSA)
693         formLCSSARecursively(*OuterL, *DT, LI, SE);
694       else
695         assert(OuterL->isLCSSAForm(*DT) &&
696                "Loops should be in LCSSA form after loop-unroll.");
697     } else {
698       // Simplify loops for which we might've broken loop-simplify form.
699       for (Loop *SubLoop : LoopsToSimplify)
700         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
701     }
702   }
703 
704   return true;
705 }
706 
707 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
708 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
709 /// such metadata node exists, then nullptr is returned.
710 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
711   // First operand should refer to the loop id itself.
712   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
713   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
714 
715   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
716     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
717     if (!MD)
718       continue;
719 
720     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
721     if (!S)
722       continue;
723 
724     if (Name.equals(S->getString()))
725       return MD;
726   }
727   return nullptr;
728 }
729