1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopPeel.h"
63 #include "llvm/Transforms/Utils/LoopSimplify.h"
64 #include "llvm/Transforms/Utils/LoopUtils.h"
65 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
66 #include "llvm/Transforms/Utils/UnrollLoop.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <assert.h>
70 #include <type_traits>
71 #include <vector>
72 
73 namespace llvm {
74 class DataLayout;
75 class Value;
76 } // namespace llvm
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "loop-unroll"
81 
82 // TODO: Should these be here or in LoopUnroll?
83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
86                                "latch (completely or otherwise)");
87 
88 static cl::opt<bool>
89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
90                     cl::desc("Allow runtime unrolled loops to be unrolled "
91                              "with epilog instead of prolog."));
92 
93 static cl::opt<bool>
94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
95                     cl::desc("Verify domtree after unrolling"),
96 #ifdef EXPENSIVE_CHECKS
97     cl::init(true)
98 #else
99     cl::init(false)
100 #endif
101                     );
102 
103 /// Check if unrolling created a situation where we need to insert phi nodes to
104 /// preserve LCSSA form.
105 /// \param Blocks is a vector of basic blocks representing unrolled loop.
106 /// \param L is the outer loop.
107 /// It's possible that some of the blocks are in L, and some are not. In this
108 /// case, if there is a use is outside L, and definition is inside L, we need to
109 /// insert a phi-node, otherwise LCSSA will be broken.
110 /// The function is just a helper function for llvm::UnrollLoop that returns
111 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
112 static bool needToInsertPhisForLCSSA(Loop *L,
113                                      const std::vector<BasicBlock *> &Blocks,
114                                      LoopInfo *LI) {
115   for (BasicBlock *BB : Blocks) {
116     if (LI->getLoopFor(BB) == L)
117       continue;
118     for (Instruction &I : *BB) {
119       for (Use &U : I.operands()) {
120         if (const auto *Def = dyn_cast<Instruction>(U)) {
121           Loop *DefLoop = LI->getLoopFor(Def->getParent());
122           if (!DefLoop)
123             continue;
124           if (DefLoop->contains(L))
125             return true;
126         }
127       }
128     }
129   }
130   return false;
131 }
132 
133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
134 /// and adds a mapping from the original loop to the new loop to NewLoops.
135 /// Returns nullptr if no new loop was created and a pointer to the
136 /// original loop OriginalBB was part of otherwise.
137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
138                                            BasicBlock *ClonedBB, LoopInfo *LI,
139                                            NewLoopsMap &NewLoops) {
140   // Figure out which loop New is in.
141   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
142   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
143 
144   Loop *&NewLoop = NewLoops[OldLoop];
145   if (!NewLoop) {
146     // Found a new sub-loop.
147     assert(OriginalBB == OldLoop->getHeader() &&
148            "Header should be first in RPO");
149 
150     NewLoop = LI->AllocateLoop();
151     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
152 
153     if (NewLoopParent)
154       NewLoopParent->addChildLoop(NewLoop);
155     else
156       LI->addTopLevelLoop(NewLoop);
157 
158     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
159     return OldLoop;
160   } else {
161     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
162     return nullptr;
163   }
164 }
165 
166 /// The function chooses which type of unroll (epilog or prolog) is more
167 /// profitabale.
168 /// Epilog unroll is more profitable when there is PHI that starts from
169 /// constant.  In this case epilog will leave PHI start from constant,
170 /// but prolog will convert it to non-constant.
171 ///
172 /// loop:
173 ///   PN = PHI [I, Latch], [CI, PreHeader]
174 ///   I = foo(PN)
175 ///   ...
176 ///
177 /// Epilog unroll case.
178 /// loop:
179 ///   PN = PHI [I2, Latch], [CI, PreHeader]
180 ///   I1 = foo(PN)
181 ///   I2 = foo(I1)
182 ///   ...
183 /// Prolog unroll case.
184 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
185 /// loop:
186 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
187 ///   I1 = foo(PN)
188 ///   I2 = foo(I1)
189 ///   ...
190 ///
191 static bool isEpilogProfitable(Loop *L) {
192   BasicBlock *PreHeader = L->getLoopPreheader();
193   BasicBlock *Header = L->getHeader();
194   assert(PreHeader && Header);
195   for (const PHINode &PN : Header->phis()) {
196     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
197       return true;
198   }
199   return false;
200 }
201 
202 /// Perform some cleanup and simplifications on loops after unrolling. It is
203 /// useful to simplify the IV's in the new loop, as well as do a quick
204 /// simplify/dce pass of the instructions.
205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
206                                    ScalarEvolution *SE, DominatorTree *DT,
207                                    AssumptionCache *AC,
208                                    const TargetTransformInfo *TTI) {
209   // Simplify any new induction variables in the partially unrolled loop.
210   if (SE && SimplifyIVs) {
211     SmallVector<WeakTrackingVH, 16> DeadInsts;
212     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
213 
214     // Aggressively clean up dead instructions that simplifyLoopIVs already
215     // identified. Any remaining should be cleaned up below.
216     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
217   }
218 
219   // At this point, the code is well formed.  Perform constprop, instsimplify,
220   // and dce.
221   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
222   for (BasicBlock *BB : L->getBlocks()) {
223     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
224       Instruction *Inst = &*I++;
225 
226       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
227         if (LI->replacementPreservesLCSSAForm(Inst, V))
228           Inst->replaceAllUsesWith(V);
229       if (isInstructionTriviallyDead(Inst))
230         RecursivelyDeleteTriviallyDeadInstructions(Inst);
231     }
232   }
233 }
234 
235 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
236 /// can only fail when the loop's latch block is not terminated by a conditional
237 /// branch instruction. However, if the trip count (and multiple) are not known,
238 /// loop unrolling will mostly produce more code that is no faster.
239 ///
240 /// TripCount is the upper bound of the iteration on which control exits
241 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
242 /// via an early branch in other loop block or via LatchBlock terminator. This
243 /// is relaxed from the general definition of trip count which is the number of
244 /// times the loop header executes. Note that UnrollLoop assumes that the loop
245 /// counter test is in LatchBlock in order to remove unnecesssary instances of
246 /// the test.  If control can exit the loop from the LatchBlock's terminator
247 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
248 ///
249 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
250 /// needs to be preserved.  It is needed when we use trip count upper bound to
251 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
252 /// conditional branch needs to be preserved.
253 ///
254 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
255 /// execute without exiting the loop.
256 ///
257 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
258 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
259 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
260 /// iterations before branching into the unrolled loop.  UnrollLoop will not
261 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
262 /// AllowExpensiveTripCount is false.
263 ///
264 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
265 /// number of iterations we want to peel off.
266 ///
267 /// The LoopInfo Analysis that is passed will be kept consistent.
268 ///
269 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
270 /// DominatorTree if they are non-null.
271 ///
272 /// If RemainderLoop is non-null, it will receive the remainder loop (if
273 /// required and not fully unrolled).
274 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
275                                   ScalarEvolution *SE, DominatorTree *DT,
276                                   AssumptionCache *AC,
277                                   const TargetTransformInfo *TTI,
278                                   OptimizationRemarkEmitter *ORE,
279                                   bool PreserveLCSSA, Loop **RemainderLoop) {
280 
281   if (!L->getLoopPreheader()) {
282     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
283     return LoopUnrollResult::Unmodified;
284   }
285 
286   if (!L->getLoopLatch()) {
287     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
288     return LoopUnrollResult::Unmodified;
289   }
290 
291   // Loops with indirectbr cannot be cloned.
292   if (!L->isSafeToClone()) {
293     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
294     return LoopUnrollResult::Unmodified;
295   }
296 
297   if (L->getHeader()->hasAddressTaken()) {
298     // The loop-rotate pass can be helpful to avoid this in many cases.
299     LLVM_DEBUG(
300         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
301     return LoopUnrollResult::Unmodified;
302   }
303 
304   if (ULO.TripCount != 0)
305     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
306   if (ULO.TripMultiple != 1)
307     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
308 
309   // Effectively "DCE" unrolled iterations that are beyond the tripcount
310   // and will never be executed.
311   if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
312     ULO.Count = ULO.TripCount;
313 
314   // Don't enter the unroll code if there is nothing to do.
315   if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
316     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
317     return LoopUnrollResult::Unmodified;
318   }
319 
320   assert(ULO.Count > 0);
321   assert(ULO.TripMultiple > 0);
322   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
323 
324   // Are we eliminating the loop control altogether?
325   bool CompletelyUnroll = ULO.Count == ULO.TripCount;
326 
327   // We assume a run-time trip count if the compiler cannot
328   // figure out the loop trip count and the unroll-runtime
329   // flag is specified.
330   bool RuntimeTripCount =
331       (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
332 
333   assert((!RuntimeTripCount || !ULO.PeelCount) &&
334          "Did not expect runtime trip-count unrolling "
335          "and peeling for the same loop");
336 
337   bool Peeled = false;
338   if (ULO.PeelCount) {
339     Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
340 
341     // Successful peeling may result in a change in the loop preheader/trip
342     // counts. If we later unroll the loop, we want these to be updated.
343     if (Peeled) {
344       // According to our guards and profitability checks the only
345       // meaningful exit should be latch block. Other exits go to deopt,
346       // so we do not worry about them.
347       BasicBlock *ExitingBlock = L->getLoopLatch();
348       assert(ExitingBlock && "Loop without exiting block?");
349       assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
350       ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
351       ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
352     }
353   }
354 
355   // All these values should be taken only after peeling because they might have
356   // changed.
357   BasicBlock *Preheader = L->getLoopPreheader();
358   BasicBlock *Header = L->getHeader();
359   BasicBlock *LatchBlock = L->getLoopLatch();
360   SmallVector<BasicBlock *, 4> ExitBlocks;
361   L->getExitBlocks(ExitBlocks);
362   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
363 
364   // Go through all exits of L and see if there are any phi-nodes there. We just
365   // conservatively assume that they're inserted to preserve LCSSA form, which
366   // means that complete unrolling might break this form. We need to either fix
367   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
368   // now we just recompute LCSSA for the outer loop, but it should be possible
369   // to fix it in-place.
370   bool NeedToFixLCSSA =
371       PreserveLCSSA && CompletelyUnroll &&
372       any_of(ExitBlocks,
373              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
374 
375   // The current loop unroll pass can unroll loops that have
376   // (1) single latch; and
377   // (2a) latch is unconditional; or
378   // (2b) latch is conditional and is an exiting block
379   // FIXME: The implementation can be extended to work with more complicated
380   // cases, e.g. loops with multiple latches.
381   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
382 
383   // A conditional branch which exits the loop, which can be optimized to an
384   // unconditional branch in the unrolled loop in some cases.
385   BranchInst *ExitingBI = nullptr;
386   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
387   if (LatchIsExiting)
388     ExitingBI = LatchBI;
389   else if (BasicBlock *ExitingBlock = L->getExitingBlock())
390     ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
391   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
392     // If the peeling guard is changed this assert may be relaxed or even
393     // deleted.
394     assert(!Peeled && "Peeling guard changed!");
395     LLVM_DEBUG(
396         dbgs() << "Can't unroll; a conditional latch must exit the loop");
397     return LoopUnrollResult::Unmodified;
398   }
399   LLVM_DEBUG({
400     if (ExitingBI)
401       dbgs() << "  Exiting Block = " << ExitingBI->getParent()->getName()
402              << "\n";
403     else
404       dbgs() << "  No single exiting block\n";
405   });
406 
407   // Loops containing convergent instructions must have a count that divides
408   // their TripMultiple.
409   LLVM_DEBUG(
410       {
411         bool HasConvergent = false;
412         for (auto &BB : L->blocks())
413           for (auto &I : *BB)
414             if (auto *CB = dyn_cast<CallBase>(&I))
415               HasConvergent |= CB->isConvergent();
416         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
417                "Unroll count must divide trip multiple if loop contains a "
418                "convergent operation.");
419       });
420 
421   bool EpilogProfitability =
422       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
423                                               : isEpilogProfitable(L);
424 
425   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
426       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
427                                   EpilogProfitability, ULO.UnrollRemainder,
428                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
429                                   PreserveLCSSA, RemainderLoop)) {
430     if (ULO.Force)
431       RuntimeTripCount = false;
432     else {
433       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
434                            "generated when assuming runtime trip count\n");
435       return LoopUnrollResult::Unmodified;
436     }
437   }
438 
439   // If we know the trip count, we know the multiple...
440   unsigned BreakoutTrip = 0;
441   if (ULO.TripCount != 0) {
442     BreakoutTrip = ULO.TripCount % ULO.Count;
443     ULO.TripMultiple = 0;
444   } else {
445     // Figure out what multiple to use.
446     BreakoutTrip = ULO.TripMultiple =
447         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
448   }
449 
450   using namespace ore;
451   // Report the unrolling decision.
452   if (CompletelyUnroll) {
453     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
454                       << " with trip count " << ULO.TripCount << "!\n");
455     if (ORE)
456       ORE->emit([&]() {
457         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
458                                   L->getHeader())
459                << "completely unrolled loop with "
460                << NV("UnrollCount", ULO.TripCount) << " iterations";
461       });
462   } else if (ULO.PeelCount) {
463     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
464                       << " with iteration count " << ULO.PeelCount << "!\n");
465     if (ORE)
466       ORE->emit([&]() {
467         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
468                                   L->getHeader())
469                << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
470                << " iterations";
471       });
472   } else {
473     auto DiagBuilder = [&]() {
474       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
475                               L->getHeader());
476       return Diag << "unrolled loop by a factor of "
477                   << NV("UnrollCount", ULO.Count);
478     };
479 
480     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
481                       << ULO.Count);
482     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
483       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
484       if (ORE)
485         ORE->emit([&]() {
486           return DiagBuilder() << " with a breakout at trip "
487                                << NV("BreakoutTrip", BreakoutTrip);
488         });
489     } else if (ULO.TripMultiple != 1) {
490       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
491       if (ORE)
492         ORE->emit([&]() {
493           return DiagBuilder()
494                  << " with " << NV("TripMultiple", ULO.TripMultiple)
495                  << " trips per branch";
496         });
497     } else if (RuntimeTripCount) {
498       LLVM_DEBUG(dbgs() << " with run-time trip count");
499       if (ORE)
500         ORE->emit(
501             [&]() { return DiagBuilder() << " with run-time trip count"; });
502     }
503     LLVM_DEBUG(dbgs() << "!\n");
504   }
505 
506   // We are going to make changes to this loop. SCEV may be keeping cached info
507   // about it, in particular about backedge taken count. The changes we make
508   // are guaranteed to invalidate this information for our loop. It is tempting
509   // to only invalidate the loop being unrolled, but it is incorrect as long as
510   // all exiting branches from all inner loops have impact on the outer loops,
511   // and if something changes inside them then any of outer loops may also
512   // change. When we forget outermost loop, we also forget all contained loops
513   // and this is what we need here.
514   if (SE) {
515     if (ULO.ForgetAllSCEV)
516       SE->forgetAllLoops();
517     else
518       SE->forgetTopmostLoop(L);
519   }
520 
521   if (!LatchIsExiting)
522     ++NumUnrolledNotLatch;
523   Optional<bool> ContinueOnTrue = None;
524   BasicBlock *LoopExit = nullptr;
525   if (ExitingBI) {
526     ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0));
527     LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue);
528   }
529 
530   // For the first iteration of the loop, we should use the precloned values for
531   // PHI nodes.  Insert associations now.
532   ValueToValueMapTy LastValueMap;
533   std::vector<PHINode*> OrigPHINode;
534   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
535     OrigPHINode.push_back(cast<PHINode>(I));
536   }
537 
538   std::vector<BasicBlock *> Headers;
539   std::vector<BasicBlock *> ExitingBlocks;
540   std::vector<BasicBlock *> ExitingSucc;
541   std::vector<BasicBlock *> Latches;
542   Headers.push_back(Header);
543   Latches.push_back(LatchBlock);
544   if (ExitingBI) {
545     ExitingBlocks.push_back(ExitingBI->getParent());
546     ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue)));
547   }
548 
549   // The current on-the-fly SSA update requires blocks to be processed in
550   // reverse postorder so that LastValueMap contains the correct value at each
551   // exit.
552   LoopBlocksDFS DFS(L);
553   DFS.perform(LI);
554 
555   // Stash the DFS iterators before adding blocks to the loop.
556   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
557   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
558 
559   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
560 
561   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
562   // might break loop-simplified form for these loops (as they, e.g., would
563   // share the same exit blocks). We'll keep track of loops for which we can
564   // break this so that later we can re-simplify them.
565   SmallSetVector<Loop *, 4> LoopsToSimplify;
566   for (Loop *SubLoop : *L)
567     LoopsToSimplify.insert(SubLoop);
568 
569   if (Header->getParent()->isDebugInfoForProfiling())
570     for (BasicBlock *BB : L->getBlocks())
571       for (Instruction &I : *BB)
572         if (!isa<DbgInfoIntrinsic>(&I))
573           if (const DILocation *DIL = I.getDebugLoc()) {
574             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
575             if (NewDIL)
576               I.setDebugLoc(NewDIL.getValue());
577             else
578               LLVM_DEBUG(dbgs()
579                          << "Failed to create new discriminator: "
580                          << DIL->getFilename() << " Line: " << DIL->getLine());
581           }
582 
583   // Identify what noalias metadata is inside the loop: if it is inside the
584   // loop, the associated metadata must be cloned for each iteration.
585   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
586   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
587 
588   for (unsigned It = 1; It != ULO.Count; ++It) {
589     SmallVector<BasicBlock *, 8> NewBlocks;
590     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
591     NewLoops[L] = L;
592 
593     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
594       ValueToValueMapTy VMap;
595       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
596       Header->getParent()->getBasicBlockList().push_back(New);
597 
598       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
599              "Header should not be in a sub-loop");
600       // Tell LI about New.
601       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
602       if (OldLoop)
603         LoopsToSimplify.insert(NewLoops[OldLoop]);
604 
605       if (*BB == Header)
606         // Loop over all of the PHI nodes in the block, changing them to use
607         // the incoming values from the previous block.
608         for (PHINode *OrigPHI : OrigPHINode) {
609           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
610           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
611           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
612             if (It > 1 && L->contains(InValI))
613               InVal = LastValueMap[InValI];
614           VMap[OrigPHI] = InVal;
615           New->getInstList().erase(NewPHI);
616         }
617 
618       // Update our running map of newest clones
619       LastValueMap[*BB] = New;
620       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
621            VI != VE; ++VI)
622         LastValueMap[VI->first] = VI->second;
623 
624       // Add phi entries for newly created values to all exit blocks.
625       for (BasicBlock *Succ : successors(*BB)) {
626         if (L->contains(Succ))
627           continue;
628         for (PHINode &PHI : Succ->phis()) {
629           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
630           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
631           if (It != LastValueMap.end())
632             Incoming = It->second;
633           PHI.addIncoming(Incoming, New);
634         }
635       }
636       // Keep track of new headers and latches as we create them, so that
637       // we can insert the proper branches later.
638       if (*BB == Header)
639         Headers.push_back(New);
640       if (*BB == LatchBlock)
641         Latches.push_back(New);
642 
643       // Keep track of the exiting block and its successor block contained in
644       // the loop for the current iteration.
645       if (ExitingBI) {
646         if (*BB == ExitingBlocks[0])
647           ExitingBlocks.push_back(New);
648         if (*BB == ExitingSucc[0])
649           ExitingSucc.push_back(New);
650       }
651 
652       NewBlocks.push_back(New);
653       UnrolledLoopBlocks.push_back(New);
654 
655       // Update DomTree: since we just copy the loop body, and each copy has a
656       // dedicated entry block (copy of the header block), this header's copy
657       // dominates all copied blocks. That means, dominance relations in the
658       // copied body are the same as in the original body.
659       if (DT) {
660         if (*BB == Header)
661           DT->addNewBlock(New, Latches[It - 1]);
662         else {
663           auto BBDomNode = DT->getNode(*BB);
664           auto BBIDom = BBDomNode->getIDom();
665           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
666           DT->addNewBlock(
667               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
668         }
669       }
670     }
671 
672     // Remap all instructions in the most recent iteration
673     remapInstructionsInBlocks(NewBlocks, LastValueMap);
674     for (BasicBlock *NewBlock : NewBlocks)
675       for (Instruction &I : *NewBlock)
676         if (auto *II = dyn_cast<AssumeInst>(&I))
677           AC->registerAssumption(II);
678 
679     {
680       // Identify what other metadata depends on the cloned version. After
681       // cloning, replace the metadata with the corrected version for both
682       // memory instructions and noalias intrinsics.
683       std::string ext = (Twine("It") + Twine(It)).str();
684       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
685                                  Header->getContext(), ext);
686     }
687   }
688 
689   // Loop over the PHI nodes in the original block, setting incoming values.
690   for (PHINode *PN : OrigPHINode) {
691     if (CompletelyUnroll) {
692       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
693       Header->getInstList().erase(PN);
694     } else if (ULO.Count > 1) {
695       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
696       // If this value was defined in the loop, take the value defined by the
697       // last iteration of the loop.
698       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
699         if (L->contains(InValI))
700           InVal = LastValueMap[InVal];
701       }
702       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
703       PN->addIncoming(InVal, Latches.back());
704     }
705   }
706 
707   auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop,
708                     bool NeedConditional, Optional<bool> ContinueOnTrue,
709                     bool IsDestLoopExit) {
710     auto *Term = cast<BranchInst>(Src->getTerminator());
711     if (NeedConditional) {
712       // Update the conditional branch's successor for the following
713       // iteration.
714       assert(ContinueOnTrue.hasValue() &&
715              "Expecting valid ContinueOnTrue when NeedConditional is true");
716       Term->setSuccessor(!(*ContinueOnTrue), Dest);
717     } else {
718       // Remove phi operands at this loop exit
719       if (!IsDestLoopExit) {
720         BasicBlock *BB = Src;
721         for (BasicBlock *Succ : successors(BB)) {
722           // Preserve the incoming value from BB if we are jumping to the block
723           // in the current loop.
724           if (Succ == BlockInLoop)
725             continue;
726           for (PHINode &Phi : Succ->phis())
727             Phi.removeIncomingValue(BB, false);
728         }
729       }
730       // Replace the conditional branch with an unconditional one.
731       BranchInst::Create(Dest, Term);
732       Term->eraseFromParent();
733     }
734   };
735 
736   // Connect latches of the unrolled iterations to the headers of the next
737   // iteration. If the latch is also the exiting block, the conditional branch
738   // may have to be preserved.
739   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
740     // The branch destination.
741     unsigned j = (i + 1) % e;
742     BasicBlock *Dest = Headers[j];
743     bool NeedConditional = LatchIsExiting;
744 
745     if (LatchIsExiting) {
746       if (RuntimeTripCount && j != 0)
747         NeedConditional = false;
748 
749       // For a complete unroll, make the last iteration end with a branch
750       // to the exit block.
751       if (CompletelyUnroll) {
752         if (j == 0)
753           Dest = LoopExit;
754         // If using trip count upper bound to completely unroll, we need to
755         // keep the conditional branch except the last one because the loop
756         // may exit after any iteration.
757         assert(NeedConditional &&
758                "NeedCondition cannot be modified by both complete "
759                "unrolling and runtime unrolling");
760         NeedConditional =
761             (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
762       } else if (j != BreakoutTrip &&
763                  (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
764         // If we know the trip count or a multiple of it, we can safely use an
765         // unconditional branch for some iterations.
766         NeedConditional = false;
767       }
768     }
769 
770     setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue,
771             Dest == LoopExit);
772   }
773 
774   if (!LatchIsExiting) {
775     // If the latch is not exiting, we may be able to simplify the conditional
776     // branches in the unrolled exiting blocks.
777     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
778       // The branch destination.
779       unsigned j = (i + 1) % e;
780       bool NeedConditional = true;
781 
782       if (RuntimeTripCount && j != 0)
783         NeedConditional = false;
784 
785       if (CompletelyUnroll)
786         // We cannot drop the conditional branch for the last condition, as we
787         // may have to execute the loop body depending on the condition.
788         NeedConditional = j == 0 || ULO.PreserveCondBr;
789       else if (j != BreakoutTrip &&
790                (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
791         // If we know the trip count or a multiple of it, we can safely use an
792         // unconditional branch for some iterations.
793         NeedConditional = false;
794 
795       // Conditional branches from non-latch exiting block have successors
796       // either in the same loop iteration or outside the loop. The branches are
797       // already correct.
798       if (NeedConditional)
799         continue;
800       setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional,
801               None, false);
802     }
803 
804     // When completely unrolling, the last latch becomes unreachable.
805     if (CompletelyUnroll) {
806       BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator());
807       new UnreachableInst(Term->getContext(), Term);
808       Term->eraseFromParent();
809     }
810   }
811 
812   // Update dominators of blocks we might reach through exits.
813   // Immediate dominator of such block might change, because we add more
814   // routes which can lead to the exit: we can now reach it from the copied
815   // iterations too.
816   if (DT && ULO.Count > 1) {
817     for (auto *BB : OriginalLoopBlocks) {
818       auto *BBDomNode = DT->getNode(BB);
819       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
820       for (auto *ChildDomNode : BBDomNode->children()) {
821         auto *ChildBB = ChildDomNode->getBlock();
822         if (!L->contains(ChildBB))
823           ChildrenToUpdate.push_back(ChildBB);
824       }
825       BasicBlock *NewIDom;
826       if (ExitingBI && BB == ExitingBlocks[0]) {
827         // The latch is special because we emit unconditional branches in
828         // some cases where the original loop contained a conditional branch.
829         // Since the latch is always at the bottom of the loop, if the latch
830         // dominated an exit before unrolling, the new dominator of that exit
831         // must also be a latch.  Specifically, the dominator is the first
832         // latch which ends in a conditional branch, or the last latch if
833         // there is no such latch.
834         // For loops exiting from non latch exiting block, we limit the
835         // branch simplification to single exiting block loops.
836         NewIDom = ExitingBlocks.back();
837         for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
838           Instruction *Term = ExitingBlocks[i]->getTerminator();
839           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
840             NewIDom =
841                 DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]);
842             break;
843           }
844         }
845       } else {
846         // The new idom of the block will be the nearest common dominator
847         // of all copies of the previous idom. This is equivalent to the
848         // nearest common dominator of the previous idom and the first latch,
849         // which dominates all copies of the previous idom.
850         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
851       }
852       for (auto *ChildBB : ChildrenToUpdate)
853         DT->changeImmediateDominator(ChildBB, NewIDom);
854     }
855   }
856 
857   assert(!DT || !UnrollVerifyDomtree ||
858          DT->verify(DominatorTree::VerificationLevel::Fast));
859 
860   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
861   // Merge adjacent basic blocks, if possible.
862   for (BasicBlock *Latch : Latches) {
863     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
864     assert((Term ||
865             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
866            "Need a branch as terminator, except when fully unrolling with "
867            "unconditional latch");
868     if (Term && Term->isUnconditional()) {
869       BasicBlock *Dest = Term->getSuccessor(0);
870       BasicBlock *Fold = Dest->getUniquePredecessor();
871       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
872         // Dest has been folded into Fold. Update our worklists accordingly.
873         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
874         llvm::erase_value(UnrolledLoopBlocks, Dest);
875       }
876     }
877   }
878   // Apply updates to the DomTree.
879   DT = &DTU.getDomTree();
880 
881   // At this point, the code is well formed.  We now simplify the unrolled loop,
882   // doing constant propagation and dead code elimination as we go.
883   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
884                           SE, DT, AC, TTI);
885 
886   NumCompletelyUnrolled += CompletelyUnroll;
887   ++NumUnrolled;
888 
889   Loop *OuterL = L->getParentLoop();
890   // Update LoopInfo if the loop is completely removed.
891   if (CompletelyUnroll)
892     LI->erase(L);
893 
894   // After complete unrolling most of the blocks should be contained in OuterL.
895   // However, some of them might happen to be out of OuterL (e.g. if they
896   // precede a loop exit). In this case we might need to insert PHI nodes in
897   // order to preserve LCSSA form.
898   // We don't need to check this if we already know that we need to fix LCSSA
899   // form.
900   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
901   // it should be possible to fix it in-place.
902   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
903     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
904 
905   // If we have a pass and a DominatorTree we should re-simplify impacted loops
906   // to ensure subsequent analyses can rely on this form. We want to simplify
907   // at least one layer outside of the loop that was unrolled so that any
908   // changes to the parent loop exposed by the unrolling are considered.
909   if (DT) {
910     if (OuterL) {
911       // OuterL includes all loops for which we can break loop-simplify, so
912       // it's sufficient to simplify only it (it'll recursively simplify inner
913       // loops too).
914       if (NeedToFixLCSSA) {
915         // LCSSA must be performed on the outermost affected loop. The unrolled
916         // loop's last loop latch is guaranteed to be in the outermost loop
917         // after LoopInfo's been updated by LoopInfo::erase.
918         Loop *LatchLoop = LI->getLoopFor(Latches.back());
919         Loop *FixLCSSALoop = OuterL;
920         if (!FixLCSSALoop->contains(LatchLoop))
921           while (FixLCSSALoop->getParentLoop() != LatchLoop)
922             FixLCSSALoop = FixLCSSALoop->getParentLoop();
923 
924         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
925       } else if (PreserveLCSSA) {
926         assert(OuterL->isLCSSAForm(*DT) &&
927                "Loops should be in LCSSA form after loop-unroll.");
928       }
929 
930       // TODO: That potentially might be compile-time expensive. We should try
931       // to fix the loop-simplified form incrementally.
932       simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
933     } else {
934       // Simplify loops for which we might've broken loop-simplify form.
935       for (Loop *SubLoop : LoopsToSimplify)
936         simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
937     }
938   }
939 
940   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
941                           : LoopUnrollResult::PartiallyUnrolled;
942 }
943 
944 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
945 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
946 /// such metadata node exists, then nullptr is returned.
947 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
948   // First operand should refer to the loop id itself.
949   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
950   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
951 
952   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
953     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
954     if (!MD)
955       continue;
956 
957     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
958     if (!S)
959       continue;
960 
961     if (Name.equals(S->getString()))
962       return MD;
963   }
964   return nullptr;
965 }
966