1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopPeel.h" 63 #include "llvm/Transforms/Utils/LoopSimplify.h" 64 #include "llvm/Transforms/Utils/LoopUtils.h" 65 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 66 #include "llvm/Transforms/Utils/UnrollLoop.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <assert.h> 70 #include <type_traits> 71 #include <vector> 72 73 namespace llvm { 74 class DataLayout; 75 class Value; 76 } // namespace llvm 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-unroll" 81 82 // TODO: Should these be here or in LoopUnroll? 83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 86 "latch (completely or otherwise)"); 87 88 static cl::opt<bool> 89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 90 cl::desc("Allow runtime unrolled loops to be unrolled " 91 "with epilog instead of prolog.")); 92 93 static cl::opt<bool> 94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 95 cl::desc("Verify domtree after unrolling"), 96 #ifdef EXPENSIVE_CHECKS 97 cl::init(true) 98 #else 99 cl::init(false) 100 #endif 101 ); 102 103 /// Check if unrolling created a situation where we need to insert phi nodes to 104 /// preserve LCSSA form. 105 /// \param Blocks is a vector of basic blocks representing unrolled loop. 106 /// \param L is the outer loop. 107 /// It's possible that some of the blocks are in L, and some are not. In this 108 /// case, if there is a use is outside L, and definition is inside L, we need to 109 /// insert a phi-node, otherwise LCSSA will be broken. 110 /// The function is just a helper function for llvm::UnrollLoop that returns 111 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 112 static bool needToInsertPhisForLCSSA(Loop *L, 113 const std::vector<BasicBlock *> &Blocks, 114 LoopInfo *LI) { 115 for (BasicBlock *BB : Blocks) { 116 if (LI->getLoopFor(BB) == L) 117 continue; 118 for (Instruction &I : *BB) { 119 for (Use &U : I.operands()) { 120 if (const auto *Def = dyn_cast<Instruction>(U)) { 121 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 122 if (!DefLoop) 123 continue; 124 if (DefLoop->contains(L)) 125 return true; 126 } 127 } 128 } 129 } 130 return false; 131 } 132 133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 134 /// and adds a mapping from the original loop to the new loop to NewLoops. 135 /// Returns nullptr if no new loop was created and a pointer to the 136 /// original loop OriginalBB was part of otherwise. 137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 138 BasicBlock *ClonedBB, LoopInfo *LI, 139 NewLoopsMap &NewLoops) { 140 // Figure out which loop New is in. 141 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 142 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 143 144 Loop *&NewLoop = NewLoops[OldLoop]; 145 if (!NewLoop) { 146 // Found a new sub-loop. 147 assert(OriginalBB == OldLoop->getHeader() && 148 "Header should be first in RPO"); 149 150 NewLoop = LI->AllocateLoop(); 151 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 152 153 if (NewLoopParent) 154 NewLoopParent->addChildLoop(NewLoop); 155 else 156 LI->addTopLevelLoop(NewLoop); 157 158 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 159 return OldLoop; 160 } else { 161 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 162 return nullptr; 163 } 164 } 165 166 /// The function chooses which type of unroll (epilog or prolog) is more 167 /// profitabale. 168 /// Epilog unroll is more profitable when there is PHI that starts from 169 /// constant. In this case epilog will leave PHI start from constant, 170 /// but prolog will convert it to non-constant. 171 /// 172 /// loop: 173 /// PN = PHI [I, Latch], [CI, PreHeader] 174 /// I = foo(PN) 175 /// ... 176 /// 177 /// Epilog unroll case. 178 /// loop: 179 /// PN = PHI [I2, Latch], [CI, PreHeader] 180 /// I1 = foo(PN) 181 /// I2 = foo(I1) 182 /// ... 183 /// Prolog unroll case. 184 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 185 /// loop: 186 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 187 /// I1 = foo(PN) 188 /// I2 = foo(I1) 189 /// ... 190 /// 191 static bool isEpilogProfitable(Loop *L) { 192 BasicBlock *PreHeader = L->getLoopPreheader(); 193 BasicBlock *Header = L->getHeader(); 194 assert(PreHeader && Header); 195 for (const PHINode &PN : Header->phis()) { 196 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 197 return true; 198 } 199 return false; 200 } 201 202 /// Perform some cleanup and simplifications on loops after unrolling. It is 203 /// useful to simplify the IV's in the new loop, as well as do a quick 204 /// simplify/dce pass of the instructions. 205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 206 ScalarEvolution *SE, DominatorTree *DT, 207 AssumptionCache *AC, 208 const TargetTransformInfo *TTI) { 209 // Simplify any new induction variables in the partially unrolled loop. 210 if (SE && SimplifyIVs) { 211 SmallVector<WeakTrackingVH, 16> DeadInsts; 212 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 213 214 // Aggressively clean up dead instructions that simplifyLoopIVs already 215 // identified. Any remaining should be cleaned up below. 216 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 217 } 218 219 // At this point, the code is well formed. Perform constprop, instsimplify, 220 // and dce. 221 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 222 for (BasicBlock *BB : L->getBlocks()) { 223 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 224 Instruction *Inst = &*I++; 225 226 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 227 if (LI->replacementPreservesLCSSAForm(Inst, V)) 228 Inst->replaceAllUsesWith(V); 229 if (isInstructionTriviallyDead(Inst)) 230 RecursivelyDeleteTriviallyDeadInstructions(Inst); 231 } 232 } 233 } 234 235 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 236 /// can only fail when the loop's latch block is not terminated by a conditional 237 /// branch instruction. However, if the trip count (and multiple) are not known, 238 /// loop unrolling will mostly produce more code that is no faster. 239 /// 240 /// TripCount is the upper bound of the iteration on which control exits 241 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 242 /// via an early branch in other loop block or via LatchBlock terminator. This 243 /// is relaxed from the general definition of trip count which is the number of 244 /// times the loop header executes. Note that UnrollLoop assumes that the loop 245 /// counter test is in LatchBlock in order to remove unnecesssary instances of 246 /// the test. If control can exit the loop from the LatchBlock's terminator 247 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 248 /// 249 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 250 /// needs to be preserved. It is needed when we use trip count upper bound to 251 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 252 /// conditional branch needs to be preserved. 253 /// 254 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 255 /// execute without exiting the loop. 256 /// 257 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 258 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 259 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 260 /// iterations before branching into the unrolled loop. UnrollLoop will not 261 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 262 /// AllowExpensiveTripCount is false. 263 /// 264 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 265 /// number of iterations we want to peel off. 266 /// 267 /// The LoopInfo Analysis that is passed will be kept consistent. 268 /// 269 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 270 /// DominatorTree if they are non-null. 271 /// 272 /// If RemainderLoop is non-null, it will receive the remainder loop (if 273 /// required and not fully unrolled). 274 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 275 ScalarEvolution *SE, DominatorTree *DT, 276 AssumptionCache *AC, 277 const TargetTransformInfo *TTI, 278 OptimizationRemarkEmitter *ORE, 279 bool PreserveLCSSA, Loop **RemainderLoop) { 280 281 if (!L->getLoopPreheader()) { 282 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 283 return LoopUnrollResult::Unmodified; 284 } 285 286 if (!L->getLoopLatch()) { 287 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 288 return LoopUnrollResult::Unmodified; 289 } 290 291 // Loops with indirectbr cannot be cloned. 292 if (!L->isSafeToClone()) { 293 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 294 return LoopUnrollResult::Unmodified; 295 } 296 297 if (L->getHeader()->hasAddressTaken()) { 298 // The loop-rotate pass can be helpful to avoid this in many cases. 299 LLVM_DEBUG( 300 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 301 return LoopUnrollResult::Unmodified; 302 } 303 304 if (ULO.TripCount != 0) 305 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n"); 306 if (ULO.TripMultiple != 1) 307 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n"); 308 309 // Effectively "DCE" unrolled iterations that are beyond the tripcount 310 // and will never be executed. 311 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) 312 ULO.Count = ULO.TripCount; 313 314 // Don't enter the unroll code if there is nothing to do. 315 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { 316 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); 317 return LoopUnrollResult::Unmodified; 318 } 319 320 assert(ULO.Count > 0); 321 assert(ULO.TripMultiple > 0); 322 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); 323 324 // Are we eliminating the loop control altogether? 325 bool CompletelyUnroll = ULO.Count == ULO.TripCount; 326 327 // We assume a run-time trip count if the compiler cannot 328 // figure out the loop trip count and the unroll-runtime 329 // flag is specified. 330 bool RuntimeTripCount = 331 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); 332 333 assert((!RuntimeTripCount || !ULO.PeelCount) && 334 "Did not expect runtime trip-count unrolling " 335 "and peeling for the same loop"); 336 337 bool Peeled = false; 338 if (ULO.PeelCount) { 339 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); 340 341 // Successful peeling may result in a change in the loop preheader/trip 342 // counts. If we later unroll the loop, we want these to be updated. 343 if (Peeled) { 344 // According to our guards and profitability checks the only 345 // meaningful exit should be latch block. Other exits go to deopt, 346 // so we do not worry about them. 347 BasicBlock *ExitingBlock = L->getLoopLatch(); 348 assert(ExitingBlock && "Loop without exiting block?"); 349 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); 350 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 351 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 352 } 353 } 354 355 // All these values should be taken only after peeling because they might have 356 // changed. 357 BasicBlock *Preheader = L->getLoopPreheader(); 358 BasicBlock *Header = L->getHeader(); 359 BasicBlock *LatchBlock = L->getLoopLatch(); 360 SmallVector<BasicBlock *, 4> ExitBlocks; 361 L->getExitBlocks(ExitBlocks); 362 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 363 364 // Go through all exits of L and see if there are any phi-nodes there. We just 365 // conservatively assume that they're inserted to preserve LCSSA form, which 366 // means that complete unrolling might break this form. We need to either fix 367 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 368 // now we just recompute LCSSA for the outer loop, but it should be possible 369 // to fix it in-place. 370 bool NeedToFixLCSSA = 371 PreserveLCSSA && CompletelyUnroll && 372 any_of(ExitBlocks, 373 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 374 375 // The current loop unroll pass can unroll loops that have 376 // (1) single latch; and 377 // (2a) latch is unconditional; or 378 // (2b) latch is conditional and is an exiting block 379 // FIXME: The implementation can be extended to work with more complicated 380 // cases, e.g. loops with multiple latches. 381 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 382 383 // A conditional branch which exits the loop, which can be optimized to an 384 // unconditional branch in the unrolled loop in some cases. 385 BranchInst *ExitingBI = nullptr; 386 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 387 if (LatchIsExiting) 388 ExitingBI = LatchBI; 389 else if (BasicBlock *ExitingBlock = L->getExitingBlock()) 390 ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 391 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 392 // If the peeling guard is changed this assert may be relaxed or even 393 // deleted. 394 assert(!Peeled && "Peeling guard changed!"); 395 LLVM_DEBUG( 396 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 397 return LoopUnrollResult::Unmodified; 398 } 399 LLVM_DEBUG({ 400 if (ExitingBI) 401 dbgs() << " Exiting Block = " << ExitingBI->getParent()->getName() 402 << "\n"; 403 else 404 dbgs() << " No single exiting block\n"; 405 }); 406 407 // Loops containing convergent instructions must have a count that divides 408 // their TripMultiple. 409 LLVM_DEBUG( 410 { 411 bool HasConvergent = false; 412 for (auto &BB : L->blocks()) 413 for (auto &I : *BB) 414 if (auto *CB = dyn_cast<CallBase>(&I)) 415 HasConvergent |= CB->isConvergent(); 416 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && 417 "Unroll count must divide trip multiple if loop contains a " 418 "convergent operation."); 419 }); 420 421 bool EpilogProfitability = 422 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 423 : isEpilogProfitable(L); 424 425 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && 426 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 427 EpilogProfitability, ULO.UnrollRemainder, 428 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 429 PreserveLCSSA, RemainderLoop)) { 430 if (ULO.Force) 431 RuntimeTripCount = false; 432 else { 433 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 434 "generated when assuming runtime trip count\n"); 435 return LoopUnrollResult::Unmodified; 436 } 437 } 438 439 // If we know the trip count, we know the multiple... 440 unsigned BreakoutTrip = 0; 441 if (ULO.TripCount != 0) { 442 BreakoutTrip = ULO.TripCount % ULO.Count; 443 ULO.TripMultiple = 0; 444 } else { 445 // Figure out what multiple to use. 446 BreakoutTrip = ULO.TripMultiple = 447 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); 448 } 449 450 using namespace ore; 451 // Report the unrolling decision. 452 if (CompletelyUnroll) { 453 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 454 << " with trip count " << ULO.TripCount << "!\n"); 455 if (ORE) 456 ORE->emit([&]() { 457 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 458 L->getHeader()) 459 << "completely unrolled loop with " 460 << NV("UnrollCount", ULO.TripCount) << " iterations"; 461 }); 462 } else if (ULO.PeelCount) { 463 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() 464 << " with iteration count " << ULO.PeelCount << "!\n"); 465 if (ORE) 466 ORE->emit([&]() { 467 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 468 L->getHeader()) 469 << " peeled loop by " << NV("PeelCount", ULO.PeelCount) 470 << " iterations"; 471 }); 472 } else { 473 auto DiagBuilder = [&]() { 474 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 475 L->getHeader()); 476 return Diag << "unrolled loop by a factor of " 477 << NV("UnrollCount", ULO.Count); 478 }; 479 480 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 481 << ULO.Count); 482 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { 483 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 484 if (ORE) 485 ORE->emit([&]() { 486 return DiagBuilder() << " with a breakout at trip " 487 << NV("BreakoutTrip", BreakoutTrip); 488 }); 489 } else if (ULO.TripMultiple != 1) { 490 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); 491 if (ORE) 492 ORE->emit([&]() { 493 return DiagBuilder() 494 << " with " << NV("TripMultiple", ULO.TripMultiple) 495 << " trips per branch"; 496 }); 497 } else if (RuntimeTripCount) { 498 LLVM_DEBUG(dbgs() << " with run-time trip count"); 499 if (ORE) 500 ORE->emit( 501 [&]() { return DiagBuilder() << " with run-time trip count"; }); 502 } 503 LLVM_DEBUG(dbgs() << "!\n"); 504 } 505 506 // We are going to make changes to this loop. SCEV may be keeping cached info 507 // about it, in particular about backedge taken count. The changes we make 508 // are guaranteed to invalidate this information for our loop. It is tempting 509 // to only invalidate the loop being unrolled, but it is incorrect as long as 510 // all exiting branches from all inner loops have impact on the outer loops, 511 // and if something changes inside them then any of outer loops may also 512 // change. When we forget outermost loop, we also forget all contained loops 513 // and this is what we need here. 514 if (SE) { 515 if (ULO.ForgetAllSCEV) 516 SE->forgetAllLoops(); 517 else 518 SE->forgetTopmostLoop(L); 519 } 520 521 if (!LatchIsExiting) 522 ++NumUnrolledNotLatch; 523 Optional<bool> ContinueOnTrue = None; 524 BasicBlock *LoopExit = nullptr; 525 if (ExitingBI) { 526 ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0)); 527 LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue); 528 } 529 530 // For the first iteration of the loop, we should use the precloned values for 531 // PHI nodes. Insert associations now. 532 ValueToValueMapTy LastValueMap; 533 std::vector<PHINode*> OrigPHINode; 534 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 535 OrigPHINode.push_back(cast<PHINode>(I)); 536 } 537 538 std::vector<BasicBlock *> Headers; 539 std::vector<BasicBlock *> ExitingBlocks; 540 std::vector<BasicBlock *> ExitingSucc; 541 std::vector<BasicBlock *> Latches; 542 Headers.push_back(Header); 543 Latches.push_back(LatchBlock); 544 if (ExitingBI) { 545 ExitingBlocks.push_back(ExitingBI->getParent()); 546 ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue))); 547 } 548 549 // The current on-the-fly SSA update requires blocks to be processed in 550 // reverse postorder so that LastValueMap contains the correct value at each 551 // exit. 552 LoopBlocksDFS DFS(L); 553 DFS.perform(LI); 554 555 // Stash the DFS iterators before adding blocks to the loop. 556 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 557 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 558 559 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 560 561 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 562 // might break loop-simplified form for these loops (as they, e.g., would 563 // share the same exit blocks). We'll keep track of loops for which we can 564 // break this so that later we can re-simplify them. 565 SmallSetVector<Loop *, 4> LoopsToSimplify; 566 for (Loop *SubLoop : *L) 567 LoopsToSimplify.insert(SubLoop); 568 569 if (Header->getParent()->isDebugInfoForProfiling()) 570 for (BasicBlock *BB : L->getBlocks()) 571 for (Instruction &I : *BB) 572 if (!isa<DbgInfoIntrinsic>(&I)) 573 if (const DILocation *DIL = I.getDebugLoc()) { 574 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 575 if (NewDIL) 576 I.setDebugLoc(NewDIL.getValue()); 577 else 578 LLVM_DEBUG(dbgs() 579 << "Failed to create new discriminator: " 580 << DIL->getFilename() << " Line: " << DIL->getLine()); 581 } 582 583 // Identify what noalias metadata is inside the loop: if it is inside the 584 // loop, the associated metadata must be cloned for each iteration. 585 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 586 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 587 588 for (unsigned It = 1; It != ULO.Count; ++It) { 589 SmallVector<BasicBlock *, 8> NewBlocks; 590 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 591 NewLoops[L] = L; 592 593 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 594 ValueToValueMapTy VMap; 595 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 596 Header->getParent()->getBasicBlockList().push_back(New); 597 598 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 599 "Header should not be in a sub-loop"); 600 // Tell LI about New. 601 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 602 if (OldLoop) 603 LoopsToSimplify.insert(NewLoops[OldLoop]); 604 605 if (*BB == Header) 606 // Loop over all of the PHI nodes in the block, changing them to use 607 // the incoming values from the previous block. 608 for (PHINode *OrigPHI : OrigPHINode) { 609 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 610 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 611 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 612 if (It > 1 && L->contains(InValI)) 613 InVal = LastValueMap[InValI]; 614 VMap[OrigPHI] = InVal; 615 New->getInstList().erase(NewPHI); 616 } 617 618 // Update our running map of newest clones 619 LastValueMap[*BB] = New; 620 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 621 VI != VE; ++VI) 622 LastValueMap[VI->first] = VI->second; 623 624 // Add phi entries for newly created values to all exit blocks. 625 for (BasicBlock *Succ : successors(*BB)) { 626 if (L->contains(Succ)) 627 continue; 628 for (PHINode &PHI : Succ->phis()) { 629 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 630 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 631 if (It != LastValueMap.end()) 632 Incoming = It->second; 633 PHI.addIncoming(Incoming, New); 634 } 635 } 636 // Keep track of new headers and latches as we create them, so that 637 // we can insert the proper branches later. 638 if (*BB == Header) 639 Headers.push_back(New); 640 if (*BB == LatchBlock) 641 Latches.push_back(New); 642 643 // Keep track of the exiting block and its successor block contained in 644 // the loop for the current iteration. 645 if (ExitingBI) { 646 if (*BB == ExitingBlocks[0]) 647 ExitingBlocks.push_back(New); 648 if (*BB == ExitingSucc[0]) 649 ExitingSucc.push_back(New); 650 } 651 652 NewBlocks.push_back(New); 653 UnrolledLoopBlocks.push_back(New); 654 655 // Update DomTree: since we just copy the loop body, and each copy has a 656 // dedicated entry block (copy of the header block), this header's copy 657 // dominates all copied blocks. That means, dominance relations in the 658 // copied body are the same as in the original body. 659 if (DT) { 660 if (*BB == Header) 661 DT->addNewBlock(New, Latches[It - 1]); 662 else { 663 auto BBDomNode = DT->getNode(*BB); 664 auto BBIDom = BBDomNode->getIDom(); 665 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 666 DT->addNewBlock( 667 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 668 } 669 } 670 } 671 672 // Remap all instructions in the most recent iteration 673 remapInstructionsInBlocks(NewBlocks, LastValueMap); 674 for (BasicBlock *NewBlock : NewBlocks) 675 for (Instruction &I : *NewBlock) 676 if (auto *II = dyn_cast<AssumeInst>(&I)) 677 AC->registerAssumption(II); 678 679 { 680 // Identify what other metadata depends on the cloned version. After 681 // cloning, replace the metadata with the corrected version for both 682 // memory instructions and noalias intrinsics. 683 std::string ext = (Twine("It") + Twine(It)).str(); 684 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 685 Header->getContext(), ext); 686 } 687 } 688 689 // Loop over the PHI nodes in the original block, setting incoming values. 690 for (PHINode *PN : OrigPHINode) { 691 if (CompletelyUnroll) { 692 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 693 Header->getInstList().erase(PN); 694 } else if (ULO.Count > 1) { 695 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 696 // If this value was defined in the loop, take the value defined by the 697 // last iteration of the loop. 698 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 699 if (L->contains(InValI)) 700 InVal = LastValueMap[InVal]; 701 } 702 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 703 PN->addIncoming(InVal, Latches.back()); 704 } 705 } 706 707 auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop, 708 bool NeedConditional, Optional<bool> ContinueOnTrue, 709 bool IsDestLoopExit) { 710 auto *Term = cast<BranchInst>(Src->getTerminator()); 711 if (NeedConditional) { 712 // Update the conditional branch's successor for the following 713 // iteration. 714 assert(ContinueOnTrue.hasValue() && 715 "Expecting valid ContinueOnTrue when NeedConditional is true"); 716 Term->setSuccessor(!(*ContinueOnTrue), Dest); 717 } else { 718 // Remove phi operands at this loop exit 719 if (!IsDestLoopExit) { 720 BasicBlock *BB = Src; 721 for (BasicBlock *Succ : successors(BB)) { 722 // Preserve the incoming value from BB if we are jumping to the block 723 // in the current loop. 724 if (Succ == BlockInLoop) 725 continue; 726 for (PHINode &Phi : Succ->phis()) 727 Phi.removeIncomingValue(BB, false); 728 } 729 } 730 // Replace the conditional branch with an unconditional one. 731 BranchInst::Create(Dest, Term); 732 Term->eraseFromParent(); 733 } 734 }; 735 736 // Connect latches of the unrolled iterations to the headers of the next 737 // iteration. If the latch is also the exiting block, the conditional branch 738 // may have to be preserved. 739 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 740 // The branch destination. 741 unsigned j = (i + 1) % e; 742 BasicBlock *Dest = Headers[j]; 743 bool NeedConditional = LatchIsExiting; 744 745 if (LatchIsExiting) { 746 if (RuntimeTripCount && j != 0) 747 NeedConditional = false; 748 749 // For a complete unroll, make the last iteration end with a branch 750 // to the exit block. 751 if (CompletelyUnroll) { 752 if (j == 0) 753 Dest = LoopExit; 754 // If using trip count upper bound to completely unroll, we need to 755 // keep the conditional branch except the last one because the loop 756 // may exit after any iteration. 757 assert(NeedConditional && 758 "NeedCondition cannot be modified by both complete " 759 "unrolling and runtime unrolling"); 760 NeedConditional = 761 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); 762 } else if (j != BreakoutTrip && 763 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { 764 // If we know the trip count or a multiple of it, we can safely use an 765 // unconditional branch for some iterations. 766 NeedConditional = false; 767 } 768 } 769 770 setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue, 771 Dest == LoopExit); 772 } 773 774 if (!LatchIsExiting) { 775 // If the latch is not exiting, we may be able to simplify the conditional 776 // branches in the unrolled exiting blocks. 777 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 778 // The branch destination. 779 unsigned j = (i + 1) % e; 780 bool NeedConditional = true; 781 782 if (RuntimeTripCount && j != 0) 783 NeedConditional = false; 784 785 if (CompletelyUnroll) 786 // We cannot drop the conditional branch for the last condition, as we 787 // may have to execute the loop body depending on the condition. 788 NeedConditional = j == 0 || ULO.PreserveCondBr; 789 else if (j != BreakoutTrip && 790 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) 791 // If we know the trip count or a multiple of it, we can safely use an 792 // unconditional branch for some iterations. 793 NeedConditional = false; 794 795 // Conditional branches from non-latch exiting block have successors 796 // either in the same loop iteration or outside the loop. The branches are 797 // already correct. 798 if (NeedConditional) 799 continue; 800 setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional, 801 None, false); 802 } 803 804 // When completely unrolling, the last latch becomes unreachable. 805 if (CompletelyUnroll) { 806 BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator()); 807 new UnreachableInst(Term->getContext(), Term); 808 Term->eraseFromParent(); 809 } 810 } 811 812 // Update dominators of blocks we might reach through exits. 813 // Immediate dominator of such block might change, because we add more 814 // routes which can lead to the exit: we can now reach it from the copied 815 // iterations too. 816 if (DT && ULO.Count > 1) { 817 for (auto *BB : OriginalLoopBlocks) { 818 auto *BBDomNode = DT->getNode(BB); 819 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 820 for (auto *ChildDomNode : BBDomNode->children()) { 821 auto *ChildBB = ChildDomNode->getBlock(); 822 if (!L->contains(ChildBB)) 823 ChildrenToUpdate.push_back(ChildBB); 824 } 825 BasicBlock *NewIDom; 826 if (ExitingBI && BB == ExitingBlocks[0]) { 827 // The latch is special because we emit unconditional branches in 828 // some cases where the original loop contained a conditional branch. 829 // Since the latch is always at the bottom of the loop, if the latch 830 // dominated an exit before unrolling, the new dominator of that exit 831 // must also be a latch. Specifically, the dominator is the first 832 // latch which ends in a conditional branch, or the last latch if 833 // there is no such latch. 834 // For loops exiting from non latch exiting block, we limit the 835 // branch simplification to single exiting block loops. 836 NewIDom = ExitingBlocks.back(); 837 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 838 Instruction *Term = ExitingBlocks[i]->getTerminator(); 839 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { 840 NewIDom = 841 DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]); 842 break; 843 } 844 } 845 } else { 846 // The new idom of the block will be the nearest common dominator 847 // of all copies of the previous idom. This is equivalent to the 848 // nearest common dominator of the previous idom and the first latch, 849 // which dominates all copies of the previous idom. 850 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 851 } 852 for (auto *ChildBB : ChildrenToUpdate) 853 DT->changeImmediateDominator(ChildBB, NewIDom); 854 } 855 } 856 857 assert(!DT || !UnrollVerifyDomtree || 858 DT->verify(DominatorTree::VerificationLevel::Fast)); 859 860 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 861 // Merge adjacent basic blocks, if possible. 862 for (BasicBlock *Latch : Latches) { 863 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 864 assert((Term || 865 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 866 "Need a branch as terminator, except when fully unrolling with " 867 "unconditional latch"); 868 if (Term && Term->isUnconditional()) { 869 BasicBlock *Dest = Term->getSuccessor(0); 870 BasicBlock *Fold = Dest->getUniquePredecessor(); 871 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 872 // Dest has been folded into Fold. Update our worklists accordingly. 873 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 874 llvm::erase_value(UnrolledLoopBlocks, Dest); 875 } 876 } 877 } 878 // Apply updates to the DomTree. 879 DT = &DTU.getDomTree(); 880 881 // At this point, the code is well formed. We now simplify the unrolled loop, 882 // doing constant propagation and dead code elimination as we go. 883 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, 884 SE, DT, AC, TTI); 885 886 NumCompletelyUnrolled += CompletelyUnroll; 887 ++NumUnrolled; 888 889 Loop *OuterL = L->getParentLoop(); 890 // Update LoopInfo if the loop is completely removed. 891 if (CompletelyUnroll) 892 LI->erase(L); 893 894 // After complete unrolling most of the blocks should be contained in OuterL. 895 // However, some of them might happen to be out of OuterL (e.g. if they 896 // precede a loop exit). In this case we might need to insert PHI nodes in 897 // order to preserve LCSSA form. 898 // We don't need to check this if we already know that we need to fix LCSSA 899 // form. 900 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 901 // it should be possible to fix it in-place. 902 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 903 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 904 905 // If we have a pass and a DominatorTree we should re-simplify impacted loops 906 // to ensure subsequent analyses can rely on this form. We want to simplify 907 // at least one layer outside of the loop that was unrolled so that any 908 // changes to the parent loop exposed by the unrolling are considered. 909 if (DT) { 910 if (OuterL) { 911 // OuterL includes all loops for which we can break loop-simplify, so 912 // it's sufficient to simplify only it (it'll recursively simplify inner 913 // loops too). 914 if (NeedToFixLCSSA) { 915 // LCSSA must be performed on the outermost affected loop. The unrolled 916 // loop's last loop latch is guaranteed to be in the outermost loop 917 // after LoopInfo's been updated by LoopInfo::erase. 918 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 919 Loop *FixLCSSALoop = OuterL; 920 if (!FixLCSSALoop->contains(LatchLoop)) 921 while (FixLCSSALoop->getParentLoop() != LatchLoop) 922 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 923 924 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 925 } else if (PreserveLCSSA) { 926 assert(OuterL->isLCSSAForm(*DT) && 927 "Loops should be in LCSSA form after loop-unroll."); 928 } 929 930 // TODO: That potentially might be compile-time expensive. We should try 931 // to fix the loop-simplified form incrementally. 932 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 933 } else { 934 // Simplify loops for which we might've broken loop-simplify form. 935 for (Loop *SubLoop : LoopsToSimplify) 936 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 937 } 938 } 939 940 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 941 : LoopUnrollResult::PartiallyUnrolled; 942 } 943 944 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 945 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 946 /// such metadata node exists, then nullptr is returned. 947 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 948 // First operand should refer to the loop id itself. 949 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 950 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 951 952 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 953 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 954 if (!MD) 955 continue; 956 957 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 958 if (!S) 959 continue; 960 961 if (Name.equals(S->getString())) 962 return MD; 963 } 964 return nullptr; 965 } 966