1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/Utils/Local.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 
49 static cl::opt<bool>
50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
51                     cl::desc("Allow runtime unrolled loops to be unrolled "
52                              "with epilog instead of prolog."));
53 
54 static cl::opt<bool>
55 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
56                     cl::desc("Verify domtree after unrolling"),
57 #ifdef NDEBUG
58     cl::init(false)
59 #else
60     cl::init(true)
61 #endif
62                     );
63 
64 /// Convert the instruction operands from referencing the current values into
65 /// those specified by VMap.
66 static inline void remapInstruction(Instruction *I,
67                                     ValueToValueMapTy &VMap) {
68   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
69     Value *Op = I->getOperand(op);
70 
71     // Unwrap arguments of dbg.value intrinsics.
72     bool Wrapped = false;
73     if (auto *V = dyn_cast<MetadataAsValue>(Op))
74       if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
75         Op = Unwrapped->getValue();
76         Wrapped = true;
77       }
78 
79     auto wrap = [&](Value *V) {
80       auto &C = I->getContext();
81       return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
82     };
83 
84     ValueToValueMapTy::iterator It = VMap.find(Op);
85     if (It != VMap.end())
86       I->setOperand(op, wrap(It->second));
87   }
88 
89   if (PHINode *PN = dyn_cast<PHINode>(I)) {
90     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
91       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
92       if (It != VMap.end())
93         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
94     }
95   }
96 }
97 
98 /// Folds a basic block into its predecessor if it only has one predecessor, and
99 /// that predecessor only has one successor.
100 /// The LoopInfo Analysis that is passed will be kept consistent.
101 static BasicBlock *
102 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
103                          DominatorTree *DT) {
104   // Merge basic blocks into their predecessor if there is only one distinct
105   // pred, and if there is only one distinct successor of the predecessor, and
106   // if there are no PHI nodes.
107   BasicBlock *OnlyPred = BB->getSinglePredecessor();
108   if (!OnlyPred) return nullptr;
109 
110   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
111     return nullptr;
112 
113   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
114 
115   // Resolve any PHI nodes at the start of the block.  They are all
116   // guaranteed to have exactly one entry if they exist, unless there are
117   // multiple duplicate (but guaranteed to be equal) entries for the
118   // incoming edges.  This occurs when there are multiple edges from
119   // OnlyPred to OnlySucc.
120   FoldSingleEntryPHINodes(BB);
121 
122   // Delete the unconditional branch from the predecessor...
123   OnlyPred->getInstList().pop_back();
124 
125   // Make all PHI nodes that referred to BB now refer to Pred as their
126   // source...
127   BB->replaceAllUsesWith(OnlyPred);
128 
129   // Move all definitions in the successor to the predecessor...
130   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
131 
132   // OldName will be valid until erased.
133   StringRef OldName = BB->getName();
134 
135   // Erase the old block and update dominator info.
136   if (DT)
137     if (DomTreeNode *DTN = DT->getNode(BB)) {
138       DomTreeNode *PredDTN = DT->getNode(OnlyPred);
139       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
140       for (auto *DI : Children)
141         DT->changeImmediateDominator(DI, PredDTN);
142 
143       DT->eraseNode(BB);
144     }
145 
146   LI->removeBlock(BB);
147 
148   // Inherit predecessor's name if it exists...
149   if (!OldName.empty() && !OnlyPred->hasName())
150     OnlyPred->setName(OldName);
151 
152   BB->eraseFromParent();
153 
154   return OnlyPred;
155 }
156 
157 /// Check if unrolling created a situation where we need to insert phi nodes to
158 /// preserve LCSSA form.
159 /// \param Blocks is a vector of basic blocks representing unrolled loop.
160 /// \param L is the outer loop.
161 /// It's possible that some of the blocks are in L, and some are not. In this
162 /// case, if there is a use is outside L, and definition is inside L, we need to
163 /// insert a phi-node, otherwise LCSSA will be broken.
164 /// The function is just a helper function for llvm::UnrollLoop that returns
165 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
166 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
167                                      LoopInfo *LI) {
168   for (BasicBlock *BB : Blocks) {
169     if (LI->getLoopFor(BB) == L)
170       continue;
171     for (Instruction &I : *BB) {
172       for (Use &U : I.operands()) {
173         if (auto Def = dyn_cast<Instruction>(U)) {
174           Loop *DefLoop = LI->getLoopFor(Def->getParent());
175           if (!DefLoop)
176             continue;
177           if (DefLoop->contains(L))
178             return true;
179         }
180       }
181     }
182   }
183   return false;
184 }
185 
186 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
187 /// and adds a mapping from the original loop to the new loop to NewLoops.
188 /// Returns nullptr if no new loop was created and a pointer to the
189 /// original loop OriginalBB was part of otherwise.
190 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
191                                            BasicBlock *ClonedBB, LoopInfo *LI,
192                                            NewLoopsMap &NewLoops) {
193   // Figure out which loop New is in.
194   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
195   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
196 
197   Loop *&NewLoop = NewLoops[OldLoop];
198   if (!NewLoop) {
199     // Found a new sub-loop.
200     assert(OriginalBB == OldLoop->getHeader() &&
201            "Header should be first in RPO");
202 
203     NewLoop = LI->AllocateLoop();
204     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
205 
206     if (NewLoopParent)
207       NewLoopParent->addChildLoop(NewLoop);
208     else
209       LI->addTopLevelLoop(NewLoop);
210 
211     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
212     return OldLoop;
213   } else {
214     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
215     return nullptr;
216   }
217 }
218 
219 /// The function chooses which type of unroll (epilog or prolog) is more
220 /// profitabale.
221 /// Epilog unroll is more profitable when there is PHI that starts from
222 /// constant.  In this case epilog will leave PHI start from constant,
223 /// but prolog will convert it to non-constant.
224 ///
225 /// loop:
226 ///   PN = PHI [I, Latch], [CI, PreHeader]
227 ///   I = foo(PN)
228 ///   ...
229 ///
230 /// Epilog unroll case.
231 /// loop:
232 ///   PN = PHI [I2, Latch], [CI, PreHeader]
233 ///   I1 = foo(PN)
234 ///   I2 = foo(I1)
235 ///   ...
236 /// Prolog unroll case.
237 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
238 /// loop:
239 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
240 ///   I1 = foo(PN)
241 ///   I2 = foo(I1)
242 ///   ...
243 ///
244 static bool isEpilogProfitable(Loop *L) {
245   BasicBlock *PreHeader = L->getLoopPreheader();
246   BasicBlock *Header = L->getHeader();
247   assert(PreHeader && Header);
248   for (const PHINode &PN : Header->phis()) {
249     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
250       return true;
251   }
252   return false;
253 }
254 
255 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
256 /// can only fail when the loop's latch block is not terminated by a conditional
257 /// branch instruction. However, if the trip count (and multiple) are not known,
258 /// loop unrolling will mostly produce more code that is no faster.
259 ///
260 /// TripCount is the upper bound of the iteration on which control exits
261 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
262 /// via an early branch in other loop block or via LatchBlock terminator. This
263 /// is relaxed from the general definition of trip count which is the number of
264 /// times the loop header executes. Note that UnrollLoop assumes that the loop
265 /// counter test is in LatchBlock in order to remove unnecesssary instances of
266 /// the test.  If control can exit the loop from the LatchBlock's terminator
267 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
268 ///
269 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
270 /// needs to be preserved.  It is needed when we use trip count upper bound to
271 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
272 /// conditional branch needs to be preserved.
273 ///
274 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
275 /// execute without exiting the loop.
276 ///
277 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
278 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
279 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
280 /// iterations before branching into the unrolled loop.  UnrollLoop will not
281 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
282 /// AllowExpensiveTripCount is false.
283 ///
284 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
285 /// number of iterations we want to peel off.
286 ///
287 /// The LoopInfo Analysis that is passed will be kept consistent.
288 ///
289 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
290 /// DominatorTree if they are non-null.
291 LoopUnrollResult llvm::UnrollLoop(
292     Loop *L, unsigned Count, unsigned TripCount, bool Force, bool AllowRuntime,
293     bool AllowExpensiveTripCount, bool PreserveCondBr, bool PreserveOnlyFirst,
294     unsigned TripMultiple, unsigned PeelCount, bool UnrollRemainder,
295     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
296     OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
297 
298   BasicBlock *Preheader = L->getLoopPreheader();
299   if (!Preheader) {
300     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
301     return LoopUnrollResult::Unmodified;
302   }
303 
304   BasicBlock *LatchBlock = L->getLoopLatch();
305   if (!LatchBlock) {
306     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
307     return LoopUnrollResult::Unmodified;
308   }
309 
310   // Loops with indirectbr cannot be cloned.
311   if (!L->isSafeToClone()) {
312     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
313     return LoopUnrollResult::Unmodified;
314   }
315 
316   // The current loop unroll pass can only unroll loops with a single latch
317   // that's a conditional branch exiting the loop.
318   // FIXME: The implementation can be extended to work with more complicated
319   // cases, e.g. loops with multiple latches.
320   BasicBlock *Header = L->getHeader();
321   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
322 
323   if (!BI || BI->isUnconditional()) {
324     // The loop-rotate pass can be helpful to avoid this in many cases.
325     DEBUG(dbgs() <<
326              "  Can't unroll; loop not terminated by a conditional branch.\n");
327     return LoopUnrollResult::Unmodified;
328   }
329 
330   auto CheckSuccessors = [&](unsigned S1, unsigned S2) {
331     return BI->getSuccessor(S1) == Header && !L->contains(BI->getSuccessor(S2));
332   };
333 
334   if (!CheckSuccessors(0, 1) && !CheckSuccessors(1, 0)) {
335     DEBUG(dbgs() << "Can't unroll; only loops with one conditional latch"
336                     " exiting the loop can be unrolled\n");
337     return LoopUnrollResult::Unmodified;
338   }
339 
340   if (Header->hasAddressTaken()) {
341     // The loop-rotate pass can be helpful to avoid this in many cases.
342     DEBUG(dbgs() <<
343           "  Won't unroll loop: address of header block is taken.\n");
344     return LoopUnrollResult::Unmodified;
345   }
346 
347   if (TripCount != 0)
348     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
349   if (TripMultiple != 1)
350     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
351 
352   // Effectively "DCE" unrolled iterations that are beyond the tripcount
353   // and will never be executed.
354   if (TripCount != 0 && Count > TripCount)
355     Count = TripCount;
356 
357   // Don't enter the unroll code if there is nothing to do.
358   if (TripCount == 0 && Count < 2 && PeelCount == 0) {
359     DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
360     return LoopUnrollResult::Unmodified;
361   }
362 
363   assert(Count > 0);
364   assert(TripMultiple > 0);
365   assert(TripCount == 0 || TripCount % TripMultiple == 0);
366 
367   // Are we eliminating the loop control altogether?
368   bool CompletelyUnroll = Count == TripCount;
369   SmallVector<BasicBlock *, 4> ExitBlocks;
370   L->getExitBlocks(ExitBlocks);
371   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
372 
373   // Go through all exits of L and see if there are any phi-nodes there. We just
374   // conservatively assume that they're inserted to preserve LCSSA form, which
375   // means that complete unrolling might break this form. We need to either fix
376   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
377   // now we just recompute LCSSA for the outer loop, but it should be possible
378   // to fix it in-place.
379   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
380                         any_of(ExitBlocks, [](const BasicBlock *BB) {
381                           return isa<PHINode>(BB->begin());
382                         });
383 
384   // We assume a run-time trip count if the compiler cannot
385   // figure out the loop trip count and the unroll-runtime
386   // flag is specified.
387   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
388 
389   assert((!RuntimeTripCount || !PeelCount) &&
390          "Did not expect runtime trip-count unrolling "
391          "and peeling for the same loop");
392 
393   bool Peeled = false;
394   if (PeelCount) {
395     Peeled = peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
396 
397     // Successful peeling may result in a change in the loop preheader/trip
398     // counts. If we later unroll the loop, we want these to be updated.
399     if (Peeled) {
400       BasicBlock *ExitingBlock = L->getExitingBlock();
401       assert(ExitingBlock && "Loop without exiting block?");
402       Preheader = L->getLoopPreheader();
403       TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
404       TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
405     }
406   }
407 
408   // Loops containing convergent instructions must have a count that divides
409   // their TripMultiple.
410   DEBUG(
411       {
412         bool HasConvergent = false;
413         for (auto &BB : L->blocks())
414           for (auto &I : *BB)
415             if (auto CS = CallSite(&I))
416               HasConvergent |= CS.isConvergent();
417         assert((!HasConvergent || TripMultiple % Count == 0) &&
418                "Unroll count must divide trip multiple if loop contains a "
419                "convergent operation.");
420       });
421 
422   bool EpilogProfitability =
423       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
424                                               : isEpilogProfitable(L);
425 
426   if (RuntimeTripCount && TripMultiple % Count != 0 &&
427       !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
428                                   EpilogProfitability, UnrollRemainder, LI, SE,
429                                   DT, AC, PreserveLCSSA)) {
430     if (Force)
431       RuntimeTripCount = false;
432     else {
433       DEBUG(
434           dbgs() << "Wont unroll; remainder loop could not be generated"
435                     "when assuming runtime trip count\n");
436       return LoopUnrollResult::Unmodified;
437     }
438   }
439 
440   // If we know the trip count, we know the multiple...
441   unsigned BreakoutTrip = 0;
442   if (TripCount != 0) {
443     BreakoutTrip = TripCount % Count;
444     TripMultiple = 0;
445   } else {
446     // Figure out what multiple to use.
447     BreakoutTrip = TripMultiple =
448       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
449   }
450 
451   using namespace ore;
452   // Report the unrolling decision.
453   if (CompletelyUnroll) {
454     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
455                  << " with trip count " << TripCount << "!\n");
456     if (ORE)
457       ORE->emit([&]() {
458         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
459                                   L->getHeader())
460                << "completely unrolled loop with "
461                << NV("UnrollCount", TripCount) << " iterations";
462       });
463   } else if (PeelCount) {
464     DEBUG(dbgs() << "PEELING loop %" << Header->getName()
465                  << " with iteration count " << PeelCount << "!\n");
466     if (ORE)
467       ORE->emit([&]() {
468         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
469                                   L->getHeader())
470                << " peeled loop by " << NV("PeelCount", PeelCount)
471                << " iterations";
472       });
473   } else {
474     auto DiagBuilder = [&]() {
475       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
476                               L->getHeader());
477       return Diag << "unrolled loop by a factor of "
478                   << NV("UnrollCount", Count);
479     };
480 
481     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
482           << " by " << Count);
483     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
484       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
485       if (ORE)
486         ORE->emit([&]() {
487           return DiagBuilder() << " with a breakout at trip "
488                                << NV("BreakoutTrip", BreakoutTrip);
489         });
490     } else if (TripMultiple != 1) {
491       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
492       if (ORE)
493         ORE->emit([&]() {
494           return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
495                                << " trips per branch";
496         });
497     } else if (RuntimeTripCount) {
498       DEBUG(dbgs() << " with run-time trip count");
499       if (ORE)
500         ORE->emit(
501             [&]() { return DiagBuilder() << " with run-time trip count"; });
502     }
503     DEBUG(dbgs() << "!\n");
504   }
505 
506   // We are going to make changes to this loop. SCEV may be keeping cached info
507   // about it, in particular about backedge taken count. The changes we make
508   // are guaranteed to invalidate this information for our loop. It is tempting
509   // to only invalidate the loop being unrolled, but it is incorrect as long as
510   // all exiting branches from all inner loops have impact on the outer loops,
511   // and if something changes inside them then any of outer loops may also
512   // change. When we forget outermost loop, we also forget all contained loops
513   // and this is what we need here.
514   if (SE) {
515     const Loop *CurrL = L;
516     while (const Loop *ParentL = CurrL->getParentLoop())
517       CurrL = ParentL;
518     SE->forgetLoop(CurrL);
519   }
520 
521   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
522   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
523 
524   // For the first iteration of the loop, we should use the precloned values for
525   // PHI nodes.  Insert associations now.
526   ValueToValueMapTy LastValueMap;
527   std::vector<PHINode*> OrigPHINode;
528   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
529     OrigPHINode.push_back(cast<PHINode>(I));
530   }
531 
532   std::vector<BasicBlock*> Headers;
533   std::vector<BasicBlock*> Latches;
534   Headers.push_back(Header);
535   Latches.push_back(LatchBlock);
536 
537   // The current on-the-fly SSA update requires blocks to be processed in
538   // reverse postorder so that LastValueMap contains the correct value at each
539   // exit.
540   LoopBlocksDFS DFS(L);
541   DFS.perform(LI);
542 
543   // Stash the DFS iterators before adding blocks to the loop.
544   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
545   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
546 
547   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
548 
549   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
550   // might break loop-simplified form for these loops (as they, e.g., would
551   // share the same exit blocks). We'll keep track of loops for which we can
552   // break this so that later we can re-simplify them.
553   SmallSetVector<Loop *, 4> LoopsToSimplify;
554   for (Loop *SubLoop : *L)
555     LoopsToSimplify.insert(SubLoop);
556 
557   if (Header->getParent()->isDebugInfoForProfiling())
558     for (BasicBlock *BB : L->getBlocks())
559       for (Instruction &I : *BB)
560         if (!isa<DbgInfoIntrinsic>(&I))
561           if (const DILocation *DIL = I.getDebugLoc())
562             I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count));
563 
564   for (unsigned It = 1; It != Count; ++It) {
565     std::vector<BasicBlock*> NewBlocks;
566     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
567     NewLoops[L] = L;
568 
569     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
570       ValueToValueMapTy VMap;
571       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
572       Header->getParent()->getBasicBlockList().push_back(New);
573 
574       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
575              "Header should not be in a sub-loop");
576       // Tell LI about New.
577       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
578       if (OldLoop)
579         LoopsToSimplify.insert(NewLoops[OldLoop]);
580 
581       if (*BB == Header)
582         // Loop over all of the PHI nodes in the block, changing them to use
583         // the incoming values from the previous block.
584         for (PHINode *OrigPHI : OrigPHINode) {
585           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
586           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
587           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
588             if (It > 1 && L->contains(InValI))
589               InVal = LastValueMap[InValI];
590           VMap[OrigPHI] = InVal;
591           New->getInstList().erase(NewPHI);
592         }
593 
594       // Update our running map of newest clones
595       LastValueMap[*BB] = New;
596       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
597            VI != VE; ++VI)
598         LastValueMap[VI->first] = VI->second;
599 
600       // Add phi entries for newly created values to all exit blocks.
601       for (BasicBlock *Succ : successors(*BB)) {
602         if (L->contains(Succ))
603           continue;
604         for (PHINode &PHI : Succ->phis()) {
605           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
606           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
607           if (It != LastValueMap.end())
608             Incoming = It->second;
609           PHI.addIncoming(Incoming, New);
610         }
611       }
612       // Keep track of new headers and latches as we create them, so that
613       // we can insert the proper branches later.
614       if (*BB == Header)
615         Headers.push_back(New);
616       if (*BB == LatchBlock)
617         Latches.push_back(New);
618 
619       NewBlocks.push_back(New);
620       UnrolledLoopBlocks.push_back(New);
621 
622       // Update DomTree: since we just copy the loop body, and each copy has a
623       // dedicated entry block (copy of the header block), this header's copy
624       // dominates all copied blocks. That means, dominance relations in the
625       // copied body are the same as in the original body.
626       if (DT) {
627         if (*BB == Header)
628           DT->addNewBlock(New, Latches[It - 1]);
629         else {
630           auto BBDomNode = DT->getNode(*BB);
631           auto BBIDom = BBDomNode->getIDom();
632           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
633           DT->addNewBlock(
634               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
635         }
636       }
637     }
638 
639     // Remap all instructions in the most recent iteration
640     for (BasicBlock *NewBlock : NewBlocks) {
641       for (Instruction &I : *NewBlock) {
642         ::remapInstruction(&I, LastValueMap);
643         if (auto *II = dyn_cast<IntrinsicInst>(&I))
644           if (II->getIntrinsicID() == Intrinsic::assume)
645             AC->registerAssumption(II);
646       }
647     }
648   }
649 
650   // Loop over the PHI nodes in the original block, setting incoming values.
651   for (PHINode *PN : OrigPHINode) {
652     if (CompletelyUnroll) {
653       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
654       Header->getInstList().erase(PN);
655     }
656     else if (Count > 1) {
657       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
658       // If this value was defined in the loop, take the value defined by the
659       // last iteration of the loop.
660       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
661         if (L->contains(InValI))
662           InVal = LastValueMap[InVal];
663       }
664       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
665       PN->addIncoming(InVal, Latches.back());
666     }
667   }
668 
669   // Now that all the basic blocks for the unrolled iterations are in place,
670   // set up the branches to connect them.
671   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
672     // The original branch was replicated in each unrolled iteration.
673     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
674 
675     // The branch destination.
676     unsigned j = (i + 1) % e;
677     BasicBlock *Dest = Headers[j];
678     bool NeedConditional = true;
679 
680     if (RuntimeTripCount && j != 0) {
681       NeedConditional = false;
682     }
683 
684     // For a complete unroll, make the last iteration end with a branch
685     // to the exit block.
686     if (CompletelyUnroll) {
687       if (j == 0)
688         Dest = LoopExit;
689       // If using trip count upper bound to completely unroll, we need to keep
690       // the conditional branch except the last one because the loop may exit
691       // after any iteration.
692       assert(NeedConditional &&
693              "NeedCondition cannot be modified by both complete "
694              "unrolling and runtime unrolling");
695       NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
696     } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
697       // If we know the trip count or a multiple of it, we can safely use an
698       // unconditional branch for some iterations.
699       NeedConditional = false;
700     }
701 
702     if (NeedConditional) {
703       // Update the conditional branch's successor for the following
704       // iteration.
705       Term->setSuccessor(!ContinueOnTrue, Dest);
706     } else {
707       // Remove phi operands at this loop exit
708       if (Dest != LoopExit) {
709         BasicBlock *BB = Latches[i];
710         for (BasicBlock *Succ: successors(BB)) {
711           if (Succ == Headers[i])
712             continue;
713           for (PHINode &Phi : Succ->phis())
714             Phi.removeIncomingValue(BB, false);
715         }
716       }
717       // Replace the conditional branch with an unconditional one.
718       BranchInst::Create(Dest, Term);
719       Term->eraseFromParent();
720     }
721   }
722 
723   // Update dominators of blocks we might reach through exits.
724   // Immediate dominator of such block might change, because we add more
725   // routes which can lead to the exit: we can now reach it from the copied
726   // iterations too.
727   if (DT && Count > 1) {
728     for (auto *BB : OriginalLoopBlocks) {
729       auto *BBDomNode = DT->getNode(BB);
730       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
731       for (auto *ChildDomNode : BBDomNode->getChildren()) {
732         auto *ChildBB = ChildDomNode->getBlock();
733         if (!L->contains(ChildBB))
734           ChildrenToUpdate.push_back(ChildBB);
735       }
736       BasicBlock *NewIDom;
737       if (BB == LatchBlock) {
738         // The latch is special because we emit unconditional branches in
739         // some cases where the original loop contained a conditional branch.
740         // Since the latch is always at the bottom of the loop, if the latch
741         // dominated an exit before unrolling, the new dominator of that exit
742         // must also be a latch.  Specifically, the dominator is the first
743         // latch which ends in a conditional branch, or the last latch if
744         // there is no such latch.
745         NewIDom = Latches.back();
746         for (BasicBlock *IterLatch : Latches) {
747           TerminatorInst *Term = IterLatch->getTerminator();
748           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
749             NewIDom = IterLatch;
750             break;
751           }
752         }
753       } else {
754         // The new idom of the block will be the nearest common dominator
755         // of all copies of the previous idom. This is equivalent to the
756         // nearest common dominator of the previous idom and the first latch,
757         // which dominates all copies of the previous idom.
758         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
759       }
760       for (auto *ChildBB : ChildrenToUpdate)
761         DT->changeImmediateDominator(ChildBB, NewIDom);
762     }
763   }
764 
765   assert(!DT || !UnrollVerifyDomtree ||
766       DT->verify(DominatorTree::VerificationLevel::Fast));
767 
768   // Merge adjacent basic blocks, if possible.
769   for (BasicBlock *Latch : Latches) {
770     BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
771     if (Term->isUnconditional()) {
772       BasicBlock *Dest = Term->getSuccessor(0);
773       if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
774         // Dest has been folded into Fold. Update our worklists accordingly.
775         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
776         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
777                                              UnrolledLoopBlocks.end(), Dest),
778                                  UnrolledLoopBlocks.end());
779       }
780     }
781   }
782 
783   // Simplify any new induction variables in the partially unrolled loop.
784   if (SE && !CompletelyUnroll && (Count > 1 || Peeled)) {
785     SmallVector<WeakTrackingVH, 16> DeadInsts;
786     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
787 
788     // Aggressively clean up dead instructions that simplifyLoopIVs already
789     // identified. Any remaining should be cleaned up below.
790     while (!DeadInsts.empty())
791       if (Instruction *Inst =
792               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
793         RecursivelyDeleteTriviallyDeadInstructions(Inst);
794   }
795 
796   // At this point, the code is well formed.  We now do a quick sweep over the
797   // inserted code, doing constant propagation and dead code elimination as we
798   // go.
799   const DataLayout &DL = Header->getModule()->getDataLayout();
800   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
801   for (BasicBlock *BB : NewLoopBlocks) {
802     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
803       Instruction *Inst = &*I++;
804 
805       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
806         if (LI->replacementPreservesLCSSAForm(Inst, V))
807           Inst->replaceAllUsesWith(V);
808       if (isInstructionTriviallyDead(Inst))
809         BB->getInstList().erase(Inst);
810     }
811   }
812 
813   // TODO: after peeling or unrolling, previously loop variant conditions are
814   // likely to fold to constants, eagerly propagating those here will require
815   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
816   // appropriate.
817 
818   NumCompletelyUnrolled += CompletelyUnroll;
819   ++NumUnrolled;
820 
821   Loop *OuterL = L->getParentLoop();
822   // Update LoopInfo if the loop is completely removed.
823   if (CompletelyUnroll)
824     LI->erase(L);
825 
826   // After complete unrolling most of the blocks should be contained in OuterL.
827   // However, some of them might happen to be out of OuterL (e.g. if they
828   // precede a loop exit). In this case we might need to insert PHI nodes in
829   // order to preserve LCSSA form.
830   // We don't need to check this if we already know that we need to fix LCSSA
831   // form.
832   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
833   // it should be possible to fix it in-place.
834   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
835     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
836 
837   // If we have a pass and a DominatorTree we should re-simplify impacted loops
838   // to ensure subsequent analyses can rely on this form. We want to simplify
839   // at least one layer outside of the loop that was unrolled so that any
840   // changes to the parent loop exposed by the unrolling are considered.
841   if (DT) {
842     if (OuterL) {
843       // OuterL includes all loops for which we can break loop-simplify, so
844       // it's sufficient to simplify only it (it'll recursively simplify inner
845       // loops too).
846       if (NeedToFixLCSSA) {
847         // LCSSA must be performed on the outermost affected loop. The unrolled
848         // loop's last loop latch is guaranteed to be in the outermost loop
849         // after LoopInfo's been updated by LoopInfo::erase.
850         Loop *LatchLoop = LI->getLoopFor(Latches.back());
851         Loop *FixLCSSALoop = OuterL;
852         if (!FixLCSSALoop->contains(LatchLoop))
853           while (FixLCSSALoop->getParentLoop() != LatchLoop)
854             FixLCSSALoop = FixLCSSALoop->getParentLoop();
855 
856         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
857       } else if (PreserveLCSSA) {
858         assert(OuterL->isLCSSAForm(*DT) &&
859                "Loops should be in LCSSA form after loop-unroll.");
860       }
861 
862       // TODO: That potentially might be compile-time expensive. We should try
863       // to fix the loop-simplified form incrementally.
864       simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
865     } else {
866       // Simplify loops for which we might've broken loop-simplify form.
867       for (Loop *SubLoop : LoopsToSimplify)
868         simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
869     }
870   }
871 
872   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
873                           : LoopUnrollResult::PartiallyUnrolled;
874 }
875 
876 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
877 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
878 /// such metadata node exists, then nullptr is returned.
879 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
880   // First operand should refer to the loop id itself.
881   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
882   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
883 
884   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
885     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
886     if (!MD)
887       continue;
888 
889     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
890     if (!S)
891       continue;
892 
893     if (Name.equals(S->getString()))
894       return MD;
895   }
896   return nullptr;
897 }
898