1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // It works best when loops have been canonicalized by the -indvars pass, 15 // allowing it to determine the trip counts of loops easily. 16 // 17 // The process of unrolling can produce extraneous basic blocks linked with 18 // unconditional branches. This will be corrected in the future. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #define DEBUG_TYPE "loop-unroll" 23 #include "llvm/Transforms/Utils/UnrollLoop.h" 24 #include "llvm/BasicBlock.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 using namespace llvm; 35 36 // TODO: Should these be here or in LoopUnroll? 37 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 38 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 39 40 /// RemapInstruction - Convert the instruction operands from referencing the 41 /// current values into those specified by VMap. 42 static inline void RemapInstruction(Instruction *I, 43 ValueToValueMapTy &VMap) { 44 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 45 Value *Op = I->getOperand(op); 46 ValueToValueMapTy::iterator It = VMap.find(Op); 47 if (It != VMap.end()) 48 I->setOperand(op, It->second); 49 } 50 } 51 52 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 53 /// only has one predecessor, and that predecessor only has one successor. 54 /// The LoopInfo Analysis that is passed will be kept consistent. 55 /// Returns the new combined block. 56 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) { 57 // Merge basic blocks into their predecessor if there is only one distinct 58 // pred, and if there is only one distinct successor of the predecessor, and 59 // if there are no PHI nodes. 60 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 61 if (!OnlyPred) return 0; 62 63 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 64 return 0; 65 66 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 67 68 // Resolve any PHI nodes at the start of the block. They are all 69 // guaranteed to have exactly one entry if they exist, unless there are 70 // multiple duplicate (but guaranteed to be equal) entries for the 71 // incoming edges. This occurs when there are multiple edges from 72 // OnlyPred to OnlySucc. 73 FoldSingleEntryPHINodes(BB); 74 75 // Delete the unconditional branch from the predecessor... 76 OnlyPred->getInstList().pop_back(); 77 78 // Move all definitions in the successor to the predecessor... 79 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 80 81 // Make all PHI nodes that referred to BB now refer to Pred as their 82 // source... 83 BB->replaceAllUsesWith(OnlyPred); 84 85 std::string OldName = BB->getName(); 86 87 // Erase basic block from the function... 88 LI->removeBlock(BB); 89 BB->eraseFromParent(); 90 91 // Inherit predecessor's name if it exists... 92 if (!OldName.empty() && !OnlyPred->hasName()) 93 OnlyPred->setName(OldName); 94 95 return OnlyPred; 96 } 97 98 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 99 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 100 /// can only fail when the loop's latch block is not terminated by a conditional 101 /// branch instruction. However, if the trip count (and multiple) are not known, 102 /// loop unrolling will mostly produce more code that is no faster. 103 /// 104 /// The LoopInfo Analysis that is passed will be kept consistent. 105 /// 106 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 107 /// removed from the LoopPassManager as well. LPM can also be NULL. 108 bool llvm::UnrollLoop(Loop *L, unsigned Count, 109 LoopInfo *LI, LPPassManager *LPM) { 110 BasicBlock *Preheader = L->getLoopPreheader(); 111 if (!Preheader) { 112 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 113 return false; 114 } 115 116 BasicBlock *LatchBlock = L->getLoopLatch(); 117 if (!LatchBlock) { 118 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 119 return false; 120 } 121 122 BasicBlock *Header = L->getHeader(); 123 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 124 125 if (!BI || BI->isUnconditional()) { 126 // The loop-rotate pass can be helpful to avoid this in many cases. 127 DEBUG(dbgs() << 128 " Can't unroll; loop not terminated by a conditional branch.\n"); 129 return false; 130 } 131 132 if (Header->hasAddressTaken()) { 133 // The loop-rotate pass can be helpful to avoid this in many cases. 134 DEBUG(dbgs() << 135 " Won't unroll loop: address of header block is taken.\n"); 136 return false; 137 } 138 139 // Notify ScalarEvolution that the loop will be substantially changed, 140 // if not outright eliminated. 141 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) 142 SE->forgetLoop(L); 143 144 // Find trip count 145 unsigned TripCount = L->getSmallConstantTripCount(); 146 // Find trip multiple if count is not available 147 unsigned TripMultiple = 1; 148 if (TripCount == 0) 149 TripMultiple = L->getSmallConstantTripMultiple(); 150 151 if (TripCount != 0) 152 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 153 if (TripMultiple != 1) 154 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 155 156 // Effectively "DCE" unrolled iterations that are beyond the tripcount 157 // and will never be executed. 158 if (TripCount != 0 && Count > TripCount) 159 Count = TripCount; 160 161 assert(Count > 0); 162 assert(TripMultiple > 0); 163 assert(TripCount == 0 || TripCount % TripMultiple == 0); 164 165 // Are we eliminating the loop control altogether? 166 bool CompletelyUnroll = Count == TripCount; 167 168 // If we know the trip count, we know the multiple... 169 unsigned BreakoutTrip = 0; 170 if (TripCount != 0) { 171 BreakoutTrip = TripCount % Count; 172 TripMultiple = 0; 173 } else { 174 // Figure out what multiple to use. 175 BreakoutTrip = TripMultiple = 176 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 177 } 178 179 if (CompletelyUnroll) { 180 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 181 << " with trip count " << TripCount << "!\n"); 182 } else { 183 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 184 << " by " << Count); 185 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 186 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 187 } else if (TripMultiple != 1) { 188 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 189 } 190 DEBUG(dbgs() << "!\n"); 191 } 192 193 std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); 194 195 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 196 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 197 198 // For the first iteration of the loop, we should use the precloned values for 199 // PHI nodes. Insert associations now. 200 ValueToValueMapTy LastValueMap; 201 std::vector<PHINode*> OrigPHINode; 202 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 203 PHINode *PN = cast<PHINode>(I); 204 OrigPHINode.push_back(PN); 205 if (Instruction *I = 206 dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock))) 207 if (L->contains(I)) 208 LastValueMap[I] = I; 209 } 210 211 std::vector<BasicBlock*> Headers; 212 std::vector<BasicBlock*> Latches; 213 Headers.push_back(Header); 214 Latches.push_back(LatchBlock); 215 216 for (unsigned It = 1; It != Count; ++It) { 217 std::vector<BasicBlock*> NewBlocks; 218 219 for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(), 220 E = LoopBlocks.end(); BB != E; ++BB) { 221 ValueToValueMapTy VMap; 222 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 223 Header->getParent()->getBasicBlockList().push_back(New); 224 225 // Loop over all of the PHI nodes in the block, changing them to use the 226 // incoming values from the previous block. 227 if (*BB == Header) 228 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 229 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 230 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 231 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 232 if (It > 1 && L->contains(InValI)) 233 InVal = LastValueMap[InValI]; 234 VMap[OrigPHINode[i]] = InVal; 235 New->getInstList().erase(NewPHI); 236 } 237 238 // Update our running map of newest clones 239 LastValueMap[*BB] = New; 240 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 241 VI != VE; ++VI) 242 LastValueMap[VI->first] = VI->second; 243 244 L->addBasicBlockToLoop(New, LI->getBase()); 245 246 // Add phi entries for newly created values to all exit blocks except 247 // the successor of the latch block. The successor of the exit block will 248 // be updated specially after unrolling all the way. 249 if (*BB != LatchBlock) 250 for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end(); 251 UI != UE;) { 252 Instruction *UseInst = cast<Instruction>(*UI); 253 ++UI; 254 if (isa<PHINode>(UseInst) && !L->contains(UseInst)) { 255 PHINode *phi = cast<PHINode>(UseInst); 256 Value *Incoming = phi->getIncomingValueForBlock(*BB); 257 phi->addIncoming(Incoming, New); 258 } 259 } 260 261 // Keep track of new headers and latches as we create them, so that 262 // we can insert the proper branches later. 263 if (*BB == Header) 264 Headers.push_back(New); 265 if (*BB == LatchBlock) { 266 Latches.push_back(New); 267 268 // Also, clear out the new latch's back edge so that it doesn't look 269 // like a new loop, so that it's amenable to being merged with adjacent 270 // blocks later on. 271 TerminatorInst *Term = New->getTerminator(); 272 assert(L->contains(Term->getSuccessor(!ContinueOnTrue))); 273 assert(Term->getSuccessor(ContinueOnTrue) == LoopExit); 274 Term->setSuccessor(!ContinueOnTrue, NULL); 275 } 276 277 NewBlocks.push_back(New); 278 } 279 280 // Remap all instructions in the most recent iteration 281 for (unsigned i = 0; i < NewBlocks.size(); ++i) 282 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 283 E = NewBlocks[i]->end(); I != E; ++I) 284 ::RemapInstruction(I, LastValueMap); 285 } 286 287 // The latch block exits the loop. If there are any PHI nodes in the 288 // successor blocks, update them to use the appropriate values computed as the 289 // last iteration of the loop. 290 if (Count != 1) { 291 SmallPtrSet<PHINode*, 8> Users; 292 for (Value::use_iterator UI = LatchBlock->use_begin(), 293 UE = LatchBlock->use_end(); UI != UE; ++UI) 294 if (PHINode *phi = dyn_cast<PHINode>(*UI)) 295 Users.insert(phi); 296 297 BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]); 298 for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end(); 299 SI != SE; ++SI) { 300 PHINode *PN = *SI; 301 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 302 // If this value was defined in the loop, take the value defined by the 303 // last iteration of the loop. 304 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 305 if (L->contains(InValI)) 306 InVal = LastValueMap[InVal]; 307 } 308 PN->addIncoming(InVal, LastIterationBB); 309 } 310 } 311 312 // Now, if we're doing complete unrolling, loop over the PHI nodes in the 313 // original block, setting them to their incoming values. 314 if (CompletelyUnroll) { 315 BasicBlock *Preheader = L->getLoopPreheader(); 316 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 317 PHINode *PN = OrigPHINode[i]; 318 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 319 Header->getInstList().erase(PN); 320 } 321 } 322 323 // Now that all the basic blocks for the unrolled iterations are in place, 324 // set up the branches to connect them. 325 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 326 // The original branch was replicated in each unrolled iteration. 327 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 328 329 // The branch destination. 330 unsigned j = (i + 1) % e; 331 BasicBlock *Dest = Headers[j]; 332 bool NeedConditional = true; 333 334 // For a complete unroll, make the last iteration end with a branch 335 // to the exit block. 336 if (CompletelyUnroll && j == 0) { 337 Dest = LoopExit; 338 NeedConditional = false; 339 } 340 341 // If we know the trip count or a multiple of it, we can safely use an 342 // unconditional branch for some iterations. 343 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 344 NeedConditional = false; 345 } 346 347 if (NeedConditional) { 348 // Update the conditional branch's successor for the following 349 // iteration. 350 Term->setSuccessor(!ContinueOnTrue, Dest); 351 } else { 352 // Replace the conditional branch with an unconditional one. 353 BranchInst::Create(Dest, Term); 354 Term->eraseFromParent(); 355 // Merge adjacent basic blocks, if possible. 356 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) { 357 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 358 std::replace(Headers.begin(), Headers.end(), Dest, Fold); 359 } 360 } 361 } 362 363 // At this point, the code is well formed. We now do a quick sweep over the 364 // inserted code, doing constant propagation and dead code elimination as we 365 // go. 366 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 367 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 368 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 369 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 370 Instruction *Inst = I++; 371 372 if (isInstructionTriviallyDead(Inst)) 373 (*BB)->getInstList().erase(Inst); 374 else if (Value *V = SimplifyInstruction(Inst)) 375 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 376 Inst->replaceAllUsesWith(V); 377 (*BB)->getInstList().erase(Inst); 378 } 379 } 380 381 NumCompletelyUnrolled += CompletelyUnroll; 382 ++NumUnrolled; 383 // Remove the loop from the LoopPassManager if it's completely removed. 384 if (CompletelyUnroll && LPM != NULL) 385 LPM->deleteLoopFromQueue(L); 386 387 return true; 388 } 389