1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loopsimplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/Function.h" 45 #include "llvm/LLVMContext.h" 46 #include "llvm/Type.h" 47 #include "llvm/Analysis/AliasAnalysis.h" 48 #include "llvm/Analysis/Dominators.h" 49 #include "llvm/Analysis/LoopPass.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Support/CFG.h" 54 #include "llvm/ADT/SetOperations.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/ADT/DepthFirstIterator.h" 58 using namespace llvm; 59 60 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 61 STATISTIC(NumNested , "Number of nested loops split out"); 62 63 namespace { 64 struct LoopSimplify : public LoopPass { 65 static char ID; // Pass identification, replacement for typeid 66 LoopSimplify() : LoopPass(&ID) {} 67 68 // AA - If we have an alias analysis object to update, this is it, otherwise 69 // this is null. 70 AliasAnalysis *AA; 71 LoopInfo *LI; 72 DominatorTree *DT; 73 Loop *L; 74 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 75 76 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 77 // We need loop information to identify the loops... 78 AU.addRequiredTransitive<LoopInfo>(); 79 AU.addRequiredTransitive<DominatorTree>(); 80 81 AU.addPreserved<LoopInfo>(); 82 AU.addPreserved<DominatorTree>(); 83 AU.addPreserved<DominanceFrontier>(); 84 AU.addPreserved<AliasAnalysis>(); 85 AU.addPreserved<ScalarEvolution>(); 86 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 87 } 88 89 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 90 void verifyAnalysis() const; 91 92 private: 93 bool ProcessLoop(Loop *L, LPPassManager &LPM); 94 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 95 BasicBlock *InsertPreheaderForLoop(Loop *L); 96 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM); 97 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 98 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 99 SmallVectorImpl<BasicBlock*> &SplitPreds, 100 Loop *L); 101 }; 102 } 103 104 char LoopSimplify::ID = 0; 105 static RegisterPass<LoopSimplify> 106 X("loopsimplify", "Canonicalize natural loops", true); 107 108 // Publically exposed interface to pass... 109 const PassInfo *const llvm::LoopSimplifyID = &X; 110 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 111 112 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 113 /// it in any convenient order) inserting preheaders... 114 /// 115 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 116 L = l; 117 bool Changed = false; 118 LI = &getAnalysis<LoopInfo>(); 119 AA = getAnalysisIfAvailable<AliasAnalysis>(); 120 DT = &getAnalysis<DominatorTree>(); 121 122 Changed |= ProcessLoop(L, LPM); 123 124 return Changed; 125 } 126 127 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 128 /// all loops have preheaders. 129 /// 130 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 131 bool Changed = false; 132 ReprocessLoop: 133 134 // Check to see that no blocks (other than the header) in this loop that has 135 // predecessors that are not in the loop. This is not valid for natural 136 // loops, but can occur if the blocks are unreachable. Since they are 137 // unreachable we can just shamelessly delete those CFG edges! 138 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 139 BB != E; ++BB) { 140 if (*BB == L->getHeader()) continue; 141 142 SmallPtrSet<BasicBlock *, 4> BadPreds; 143 for (pred_iterator PI = pred_begin(*BB), PE = pred_end(*BB); PI != PE; ++PI) 144 if (!L->contains(*PI)) 145 BadPreds.insert(*PI); 146 147 // Delete each unique out-of-loop (and thus dead) predecessor. 148 for (SmallPtrSet<BasicBlock *, 4>::iterator I = BadPreds.begin(), 149 E = BadPreds.end(); I != E; ++I) { 150 // Inform each successor of each dead pred. 151 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 152 (*SI)->removePredecessor(*I); 153 // Zap the dead pred's terminator and replace it with unreachable. 154 TerminatorInst *TI = (*I)->getTerminator(); 155 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 156 (*I)->getTerminator()->eraseFromParent(); 157 new UnreachableInst((*I)->getContext(), *I); 158 Changed = true; 159 } 160 } 161 162 // Does the loop already have a preheader? If so, don't insert one. 163 BasicBlock *Preheader = L->getLoopPreheader(); 164 if (!Preheader) { 165 Preheader = InsertPreheaderForLoop(L); 166 if (Preheader) { 167 NumInserted++; 168 Changed = true; 169 } 170 } 171 172 // Next, check to make sure that all exit nodes of the loop only have 173 // predecessors that are inside of the loop. This check guarantees that the 174 // loop preheader/header will dominate the exit blocks. If the exit block has 175 // predecessors from outside of the loop, split the edge now. 176 SmallVector<BasicBlock*, 8> ExitBlocks; 177 L->getExitBlocks(ExitBlocks); 178 179 SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end()); 180 for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(), 181 E = ExitBlockSet.end(); I != E; ++I) { 182 BasicBlock *ExitBlock = *I; 183 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 184 PI != PE; ++PI) 185 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 186 // allowed. 187 if (!L->contains(*PI)) { 188 if (RewriteLoopExitBlock(L, ExitBlock)) { 189 NumInserted++; 190 Changed = true; 191 } 192 break; 193 } 194 } 195 196 // If the header has more than two predecessors at this point (from the 197 // preheader and from multiple backedges), we must adjust the loop. 198 BasicBlock *LoopLatch = L->getLoopLatch(); 199 if (!LoopLatch) { 200 // If this is really a nested loop, rip it out into a child loop. Don't do 201 // this for loops with a giant number of backedges, just factor them into a 202 // common backedge instead. 203 if (L->getNumBackEdges() < 8) { 204 if (SeparateNestedLoop(L, LPM)) { 205 ++NumNested; 206 // This is a big restructuring change, reprocess the whole loop. 207 Changed = true; 208 // GCC doesn't tail recursion eliminate this. 209 goto ReprocessLoop; 210 } 211 } 212 213 // If we either couldn't, or didn't want to, identify nesting of the loops, 214 // insert a new block that all backedges target, then make it jump to the 215 // loop header. 216 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 217 if (LoopLatch) { 218 NumInserted++; 219 Changed = true; 220 } 221 } 222 223 // Scan over the PHI nodes in the loop header. Since they now have only two 224 // incoming values (the loop is canonicalized), we may have simplified the PHI 225 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 226 PHINode *PN; 227 for (BasicBlock::iterator I = L->getHeader()->begin(); 228 (PN = dyn_cast<PHINode>(I++)); ) 229 if (Value *V = PN->hasConstantValue(DT)) { 230 if (AA) AA->deleteValue(PN); 231 PN->replaceAllUsesWith(V); 232 PN->eraseFromParent(); 233 } 234 235 // If this loop has muliple exits and the exits all go to the same 236 // block, attempt to merge the exits. This helps several passes, such 237 // as LoopRotation, which do not support loops with multiple exits. 238 // SimplifyCFG also does this (and this code uses the same utility 239 // function), however this code is loop-aware, where SimplifyCFG is 240 // not. That gives it the advantage of being able to hoist 241 // loop-invariant instructions out of the way to open up more 242 // opportunities, and the disadvantage of having the responsibility 243 // to preserve dominator information. 244 bool UniqueExit = true; 245 if (!ExitBlocks.empty()) 246 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 247 if (ExitBlocks[i] != ExitBlocks[0]) { 248 UniqueExit = false; 249 break; 250 } 251 if (UniqueExit) { 252 SmallVector<BasicBlock*, 8> ExitingBlocks; 253 L->getExitingBlocks(ExitingBlocks); 254 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 255 BasicBlock *ExitingBlock = ExitingBlocks[i]; 256 if (!ExitingBlock->getSinglePredecessor()) continue; 257 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 258 if (!BI || !BI->isConditional()) continue; 259 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 260 if (!CI || CI->getParent() != ExitingBlock) continue; 261 262 // Attempt to hoist out all instructions except for the 263 // comparison and the branch. 264 bool AllInvariant = true; 265 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 266 Instruction *Inst = I++; 267 if (Inst == CI) 268 continue; 269 if (!L->makeLoopInvariant(Inst, Changed, 270 Preheader ? Preheader->getTerminator() : 0)) { 271 AllInvariant = false; 272 break; 273 } 274 } 275 if (!AllInvariant) continue; 276 277 // The block has now been cleared of all instructions except for 278 // a comparison and a conditional branch. SimplifyCFG may be able 279 // to fold it now. 280 if (!FoldBranchToCommonDest(BI)) continue; 281 282 // Success. The block is now dead, so remove it from the loop, 283 // update the dominator tree and dominance frontier, and delete it. 284 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 285 Changed = true; 286 LI->removeBlock(ExitingBlock); 287 288 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>(); 289 DomTreeNode *Node = DT->getNode(ExitingBlock); 290 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 291 Node->getChildren(); 292 while (!Children.empty()) { 293 DomTreeNode *Child = Children.front(); 294 DT->changeImmediateDominator(Child, Node->getIDom()); 295 if (DF) DF->changeImmediateDominator(Child->getBlock(), 296 Node->getIDom()->getBlock(), 297 DT); 298 } 299 DT->eraseNode(ExitingBlock); 300 if (DF) DF->removeBlock(ExitingBlock); 301 302 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 303 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 304 ExitingBlock->eraseFromParent(); 305 } 306 } 307 308 // If there are duplicate phi nodes (for example, from loop rotation), 309 // get rid of them. 310 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 311 BB != E; ++BB) 312 EliminateDuplicatePHINodes(*BB); 313 314 return Changed; 315 } 316 317 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 318 /// preheader, this method is called to insert one. This method has two phases: 319 /// preheader insertion and analysis updating. 320 /// 321 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 322 BasicBlock *Header = L->getHeader(); 323 324 // Compute the set of predecessors of the loop that are not in the loop. 325 SmallVector<BasicBlock*, 8> OutsideBlocks; 326 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 327 PI != PE; ++PI) 328 if (!L->contains(*PI)) { // Coming in from outside the loop? 329 // If the loop is branched to from an indirect branch, we won't 330 // be able to fully transform the loop, because it prohibits 331 // edge splitting. 332 if (isa<IndirectBrInst>((*PI)->getTerminator())) return 0; 333 334 // Keep track of it. 335 OutsideBlocks.push_back(*PI); 336 } 337 338 // Split out the loop pre-header. 339 BasicBlock *NewBB = 340 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), 341 ".preheader", this); 342 343 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 344 // code layout too horribly. 345 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); 346 347 return NewBB; 348 } 349 350 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 351 /// blocks. This method is used to split exit blocks that have predecessors 352 /// outside of the loop. 353 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 354 SmallVector<BasicBlock*, 8> LoopBlocks; 355 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) 356 if (L->contains(*I)) { 357 // Don't do this if the loop is exited via an indirect branch. 358 if (isa<IndirectBrInst>((*I)->getTerminator())) return 0; 359 360 LoopBlocks.push_back(*I); 361 } 362 363 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 364 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 365 LoopBlocks.size(), ".loopexit", 366 this); 367 368 return NewBB; 369 } 370 371 /// AddBlockAndPredsToSet - Add the specified block, and all of its 372 /// predecessors, to the specified set, if it's not already in there. Stop 373 /// predecessor traversal when we reach StopBlock. 374 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 375 std::set<BasicBlock*> &Blocks) { 376 std::vector<BasicBlock *> WorkList; 377 WorkList.push_back(InputBB); 378 do { 379 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 380 if (Blocks.insert(BB).second && BB != StopBlock) 381 // If BB is not already processed and it is not a stop block then 382 // insert its predecessor in the work list 383 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 384 BasicBlock *WBB = *I; 385 WorkList.push_back(WBB); 386 } 387 } while(!WorkList.empty()); 388 } 389 390 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 391 /// PHI node that tells us how to partition the loops. 392 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 393 AliasAnalysis *AA) { 394 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 395 PHINode *PN = cast<PHINode>(I); 396 ++I; 397 if (Value *V = PN->hasConstantValue(DT)) { 398 // This is a degenerate PHI already, don't modify it! 399 PN->replaceAllUsesWith(V); 400 if (AA) AA->deleteValue(PN); 401 PN->eraseFromParent(); 402 continue; 403 } 404 405 // Scan this PHI node looking for a use of the PHI node by itself. 406 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 407 if (PN->getIncomingValue(i) == PN && 408 L->contains(PN->getIncomingBlock(i))) 409 // We found something tasty to remove. 410 return PN; 411 } 412 return 0; 413 } 414 415 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 416 // right after some 'outside block' block. This prevents the preheader from 417 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 418 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 419 SmallVectorImpl<BasicBlock*> &SplitPreds, 420 Loop *L) { 421 // Check to see if NewBB is already well placed. 422 Function::iterator BBI = NewBB; --BBI; 423 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 424 if (&*BBI == SplitPreds[i]) 425 return; 426 } 427 428 // If it isn't already after an outside block, move it after one. This is 429 // always good as it makes the uncond branch from the outside block into a 430 // fall-through. 431 432 // Figure out *which* outside block to put this after. Prefer an outside 433 // block that neighbors a BB actually in the loop. 434 BasicBlock *FoundBB = 0; 435 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 436 Function::iterator BBI = SplitPreds[i]; 437 if (++BBI != NewBB->getParent()->end() && 438 L->contains(BBI)) { 439 FoundBB = SplitPreds[i]; 440 break; 441 } 442 } 443 444 // If our heuristic for a *good* bb to place this after doesn't find 445 // anything, just pick something. It's likely better than leaving it within 446 // the loop. 447 if (!FoundBB) 448 FoundBB = SplitPreds[0]; 449 NewBB->moveAfter(FoundBB); 450 } 451 452 453 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 454 /// them out into a nested loop. This is important for code that looks like 455 /// this: 456 /// 457 /// Loop: 458 /// ... 459 /// br cond, Loop, Next 460 /// ... 461 /// br cond2, Loop, Out 462 /// 463 /// To identify this common case, we look at the PHI nodes in the header of the 464 /// loop. PHI nodes with unchanging values on one backedge correspond to values 465 /// that change in the "outer" loop, but not in the "inner" loop. 466 /// 467 /// If we are able to separate out a loop, return the new outer loop that was 468 /// created. 469 /// 470 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) { 471 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA); 472 if (PN == 0) return 0; // No known way to partition. 473 474 // Pull out all predecessors that have varying values in the loop. This 475 // handles the case when a PHI node has multiple instances of itself as 476 // arguments. 477 SmallVector<BasicBlock*, 8> OuterLoopPreds; 478 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 479 if (PN->getIncomingValue(i) != PN || 480 !L->contains(PN->getIncomingBlock(i))) { 481 // We can't split indirectbr edges. 482 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 483 return 0; 484 485 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 486 } 487 488 BasicBlock *Header = L->getHeader(); 489 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], 490 OuterLoopPreds.size(), 491 ".outer", this); 492 493 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 494 // code layout too horribly. 495 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 496 497 // Create the new outer loop. 498 Loop *NewOuter = new Loop(); 499 500 // Change the parent loop to use the outer loop as its child now. 501 if (Loop *Parent = L->getParentLoop()) 502 Parent->replaceChildLoopWith(L, NewOuter); 503 else 504 LI->changeTopLevelLoop(L, NewOuter); 505 506 // L is now a subloop of our outer loop. 507 NewOuter->addChildLoop(L); 508 509 // Add the new loop to the pass manager queue. 510 LPM.insertLoopIntoQueue(NewOuter); 511 512 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 513 I != E; ++I) 514 NewOuter->addBlockEntry(*I); 515 516 // Now reset the header in L, which had been moved by 517 // SplitBlockPredecessors for the outer loop. 518 L->moveToHeader(Header); 519 520 // Determine which blocks should stay in L and which should be moved out to 521 // the Outer loop now. 522 std::set<BasicBlock*> BlocksInL; 523 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) 524 if (DT->dominates(Header, *PI)) 525 AddBlockAndPredsToSet(*PI, Header, BlocksInL); 526 527 528 // Scan all of the loop children of L, moving them to OuterLoop if they are 529 // not part of the inner loop. 530 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 531 for (size_t I = 0; I != SubLoops.size(); ) 532 if (BlocksInL.count(SubLoops[I]->getHeader())) 533 ++I; // Loop remains in L 534 else 535 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 536 537 // Now that we know which blocks are in L and which need to be moved to 538 // OuterLoop, move any blocks that need it. 539 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 540 BasicBlock *BB = L->getBlocks()[i]; 541 if (!BlocksInL.count(BB)) { 542 // Move this block to the parent, updating the exit blocks sets 543 L->removeBlockFromLoop(BB); 544 if ((*LI)[BB] == L) 545 LI->changeLoopFor(BB, NewOuter); 546 --i; 547 } 548 } 549 550 return NewOuter; 551 } 552 553 554 555 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 556 /// has more than one backedge in it. If this occurs, revector all of these 557 /// backedges to target a new basic block and have that block branch to the loop 558 /// header. This ensures that loops have exactly one backedge. 559 /// 560 BasicBlock * 561 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 562 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 563 564 // Get information about the loop 565 BasicBlock *Header = L->getHeader(); 566 Function *F = Header->getParent(); 567 568 // Unique backedge insertion currently depends on having a preheader. 569 if (!Preheader) 570 return 0; 571 572 // Figure out which basic blocks contain back-edges to the loop header. 573 std::vector<BasicBlock*> BackedgeBlocks; 574 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I) 575 if (*I != Preheader) BackedgeBlocks.push_back(*I); 576 577 // Create and insert the new backedge block... 578 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 579 Header->getName()+".backedge", F); 580 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 581 582 // Move the new backedge block to right after the last backedge block. 583 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 584 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 585 586 // Now that the block has been inserted into the function, create PHI nodes in 587 // the backedge block which correspond to any PHI nodes in the header block. 588 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 589 PHINode *PN = cast<PHINode>(I); 590 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", 591 BETerminator); 592 NewPN->reserveOperandSpace(BackedgeBlocks.size()); 593 if (AA) AA->copyValue(PN, NewPN); 594 595 // Loop over the PHI node, moving all entries except the one for the 596 // preheader over to the new PHI node. 597 unsigned PreheaderIdx = ~0U; 598 bool HasUniqueIncomingValue = true; 599 Value *UniqueValue = 0; 600 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 601 BasicBlock *IBB = PN->getIncomingBlock(i); 602 Value *IV = PN->getIncomingValue(i); 603 if (IBB == Preheader) { 604 PreheaderIdx = i; 605 } else { 606 NewPN->addIncoming(IV, IBB); 607 if (HasUniqueIncomingValue) { 608 if (UniqueValue == 0) 609 UniqueValue = IV; 610 else if (UniqueValue != IV) 611 HasUniqueIncomingValue = false; 612 } 613 } 614 } 615 616 // Delete all of the incoming values from the old PN except the preheader's 617 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 618 if (PreheaderIdx != 0) { 619 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 620 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 621 } 622 // Nuke all entries except the zero'th. 623 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 624 PN->removeIncomingValue(e-i, false); 625 626 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 627 PN->addIncoming(NewPN, BEBlock); 628 629 // As an optimization, if all incoming values in the new PhiNode (which is a 630 // subset of the incoming values of the old PHI node) have the same value, 631 // eliminate the PHI Node. 632 if (HasUniqueIncomingValue) { 633 NewPN->replaceAllUsesWith(UniqueValue); 634 if (AA) AA->deleteValue(NewPN); 635 BEBlock->getInstList().erase(NewPN); 636 } 637 } 638 639 // Now that all of the PHI nodes have been inserted and adjusted, modify the 640 // backedge blocks to just to the BEBlock instead of the header. 641 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 642 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 643 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 644 if (TI->getSuccessor(Op) == Header) 645 TI->setSuccessor(Op, BEBlock); 646 } 647 648 //===--- Update all analyses which we must preserve now -----------------===// 649 650 // Update Loop Information - we know that this block is now in the current 651 // loop and all parent loops. 652 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 653 654 // Update dominator information 655 DT->splitBlock(BEBlock); 656 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) 657 DF->splitBlock(BEBlock); 658 659 return BEBlock; 660 } 661 662 void LoopSimplify::verifyAnalysis() const { 663 // It used to be possible to just assert L->isLoopSimplifyForm(), however 664 // with the introduction of indirectbr, there are now cases where it's 665 // not possible to transform a loop as necessary. We can at least check 666 // that there is an indirectbr near any time there's trouble. 667 668 // Indirectbr can interfere with preheader and unique backedge insertion. 669 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 670 bool HasIndBrPred = false; 671 for (pred_iterator PI = pred_begin(L->getHeader()), 672 PE = pred_end(L->getHeader()); PI != PE; ++PI) 673 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 674 HasIndBrPred = true; 675 break; 676 } 677 assert(HasIndBrPred && 678 "LoopSimplify has no excuse for missing loop header info!"); 679 } 680 681 // Indirectbr can interfere with exit block canonicalization. 682 if (!L->hasDedicatedExits()) { 683 bool HasIndBrExiting = false; 684 SmallVector<BasicBlock*, 8> ExitingBlocks; 685 L->getExitingBlocks(ExitingBlocks); 686 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) 687 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 688 HasIndBrExiting = true; 689 break; 690 } 691 assert(HasIndBrExiting && 692 "LoopSimplify has no excuse for missing exit block info!"); 693 } 694 } 695