1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/DependenceAnalysis.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include "llvm/Transforms/Utils/LoopUtils.h" 66 using namespace llvm; 67 68 #define DEBUG_TYPE "loop-simplify" 69 70 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 71 STATISTIC(NumNested , "Number of nested loops split out"); 72 73 // If the block isn't already, move the new block to right after some 'outside 74 // block' block. This prevents the preheader from being placed inside the loop 75 // body, e.g. when the loop hasn't been rotated. 76 static void placeSplitBlockCarefully(BasicBlock *NewBB, 77 SmallVectorImpl<BasicBlock *> &SplitPreds, 78 Loop *L) { 79 // Check to see if NewBB is already well placed. 80 Function::iterator BBI = NewBB; --BBI; 81 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 82 if (&*BBI == SplitPreds[i]) 83 return; 84 } 85 86 // If it isn't already after an outside block, move it after one. This is 87 // always good as it makes the uncond branch from the outside block into a 88 // fall-through. 89 90 // Figure out *which* outside block to put this after. Prefer an outside 91 // block that neighbors a BB actually in the loop. 92 BasicBlock *FoundBB = nullptr; 93 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 94 Function::iterator BBI = SplitPreds[i]; 95 if (++BBI != NewBB->getParent()->end() && 96 L->contains(BBI)) { 97 FoundBB = SplitPreds[i]; 98 break; 99 } 100 } 101 102 // If our heuristic for a *good* bb to place this after doesn't find 103 // anything, just pick something. It's likely better than leaving it within 104 // the loop. 105 if (!FoundBB) 106 FoundBB = SplitPreds[0]; 107 NewBB->moveAfter(FoundBB); 108 } 109 110 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 111 /// preheader, this method is called to insert one. This method has two phases: 112 /// preheader insertion and analysis updating. 113 /// 114 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 115 BasicBlock *Header = L->getHeader(); 116 117 // Get analyses that we try to update. 118 auto *AA = PP->getAnalysisIfAvailable<AliasAnalysis>(); 119 auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 120 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 121 auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 122 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 123 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 124 125 // Compute the set of predecessors of the loop that are not in the loop. 126 SmallVector<BasicBlock*, 8> OutsideBlocks; 127 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 128 PI != PE; ++PI) { 129 BasicBlock *P = *PI; 130 if (!L->contains(P)) { // Coming in from outside the loop? 131 // If the loop is branched to from an indirect branch, we won't 132 // be able to fully transform the loop, because it prohibits 133 // edge splitting. 134 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 135 136 // Keep track of it. 137 OutsideBlocks.push_back(P); 138 } 139 } 140 141 // Split out the loop pre-header. 142 BasicBlock *PreheaderBB; 143 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 144 AA, DT, LI, PreserveLCSSA); 145 146 PreheaderBB->getTerminator()->setDebugLoc( 147 Header->getFirstNonPHI()->getDebugLoc()); 148 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 149 << PreheaderBB->getName() << "\n"); 150 151 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 152 // code layout too horribly. 153 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 154 155 return PreheaderBB; 156 } 157 158 /// \brief Ensure that the loop preheader dominates all exit blocks. 159 /// 160 /// This method is used to split exit blocks that have predecessors outside of 161 /// the loop. 162 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, 163 AliasAnalysis *AA, DominatorTree *DT, 164 LoopInfo *LI, Pass *PP) { 165 SmallVector<BasicBlock*, 8> LoopBlocks; 166 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 167 BasicBlock *P = *I; 168 if (L->contains(P)) { 169 // Don't do this if the loop is exited via an indirect branch. 170 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 171 172 LoopBlocks.push_back(P); 173 } 174 } 175 176 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 177 BasicBlock *NewExitBB = nullptr; 178 179 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 180 181 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", AA, DT, 182 LI, PreserveLCSSA); 183 184 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 185 << NewExitBB->getName() << "\n"); 186 return NewExitBB; 187 } 188 189 /// Add the specified block, and all of its predecessors, to the specified set, 190 /// if it's not already in there. Stop predecessor traversal when we reach 191 /// StopBlock. 192 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 193 std::set<BasicBlock*> &Blocks) { 194 SmallVector<BasicBlock *, 8> Worklist; 195 Worklist.push_back(InputBB); 196 do { 197 BasicBlock *BB = Worklist.pop_back_val(); 198 if (Blocks.insert(BB).second && BB != StopBlock) 199 // If BB is not already processed and it is not a stop block then 200 // insert its predecessor in the work list 201 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 202 BasicBlock *WBB = *I; 203 Worklist.push_back(WBB); 204 } 205 } while (!Worklist.empty()); 206 } 207 208 /// \brief The first part of loop-nestification is to find a PHI node that tells 209 /// us how to partition the loops. 210 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA, 211 DominatorTree *DT, 212 AssumptionCache *AC) { 213 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 214 PHINode *PN = cast<PHINode>(I); 215 ++I; 216 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) { 217 // This is a degenerate PHI already, don't modify it! 218 PN->replaceAllUsesWith(V); 219 if (AA) AA->deleteValue(PN); 220 PN->eraseFromParent(); 221 continue; 222 } 223 224 // Scan this PHI node looking for a use of the PHI node by itself. 225 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 226 if (PN->getIncomingValue(i) == PN && 227 L->contains(PN->getIncomingBlock(i))) 228 // We found something tasty to remove. 229 return PN; 230 } 231 return nullptr; 232 } 233 234 /// \brief If this loop has multiple backedges, try to pull one of them out into 235 /// a nested loop. 236 /// 237 /// This is important for code that looks like 238 /// this: 239 /// 240 /// Loop: 241 /// ... 242 /// br cond, Loop, Next 243 /// ... 244 /// br cond2, Loop, Out 245 /// 246 /// To identify this common case, we look at the PHI nodes in the header of the 247 /// loop. PHI nodes with unchanging values on one backedge correspond to values 248 /// that change in the "outer" loop, but not in the "inner" loop. 249 /// 250 /// If we are able to separate out a loop, return the new outer loop that was 251 /// created. 252 /// 253 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 254 AliasAnalysis *AA, DominatorTree *DT, 255 LoopInfo *LI, ScalarEvolution *SE, Pass *PP, 256 AssumptionCache *AC) { 257 // Don't try to separate loops without a preheader. 258 if (!Preheader) 259 return nullptr; 260 261 // The header is not a landing pad; preheader insertion should ensure this. 262 assert(!L->getHeader()->isLandingPad() && 263 "Can't insert backedge to landing pad"); 264 265 PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AC); 266 if (!PN) return nullptr; // No known way to partition. 267 268 // Pull out all predecessors that have varying values in the loop. This 269 // handles the case when a PHI node has multiple instances of itself as 270 // arguments. 271 SmallVector<BasicBlock*, 8> OuterLoopPreds; 272 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 273 if (PN->getIncomingValue(i) != PN || 274 !L->contains(PN->getIncomingBlock(i))) { 275 // We can't split indirectbr edges. 276 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 277 return nullptr; 278 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 279 } 280 } 281 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 282 283 // If ScalarEvolution is around and knows anything about values in 284 // this loop, tell it to forget them, because we're about to 285 // substantially change it. 286 if (SE) 287 SE->forgetLoop(L); 288 289 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 290 291 BasicBlock *Header = L->getHeader(); 292 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 293 AA, DT, LI, PreserveLCSSA); 294 295 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 296 // code layout too horribly. 297 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 298 299 // Create the new outer loop. 300 Loop *NewOuter = new Loop(); 301 302 // Change the parent loop to use the outer loop as its child now. 303 if (Loop *Parent = L->getParentLoop()) 304 Parent->replaceChildLoopWith(L, NewOuter); 305 else 306 LI->changeTopLevelLoop(L, NewOuter); 307 308 // L is now a subloop of our outer loop. 309 NewOuter->addChildLoop(L); 310 311 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 312 I != E; ++I) 313 NewOuter->addBlockEntry(*I); 314 315 // Now reset the header in L, which had been moved by 316 // SplitBlockPredecessors for the outer loop. 317 L->moveToHeader(Header); 318 319 // Determine which blocks should stay in L and which should be moved out to 320 // the Outer loop now. 321 std::set<BasicBlock*> BlocksInL; 322 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 323 BasicBlock *P = *PI; 324 if (DT->dominates(Header, P)) 325 addBlockAndPredsToSet(P, Header, BlocksInL); 326 } 327 328 // Scan all of the loop children of L, moving them to OuterLoop if they are 329 // not part of the inner loop. 330 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 331 for (size_t I = 0; I != SubLoops.size(); ) 332 if (BlocksInL.count(SubLoops[I]->getHeader())) 333 ++I; // Loop remains in L 334 else 335 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 336 337 // Now that we know which blocks are in L and which need to be moved to 338 // OuterLoop, move any blocks that need it. 339 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 340 BasicBlock *BB = L->getBlocks()[i]; 341 if (!BlocksInL.count(BB)) { 342 // Move this block to the parent, updating the exit blocks sets 343 L->removeBlockFromLoop(BB); 344 if ((*LI)[BB] == L) 345 LI->changeLoopFor(BB, NewOuter); 346 --i; 347 } 348 } 349 350 return NewOuter; 351 } 352 353 /// \brief This method is called when the specified loop has more than one 354 /// backedge in it. 355 /// 356 /// If this occurs, revector all of these backedges to target a new basic block 357 /// and have that block branch to the loop header. This ensures that loops 358 /// have exactly one backedge. 359 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 360 AliasAnalysis *AA, 361 DominatorTree *DT, LoopInfo *LI) { 362 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 363 364 // Get information about the loop 365 BasicBlock *Header = L->getHeader(); 366 Function *F = Header->getParent(); 367 368 // Unique backedge insertion currently depends on having a preheader. 369 if (!Preheader) 370 return nullptr; 371 372 // The header is not a landing pad; preheader insertion should ensure this. 373 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 374 375 // Figure out which basic blocks contain back-edges to the loop header. 376 std::vector<BasicBlock*> BackedgeBlocks; 377 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 378 BasicBlock *P = *I; 379 380 // Indirectbr edges cannot be split, so we must fail if we find one. 381 if (isa<IndirectBrInst>(P->getTerminator())) 382 return nullptr; 383 384 if (P != Preheader) BackedgeBlocks.push_back(P); 385 } 386 387 // Create and insert the new backedge block... 388 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 389 Header->getName()+".backedge", F); 390 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 391 392 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 393 << BEBlock->getName() << "\n"); 394 395 // Move the new backedge block to right after the last backedge block. 396 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 397 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 398 399 // Now that the block has been inserted into the function, create PHI nodes in 400 // the backedge block which correspond to any PHI nodes in the header block. 401 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 402 PHINode *PN = cast<PHINode>(I); 403 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 404 PN->getName()+".be", BETerminator); 405 if (AA) AA->copyValue(PN, NewPN); 406 407 // Loop over the PHI node, moving all entries except the one for the 408 // preheader over to the new PHI node. 409 unsigned PreheaderIdx = ~0U; 410 bool HasUniqueIncomingValue = true; 411 Value *UniqueValue = nullptr; 412 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 413 BasicBlock *IBB = PN->getIncomingBlock(i); 414 Value *IV = PN->getIncomingValue(i); 415 if (IBB == Preheader) { 416 PreheaderIdx = i; 417 } else { 418 NewPN->addIncoming(IV, IBB); 419 if (HasUniqueIncomingValue) { 420 if (!UniqueValue) 421 UniqueValue = IV; 422 else if (UniqueValue != IV) 423 HasUniqueIncomingValue = false; 424 } 425 } 426 } 427 428 // Delete all of the incoming values from the old PN except the preheader's 429 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 430 if (PreheaderIdx != 0) { 431 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 432 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 433 } 434 // Nuke all entries except the zero'th. 435 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 436 PN->removeIncomingValue(e-i, false); 437 438 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 439 PN->addIncoming(NewPN, BEBlock); 440 441 // As an optimization, if all incoming values in the new PhiNode (which is a 442 // subset of the incoming values of the old PHI node) have the same value, 443 // eliminate the PHI Node. 444 if (HasUniqueIncomingValue) { 445 NewPN->replaceAllUsesWith(UniqueValue); 446 if (AA) AA->deleteValue(NewPN); 447 BEBlock->getInstList().erase(NewPN); 448 } 449 } 450 451 // Now that all of the PHI nodes have been inserted and adjusted, modify the 452 // backedge blocks to just to the BEBlock instead of the header. 453 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 454 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 455 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 456 if (TI->getSuccessor(Op) == Header) 457 TI->setSuccessor(Op, BEBlock); 458 } 459 460 //===--- Update all analyses which we must preserve now -----------------===// 461 462 // Update Loop Information - we know that this block is now in the current 463 // loop and all parent loops. 464 L->addBasicBlockToLoop(BEBlock, *LI); 465 466 // Update dominator information 467 DT->splitBlock(BEBlock); 468 469 return BEBlock; 470 } 471 472 /// \brief Simplify one loop and queue further loops for simplification. 473 /// 474 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 475 /// Pass pointer. The Pass pointer is used by numerous utilities to update 476 /// specific analyses. Rather than a pass it would be much cleaner and more 477 /// explicit if they accepted the analysis directly and then updated it. 478 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 479 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 480 ScalarEvolution *SE, Pass *PP, const DataLayout *DL, 481 AssumptionCache *AC) { 482 bool Changed = false; 483 ReprocessLoop: 484 485 // Check to see that no blocks (other than the header) in this loop have 486 // predecessors that are not in the loop. This is not valid for natural 487 // loops, but can occur if the blocks are unreachable. Since they are 488 // unreachable we can just shamelessly delete those CFG edges! 489 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 490 BB != E; ++BB) { 491 if (*BB == L->getHeader()) continue; 492 493 SmallPtrSet<BasicBlock*, 4> BadPreds; 494 for (pred_iterator PI = pred_begin(*BB), 495 PE = pred_end(*BB); PI != PE; ++PI) { 496 BasicBlock *P = *PI; 497 if (!L->contains(P)) 498 BadPreds.insert(P); 499 } 500 501 // Delete each unique out-of-loop (and thus dead) predecessor. 502 for (BasicBlock *P : BadPreds) { 503 504 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 505 << P->getName() << "\n"); 506 507 // Inform each successor of each dead pred. 508 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI) 509 (*SI)->removePredecessor(P); 510 // Zap the dead pred's terminator and replace it with unreachable. 511 TerminatorInst *TI = P->getTerminator(); 512 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 513 P->getTerminator()->eraseFromParent(); 514 new UnreachableInst(P->getContext(), P); 515 Changed = true; 516 } 517 } 518 519 // If there are exiting blocks with branches on undef, resolve the undef in 520 // the direction which will exit the loop. This will help simplify loop 521 // trip count computations. 522 SmallVector<BasicBlock*, 8> ExitingBlocks; 523 L->getExitingBlocks(ExitingBlocks); 524 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 525 E = ExitingBlocks.end(); I != E; ++I) 526 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 527 if (BI->isConditional()) { 528 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 529 530 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 531 << (*I)->getName() << "\n"); 532 533 BI->setCondition(ConstantInt::get(Cond->getType(), 534 !L->contains(BI->getSuccessor(0)))); 535 536 // This may make the loop analyzable, force SCEV recomputation. 537 if (SE) 538 SE->forgetLoop(L); 539 540 Changed = true; 541 } 542 } 543 544 // Does the loop already have a preheader? If so, don't insert one. 545 BasicBlock *Preheader = L->getLoopPreheader(); 546 if (!Preheader) { 547 Preheader = InsertPreheaderForLoop(L, PP); 548 if (Preheader) { 549 ++NumInserted; 550 Changed = true; 551 } 552 } 553 554 // Next, check to make sure that all exit nodes of the loop only have 555 // predecessors that are inside of the loop. This check guarantees that the 556 // loop preheader/header will dominate the exit blocks. If the exit block has 557 // predecessors from outside of the loop, split the edge now. 558 SmallVector<BasicBlock*, 8> ExitBlocks; 559 L->getExitBlocks(ExitBlocks); 560 561 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 562 ExitBlocks.end()); 563 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 564 E = ExitBlockSet.end(); I != E; ++I) { 565 BasicBlock *ExitBlock = *I; 566 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 567 PI != PE; ++PI) 568 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 569 // allowed. 570 if (!L->contains(*PI)) { 571 if (rewriteLoopExitBlock(L, ExitBlock, AA, DT, LI, PP)) { 572 ++NumInserted; 573 Changed = true; 574 } 575 break; 576 } 577 } 578 579 // If the header has more than two predecessors at this point (from the 580 // preheader and from multiple backedges), we must adjust the loop. 581 BasicBlock *LoopLatch = L->getLoopLatch(); 582 if (!LoopLatch) { 583 // If this is really a nested loop, rip it out into a child loop. Don't do 584 // this for loops with a giant number of backedges, just factor them into a 585 // common backedge instead. 586 if (L->getNumBackEdges() < 8) { 587 if (Loop *OuterL = 588 separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP, AC)) { 589 ++NumNested; 590 // Enqueue the outer loop as it should be processed next in our 591 // depth-first nest walk. 592 Worklist.push_back(OuterL); 593 594 // This is a big restructuring change, reprocess the whole loop. 595 Changed = true; 596 // GCC doesn't tail recursion eliminate this. 597 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 598 goto ReprocessLoop; 599 } 600 } 601 602 // If we either couldn't, or didn't want to, identify nesting of the loops, 603 // insert a new block that all backedges target, then make it jump to the 604 // loop header. 605 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI); 606 if (LoopLatch) { 607 ++NumInserted; 608 Changed = true; 609 } 610 } 611 612 // Scan over the PHI nodes in the loop header. Since they now have only two 613 // incoming values (the loop is canonicalized), we may have simplified the PHI 614 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 615 PHINode *PN; 616 for (BasicBlock::iterator I = L->getHeader()->begin(); 617 (PN = dyn_cast<PHINode>(I++)); ) 618 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) { 619 if (AA) AA->deleteValue(PN); 620 if (SE) SE->forgetValue(PN); 621 PN->replaceAllUsesWith(V); 622 PN->eraseFromParent(); 623 } 624 625 // If this loop has multiple exits and the exits all go to the same 626 // block, attempt to merge the exits. This helps several passes, such 627 // as LoopRotation, which do not support loops with multiple exits. 628 // SimplifyCFG also does this (and this code uses the same utility 629 // function), however this code is loop-aware, where SimplifyCFG is 630 // not. That gives it the advantage of being able to hoist 631 // loop-invariant instructions out of the way to open up more 632 // opportunities, and the disadvantage of having the responsibility 633 // to preserve dominator information. 634 bool UniqueExit = true; 635 if (!ExitBlocks.empty()) 636 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 637 if (ExitBlocks[i] != ExitBlocks[0]) { 638 UniqueExit = false; 639 break; 640 } 641 if (UniqueExit) { 642 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 643 BasicBlock *ExitingBlock = ExitingBlocks[i]; 644 if (!ExitingBlock->getSinglePredecessor()) continue; 645 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 646 if (!BI || !BI->isConditional()) continue; 647 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 648 if (!CI || CI->getParent() != ExitingBlock) continue; 649 650 // Attempt to hoist out all instructions except for the 651 // comparison and the branch. 652 bool AllInvariant = true; 653 bool AnyInvariant = false; 654 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 655 Instruction *Inst = I++; 656 // Skip debug info intrinsics. 657 if (isa<DbgInfoIntrinsic>(Inst)) 658 continue; 659 if (Inst == CI) 660 continue; 661 if (!L->makeLoopInvariant(Inst, AnyInvariant, 662 Preheader ? Preheader->getTerminator() 663 : nullptr)) { 664 AllInvariant = false; 665 break; 666 } 667 } 668 if (AnyInvariant) { 669 Changed = true; 670 // The loop disposition of all SCEV expressions that depend on any 671 // hoisted values have also changed. 672 if (SE) 673 SE->forgetLoopDispositions(L); 674 } 675 if (!AllInvariant) continue; 676 677 // The block has now been cleared of all instructions except for 678 // a comparison and a conditional branch. SimplifyCFG may be able 679 // to fold it now. 680 if (!FoldBranchToCommonDest(BI, DL)) continue; 681 682 // Success. The block is now dead, so remove it from the loop, 683 // update the dominator tree and delete it. 684 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 685 << ExitingBlock->getName() << "\n"); 686 687 // Notify ScalarEvolution before deleting this block. Currently assume the 688 // parent loop doesn't change (spliting edges doesn't count). If blocks, 689 // CFG edges, or other values in the parent loop change, then we need call 690 // to forgetLoop() for the parent instead. 691 if (SE) 692 SE->forgetLoop(L); 693 694 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 695 Changed = true; 696 LI->removeBlock(ExitingBlock); 697 698 DomTreeNode *Node = DT->getNode(ExitingBlock); 699 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 700 Node->getChildren(); 701 while (!Children.empty()) { 702 DomTreeNode *Child = Children.front(); 703 DT->changeImmediateDominator(Child, Node->getIDom()); 704 } 705 DT->eraseNode(ExitingBlock); 706 707 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 708 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 709 ExitingBlock->eraseFromParent(); 710 } 711 } 712 713 return Changed; 714 } 715 716 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 717 AliasAnalysis *AA, ScalarEvolution *SE, 718 const DataLayout *DL, AssumptionCache *AC) { 719 bool Changed = false; 720 721 // Worklist maintains our depth-first queue of loops in this nest to process. 722 SmallVector<Loop *, 4> Worklist; 723 Worklist.push_back(L); 724 725 // Walk the worklist from front to back, pushing newly found sub loops onto 726 // the back. This will let us process loops from back to front in depth-first 727 // order. We can use this simple process because loops form a tree. 728 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 729 Loop *L2 = Worklist[Idx]; 730 Worklist.append(L2->begin(), L2->end()); 731 } 732 733 while (!Worklist.empty()) 734 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, 735 SE, PP, DL, AC); 736 737 return Changed; 738 } 739 740 namespace { 741 struct LoopSimplify : public FunctionPass { 742 static char ID; // Pass identification, replacement for typeid 743 LoopSimplify() : FunctionPass(ID) { 744 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 745 } 746 747 // AA - If we have an alias analysis object to update, this is it, otherwise 748 // this is null. 749 AliasAnalysis *AA; 750 DominatorTree *DT; 751 LoopInfo *LI; 752 ScalarEvolution *SE; 753 const DataLayout *DL; 754 AssumptionCache *AC; 755 756 bool runOnFunction(Function &F) override; 757 758 void getAnalysisUsage(AnalysisUsage &AU) const override { 759 AU.addRequired<AssumptionCacheTracker>(); 760 761 // We need loop information to identify the loops... 762 AU.addRequired<DominatorTreeWrapperPass>(); 763 AU.addPreserved<DominatorTreeWrapperPass>(); 764 765 AU.addRequired<LoopInfoWrapperPass>(); 766 AU.addPreserved<LoopInfoWrapperPass>(); 767 768 AU.addPreserved<AliasAnalysis>(); 769 AU.addPreserved<ScalarEvolution>(); 770 AU.addPreserved<DependenceAnalysis>(); 771 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 772 } 773 774 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 775 void verifyAnalysis() const override; 776 }; 777 } 778 779 char LoopSimplify::ID = 0; 780 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 781 "Canonicalize natural loops", false, false) 782 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 783 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 784 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 785 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 786 "Canonicalize natural loops", false, false) 787 788 // Publicly exposed interface to pass... 789 char &llvm::LoopSimplifyID = LoopSimplify::ID; 790 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 791 792 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 793 /// it in any convenient order) inserting preheaders... 794 /// 795 bool LoopSimplify::runOnFunction(Function &F) { 796 bool Changed = false; 797 AA = getAnalysisIfAvailable<AliasAnalysis>(); 798 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 799 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 800 SE = getAnalysisIfAvailable<ScalarEvolution>(); 801 DL = &F.getParent()->getDataLayout(); 802 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 803 804 // Simplify each loop nest in the function. 805 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 806 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL, AC); 807 808 return Changed; 809 } 810 811 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 812 // below. 813 #if 0 814 static void verifyLoop(Loop *L) { 815 // Verify subloops. 816 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 817 verifyLoop(*I); 818 819 // It used to be possible to just assert L->isLoopSimplifyForm(), however 820 // with the introduction of indirectbr, there are now cases where it's 821 // not possible to transform a loop as necessary. We can at least check 822 // that there is an indirectbr near any time there's trouble. 823 824 // Indirectbr can interfere with preheader and unique backedge insertion. 825 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 826 bool HasIndBrPred = false; 827 for (pred_iterator PI = pred_begin(L->getHeader()), 828 PE = pred_end(L->getHeader()); PI != PE; ++PI) 829 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 830 HasIndBrPred = true; 831 break; 832 } 833 assert(HasIndBrPred && 834 "LoopSimplify has no excuse for missing loop header info!"); 835 (void)HasIndBrPred; 836 } 837 838 // Indirectbr can interfere with exit block canonicalization. 839 if (!L->hasDedicatedExits()) { 840 bool HasIndBrExiting = false; 841 SmallVector<BasicBlock*, 8> ExitingBlocks; 842 L->getExitingBlocks(ExitingBlocks); 843 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 844 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 845 HasIndBrExiting = true; 846 break; 847 } 848 } 849 850 assert(HasIndBrExiting && 851 "LoopSimplify has no excuse for missing exit block info!"); 852 (void)HasIndBrExiting; 853 } 854 } 855 #endif 856 857 void LoopSimplify::verifyAnalysis() const { 858 // FIXME: This routine is being called mid-way through the loop pass manager 859 // as loop passes destroy this analysis. That's actually fine, but we have no 860 // way of expressing that here. Once all of the passes that destroy this are 861 // hoisted out of the loop pass manager we can add back verification here. 862 #if 0 863 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 864 verifyLoop(*I); 865 #endif 866 } 867