1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/AssumptionCache.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/GlobalsModRef.h" 51 #include "llvm/Analysis/InstructionSimplify.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/ScalarEvolution.h" 54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 55 #include "llvm/IR/CFG.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/LoopUtils.h" 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-simplify" 73 74 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 75 STATISTIC(NumNested , "Number of nested loops split out"); 76 77 // If the block isn't already, move the new block to right after some 'outside 78 // block' block. This prevents the preheader from being placed inside the loop 79 // body, e.g. when the loop hasn't been rotated. 80 static void placeSplitBlockCarefully(BasicBlock *NewBB, 81 SmallVectorImpl<BasicBlock *> &SplitPreds, 82 Loop *L) { 83 // Check to see if NewBB is already well placed. 84 Function::iterator BBI = --NewBB->getIterator(); 85 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 86 if (&*BBI == SplitPreds[i]) 87 return; 88 } 89 90 // If it isn't already after an outside block, move it after one. This is 91 // always good as it makes the uncond branch from the outside block into a 92 // fall-through. 93 94 // Figure out *which* outside block to put this after. Prefer an outside 95 // block that neighbors a BB actually in the loop. 96 BasicBlock *FoundBB = nullptr; 97 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 98 Function::iterator BBI = SplitPreds[i]->getIterator(); 99 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 100 FoundBB = SplitPreds[i]; 101 break; 102 } 103 } 104 105 // If our heuristic for a *good* bb to place this after doesn't find 106 // anything, just pick something. It's likely better than leaving it within 107 // the loop. 108 if (!FoundBB) 109 FoundBB = SplitPreds[0]; 110 NewBB->moveAfter(FoundBB); 111 } 112 113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 114 /// preheader, this method is called to insert one. This method has two phases: 115 /// preheader insertion and analysis updating. 116 /// 117 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 118 BasicBlock *Header = L->getHeader(); 119 120 // Get analyses that we try to update. 121 auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 122 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 123 auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 124 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 125 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 126 127 // Compute the set of predecessors of the loop that are not in the loop. 128 SmallVector<BasicBlock*, 8> OutsideBlocks; 129 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 130 PI != PE; ++PI) { 131 BasicBlock *P = *PI; 132 if (!L->contains(P)) { // Coming in from outside the loop? 133 // If the loop is branched to from an indirect branch, we won't 134 // be able to fully transform the loop, because it prohibits 135 // edge splitting. 136 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 137 138 // Keep track of it. 139 OutsideBlocks.push_back(P); 140 } 141 } 142 143 // Split out the loop pre-header. 144 BasicBlock *PreheaderBB; 145 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 146 LI, PreserveLCSSA); 147 if (!PreheaderBB) 148 return nullptr; 149 150 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 151 << PreheaderBB->getName() << "\n"); 152 153 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 154 // code layout too horribly. 155 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 156 157 return PreheaderBB; 158 } 159 160 /// \brief Ensure that the loop preheader dominates all exit blocks. 161 /// 162 /// This method is used to split exit blocks that have predecessors outside of 163 /// the loop. 164 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, 165 DominatorTree *DT, LoopInfo *LI, 166 Pass *PP) { 167 SmallVector<BasicBlock*, 8> LoopBlocks; 168 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 169 BasicBlock *P = *I; 170 if (L->contains(P)) { 171 // Don't do this if the loop is exited via an indirect branch. 172 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 173 174 LoopBlocks.push_back(P); 175 } 176 } 177 178 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 179 BasicBlock *NewExitBB = nullptr; 180 181 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 182 183 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI, 184 PreserveLCSSA); 185 if (!NewExitBB) 186 return nullptr; 187 188 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 189 << NewExitBB->getName() << "\n"); 190 return NewExitBB; 191 } 192 193 /// Add the specified block, and all of its predecessors, to the specified set, 194 /// if it's not already in there. Stop predecessor traversal when we reach 195 /// StopBlock. 196 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 197 std::set<BasicBlock*> &Blocks) { 198 SmallVector<BasicBlock *, 8> Worklist; 199 Worklist.push_back(InputBB); 200 do { 201 BasicBlock *BB = Worklist.pop_back_val(); 202 if (Blocks.insert(BB).second && BB != StopBlock) 203 // If BB is not already processed and it is not a stop block then 204 // insert its predecessor in the work list 205 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 206 BasicBlock *WBB = *I; 207 Worklist.push_back(WBB); 208 } 209 } while (!Worklist.empty()); 210 } 211 212 /// \brief The first part of loop-nestification is to find a PHI node that tells 213 /// us how to partition the loops. 214 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 215 AssumptionCache *AC) { 216 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 217 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 218 PHINode *PN = cast<PHINode>(I); 219 ++I; 220 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { 221 // This is a degenerate PHI already, don't modify it! 222 PN->replaceAllUsesWith(V); 223 PN->eraseFromParent(); 224 continue; 225 } 226 227 // Scan this PHI node looking for a use of the PHI node by itself. 228 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 229 if (PN->getIncomingValue(i) == PN && 230 L->contains(PN->getIncomingBlock(i))) 231 // We found something tasty to remove. 232 return PN; 233 } 234 return nullptr; 235 } 236 237 /// \brief If this loop has multiple backedges, try to pull one of them out into 238 /// a nested loop. 239 /// 240 /// This is important for code that looks like 241 /// this: 242 /// 243 /// Loop: 244 /// ... 245 /// br cond, Loop, Next 246 /// ... 247 /// br cond2, Loop, Out 248 /// 249 /// To identify this common case, we look at the PHI nodes in the header of the 250 /// loop. PHI nodes with unchanging values on one backedge correspond to values 251 /// that change in the "outer" loop, but not in the "inner" loop. 252 /// 253 /// If we are able to separate out a loop, return the new outer loop that was 254 /// created. 255 /// 256 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 257 DominatorTree *DT, LoopInfo *LI, 258 ScalarEvolution *SE, Pass *PP, 259 AssumptionCache *AC) { 260 // Don't try to separate loops without a preheader. 261 if (!Preheader) 262 return nullptr; 263 264 // The header is not a landing pad; preheader insertion should ensure this. 265 BasicBlock *Header = L->getHeader(); 266 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 267 268 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 269 if (!PN) return nullptr; // No known way to partition. 270 271 // Pull out all predecessors that have varying values in the loop. This 272 // handles the case when a PHI node has multiple instances of itself as 273 // arguments. 274 SmallVector<BasicBlock*, 8> OuterLoopPreds; 275 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 276 if (PN->getIncomingValue(i) != PN || 277 !L->contains(PN->getIncomingBlock(i))) { 278 // We can't split indirectbr edges. 279 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 280 return nullptr; 281 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 282 } 283 } 284 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 285 286 // If ScalarEvolution is around and knows anything about values in 287 // this loop, tell it to forget them, because we're about to 288 // substantially change it. 289 if (SE) 290 SE->forgetLoop(L); 291 292 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 293 294 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 295 DT, LI, PreserveLCSSA); 296 297 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 298 // code layout too horribly. 299 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 300 301 // Create the new outer loop. 302 Loop *NewOuter = new Loop(); 303 304 // Change the parent loop to use the outer loop as its child now. 305 if (Loop *Parent = L->getParentLoop()) 306 Parent->replaceChildLoopWith(L, NewOuter); 307 else 308 LI->changeTopLevelLoop(L, NewOuter); 309 310 // L is now a subloop of our outer loop. 311 NewOuter->addChildLoop(L); 312 313 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 314 I != E; ++I) 315 NewOuter->addBlockEntry(*I); 316 317 // Now reset the header in L, which had been moved by 318 // SplitBlockPredecessors for the outer loop. 319 L->moveToHeader(Header); 320 321 // Determine which blocks should stay in L and which should be moved out to 322 // the Outer loop now. 323 std::set<BasicBlock*> BlocksInL; 324 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 325 BasicBlock *P = *PI; 326 if (DT->dominates(Header, P)) 327 addBlockAndPredsToSet(P, Header, BlocksInL); 328 } 329 330 // Scan all of the loop children of L, moving them to OuterLoop if they are 331 // not part of the inner loop. 332 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 333 for (size_t I = 0; I != SubLoops.size(); ) 334 if (BlocksInL.count(SubLoops[I]->getHeader())) 335 ++I; // Loop remains in L 336 else 337 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 338 339 // Now that we know which blocks are in L and which need to be moved to 340 // OuterLoop, move any blocks that need it. 341 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 342 BasicBlock *BB = L->getBlocks()[i]; 343 if (!BlocksInL.count(BB)) { 344 // Move this block to the parent, updating the exit blocks sets 345 L->removeBlockFromLoop(BB); 346 if ((*LI)[BB] == L) 347 LI->changeLoopFor(BB, NewOuter); 348 --i; 349 } 350 } 351 352 return NewOuter; 353 } 354 355 /// \brief This method is called when the specified loop has more than one 356 /// backedge in it. 357 /// 358 /// If this occurs, revector all of these backedges to target a new basic block 359 /// and have that block branch to the loop header. This ensures that loops 360 /// have exactly one backedge. 361 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 362 DominatorTree *DT, LoopInfo *LI) { 363 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 364 365 // Get information about the loop 366 BasicBlock *Header = L->getHeader(); 367 Function *F = Header->getParent(); 368 369 // Unique backedge insertion currently depends on having a preheader. 370 if (!Preheader) 371 return nullptr; 372 373 // The header is not an EH pad; preheader insertion should ensure this. 374 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 375 376 // Figure out which basic blocks contain back-edges to the loop header. 377 std::vector<BasicBlock*> BackedgeBlocks; 378 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 379 BasicBlock *P = *I; 380 381 // Indirectbr edges cannot be split, so we must fail if we find one. 382 if (isa<IndirectBrInst>(P->getTerminator())) 383 return nullptr; 384 385 if (P != Preheader) BackedgeBlocks.push_back(P); 386 } 387 388 // Create and insert the new backedge block... 389 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 390 Header->getName() + ".backedge", F); 391 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 392 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 393 394 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 395 << BEBlock->getName() << "\n"); 396 397 // Move the new backedge block to right after the last backedge block. 398 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 399 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 400 401 // Now that the block has been inserted into the function, create PHI nodes in 402 // the backedge block which correspond to any PHI nodes in the header block. 403 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 404 PHINode *PN = cast<PHINode>(I); 405 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 406 PN->getName()+".be", BETerminator); 407 408 // Loop over the PHI node, moving all entries except the one for the 409 // preheader over to the new PHI node. 410 unsigned PreheaderIdx = ~0U; 411 bool HasUniqueIncomingValue = true; 412 Value *UniqueValue = nullptr; 413 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 414 BasicBlock *IBB = PN->getIncomingBlock(i); 415 Value *IV = PN->getIncomingValue(i); 416 if (IBB == Preheader) { 417 PreheaderIdx = i; 418 } else { 419 NewPN->addIncoming(IV, IBB); 420 if (HasUniqueIncomingValue) { 421 if (!UniqueValue) 422 UniqueValue = IV; 423 else if (UniqueValue != IV) 424 HasUniqueIncomingValue = false; 425 } 426 } 427 } 428 429 // Delete all of the incoming values from the old PN except the preheader's 430 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 431 if (PreheaderIdx != 0) { 432 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 433 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 434 } 435 // Nuke all entries except the zero'th. 436 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 437 PN->removeIncomingValue(e-i, false); 438 439 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 440 PN->addIncoming(NewPN, BEBlock); 441 442 // As an optimization, if all incoming values in the new PhiNode (which is a 443 // subset of the incoming values of the old PHI node) have the same value, 444 // eliminate the PHI Node. 445 if (HasUniqueIncomingValue) { 446 NewPN->replaceAllUsesWith(UniqueValue); 447 BEBlock->getInstList().erase(NewPN); 448 } 449 } 450 451 // Now that all of the PHI nodes have been inserted and adjusted, modify the 452 // backedge blocks to just to the BEBlock instead of the header. 453 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 454 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 455 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 456 if (TI->getSuccessor(Op) == Header) 457 TI->setSuccessor(Op, BEBlock); 458 } 459 460 //===--- Update all analyses which we must preserve now -----------------===// 461 462 // Update Loop Information - we know that this block is now in the current 463 // loop and all parent loops. 464 L->addBasicBlockToLoop(BEBlock, *LI); 465 466 // Update dominator information 467 DT->splitBlock(BEBlock); 468 469 return BEBlock; 470 } 471 472 /// \brief Simplify one loop and queue further loops for simplification. 473 /// 474 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 475 /// Pass pointer. The Pass pointer is used by numerous utilities to update 476 /// specific analyses. Rather than a pass it would be much cleaner and more 477 /// explicit if they accepted the analysis directly and then updated it. 478 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 479 DominatorTree *DT, LoopInfo *LI, 480 ScalarEvolution *SE, Pass *PP, 481 AssumptionCache *AC) { 482 bool Changed = false; 483 ReprocessLoop: 484 485 // Check to see that no blocks (other than the header) in this loop have 486 // predecessors that are not in the loop. This is not valid for natural 487 // loops, but can occur if the blocks are unreachable. Since they are 488 // unreachable we can just shamelessly delete those CFG edges! 489 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 490 BB != E; ++BB) { 491 if (*BB == L->getHeader()) continue; 492 493 SmallPtrSet<BasicBlock*, 4> BadPreds; 494 for (pred_iterator PI = pred_begin(*BB), 495 PE = pred_end(*BB); PI != PE; ++PI) { 496 BasicBlock *P = *PI; 497 if (!L->contains(P)) 498 BadPreds.insert(P); 499 } 500 501 // Delete each unique out-of-loop (and thus dead) predecessor. 502 for (BasicBlock *P : BadPreds) { 503 504 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 505 << P->getName() << "\n"); 506 507 // Inform each successor of each dead pred. 508 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI) 509 (*SI)->removePredecessor(P); 510 // Zap the dead pred's terminator and replace it with unreachable. 511 TerminatorInst *TI = P->getTerminator(); 512 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 513 P->getTerminator()->eraseFromParent(); 514 new UnreachableInst(P->getContext(), P); 515 Changed = true; 516 } 517 } 518 519 // If there are exiting blocks with branches on undef, resolve the undef in 520 // the direction which will exit the loop. This will help simplify loop 521 // trip count computations. 522 SmallVector<BasicBlock*, 8> ExitingBlocks; 523 L->getExitingBlocks(ExitingBlocks); 524 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 525 E = ExitingBlocks.end(); I != E; ++I) 526 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 527 if (BI->isConditional()) { 528 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 529 530 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 531 << (*I)->getName() << "\n"); 532 533 BI->setCondition(ConstantInt::get(Cond->getType(), 534 !L->contains(BI->getSuccessor(0)))); 535 536 // This may make the loop analyzable, force SCEV recomputation. 537 if (SE) 538 SE->forgetLoop(L); 539 540 Changed = true; 541 } 542 } 543 544 // Does the loop already have a preheader? If so, don't insert one. 545 BasicBlock *Preheader = L->getLoopPreheader(); 546 if (!Preheader) { 547 Preheader = InsertPreheaderForLoop(L, PP); 548 if (Preheader) { 549 ++NumInserted; 550 Changed = true; 551 } 552 } 553 554 // Next, check to make sure that all exit nodes of the loop only have 555 // predecessors that are inside of the loop. This check guarantees that the 556 // loop preheader/header will dominate the exit blocks. If the exit block has 557 // predecessors from outside of the loop, split the edge now. 558 SmallVector<BasicBlock*, 8> ExitBlocks; 559 L->getExitBlocks(ExitBlocks); 560 561 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 562 ExitBlocks.end()); 563 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 564 E = ExitBlockSet.end(); I != E; ++I) { 565 BasicBlock *ExitBlock = *I; 566 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 567 PI != PE; ++PI) 568 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 569 // allowed. 570 if (!L->contains(*PI)) { 571 if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PP)) { 572 ++NumInserted; 573 Changed = true; 574 } 575 break; 576 } 577 } 578 579 // If the header has more than two predecessors at this point (from the 580 // preheader and from multiple backedges), we must adjust the loop. 581 BasicBlock *LoopLatch = L->getLoopLatch(); 582 if (!LoopLatch) { 583 // If this is really a nested loop, rip it out into a child loop. Don't do 584 // this for loops with a giant number of backedges, just factor them into a 585 // common backedge instead. 586 if (L->getNumBackEdges() < 8) { 587 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, PP, AC)) { 588 ++NumNested; 589 // Enqueue the outer loop as it should be processed next in our 590 // depth-first nest walk. 591 Worklist.push_back(OuterL); 592 593 // This is a big restructuring change, reprocess the whole loop. 594 Changed = true; 595 // GCC doesn't tail recursion eliminate this. 596 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 597 goto ReprocessLoop; 598 } 599 } 600 601 // If we either couldn't, or didn't want to, identify nesting of the loops, 602 // insert a new block that all backedges target, then make it jump to the 603 // loop header. 604 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI); 605 if (LoopLatch) { 606 ++NumInserted; 607 Changed = true; 608 } 609 } 610 611 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 612 613 // Scan over the PHI nodes in the loop header. Since they now have only two 614 // incoming values (the loop is canonicalized), we may have simplified the PHI 615 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 616 PHINode *PN; 617 for (BasicBlock::iterator I = L->getHeader()->begin(); 618 (PN = dyn_cast<PHINode>(I++)); ) 619 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { 620 if (SE) SE->forgetValue(PN); 621 PN->replaceAllUsesWith(V); 622 PN->eraseFromParent(); 623 } 624 625 // If this loop has multiple exits and the exits all go to the same 626 // block, attempt to merge the exits. This helps several passes, such 627 // as LoopRotation, which do not support loops with multiple exits. 628 // SimplifyCFG also does this (and this code uses the same utility 629 // function), however this code is loop-aware, where SimplifyCFG is 630 // not. That gives it the advantage of being able to hoist 631 // loop-invariant instructions out of the way to open up more 632 // opportunities, and the disadvantage of having the responsibility 633 // to preserve dominator information. 634 bool UniqueExit = true; 635 if (!ExitBlocks.empty()) 636 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 637 if (ExitBlocks[i] != ExitBlocks[0]) { 638 UniqueExit = false; 639 break; 640 } 641 if (UniqueExit) { 642 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 643 BasicBlock *ExitingBlock = ExitingBlocks[i]; 644 if (!ExitingBlock->getSinglePredecessor()) continue; 645 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 646 if (!BI || !BI->isConditional()) continue; 647 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 648 if (!CI || CI->getParent() != ExitingBlock) continue; 649 650 // Attempt to hoist out all instructions except for the 651 // comparison and the branch. 652 bool AllInvariant = true; 653 bool AnyInvariant = false; 654 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 655 Instruction *Inst = &*I++; 656 // Skip debug info intrinsics. 657 if (isa<DbgInfoIntrinsic>(Inst)) 658 continue; 659 if (Inst == CI) 660 continue; 661 if (!L->makeLoopInvariant(Inst, AnyInvariant, 662 Preheader ? Preheader->getTerminator() 663 : nullptr)) { 664 AllInvariant = false; 665 break; 666 } 667 } 668 if (AnyInvariant) { 669 Changed = true; 670 // The loop disposition of all SCEV expressions that depend on any 671 // hoisted values have also changed. 672 if (SE) 673 SE->forgetLoopDispositions(L); 674 } 675 if (!AllInvariant) continue; 676 677 // The block has now been cleared of all instructions except for 678 // a comparison and a conditional branch. SimplifyCFG may be able 679 // to fold it now. 680 if (!FoldBranchToCommonDest(BI)) 681 continue; 682 683 // Success. The block is now dead, so remove it from the loop, 684 // update the dominator tree and delete it. 685 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 686 << ExitingBlock->getName() << "\n"); 687 688 // Notify ScalarEvolution before deleting this block. Currently assume the 689 // parent loop doesn't change (spliting edges doesn't count). If blocks, 690 // CFG edges, or other values in the parent loop change, then we need call 691 // to forgetLoop() for the parent instead. 692 if (SE) 693 SE->forgetLoop(L); 694 695 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 696 Changed = true; 697 LI->removeBlock(ExitingBlock); 698 699 DomTreeNode *Node = DT->getNode(ExitingBlock); 700 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 701 Node->getChildren(); 702 while (!Children.empty()) { 703 DomTreeNode *Child = Children.front(); 704 DT->changeImmediateDominator(Child, Node->getIDom()); 705 } 706 DT->eraseNode(ExitingBlock); 707 708 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 709 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 710 ExitingBlock->eraseFromParent(); 711 } 712 } 713 714 return Changed; 715 } 716 717 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 718 ScalarEvolution *SE, AssumptionCache *AC) { 719 bool Changed = false; 720 721 // Worklist maintains our depth-first queue of loops in this nest to process. 722 SmallVector<Loop *, 4> Worklist; 723 Worklist.push_back(L); 724 725 // Walk the worklist from front to back, pushing newly found sub loops onto 726 // the back. This will let us process loops from back to front in depth-first 727 // order. We can use this simple process because loops form a tree. 728 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 729 Loop *L2 = Worklist[Idx]; 730 Worklist.append(L2->begin(), L2->end()); 731 } 732 733 while (!Worklist.empty()) 734 Changed |= 735 simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, PP, AC); 736 737 return Changed; 738 } 739 740 namespace { 741 struct LoopSimplify : public FunctionPass { 742 static char ID; // Pass identification, replacement for typeid 743 LoopSimplify() : FunctionPass(ID) { 744 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 745 } 746 747 DominatorTree *DT; 748 LoopInfo *LI; 749 ScalarEvolution *SE; 750 AssumptionCache *AC; 751 752 bool runOnFunction(Function &F) override; 753 754 void getAnalysisUsage(AnalysisUsage &AU) const override { 755 AU.addRequired<AssumptionCacheTracker>(); 756 757 // We need loop information to identify the loops... 758 AU.addRequired<DominatorTreeWrapperPass>(); 759 AU.addPreserved<DominatorTreeWrapperPass>(); 760 761 AU.addRequired<LoopInfoWrapperPass>(); 762 AU.addPreserved<LoopInfoWrapperPass>(); 763 764 AU.addPreserved<BasicAAWrapperPass>(); 765 AU.addPreserved<AAResultsWrapperPass>(); 766 AU.addPreserved<GlobalsAAWrapperPass>(); 767 AU.addPreserved<ScalarEvolutionWrapperPass>(); 768 AU.addPreserved<SCEVAAWrapperPass>(); 769 AU.addPreserved<DependenceAnalysis>(); 770 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 771 } 772 773 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 774 void verifyAnalysis() const override; 775 }; 776 } 777 778 char LoopSimplify::ID = 0; 779 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 780 "Canonicalize natural loops", false, false) 781 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 782 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 783 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 784 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 785 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 786 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 787 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 788 "Canonicalize natural loops", false, false) 789 790 // Publicly exposed interface to pass... 791 char &llvm::LoopSimplifyID = LoopSimplify::ID; 792 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 793 794 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 795 /// it in any convenient order) inserting preheaders... 796 /// 797 bool LoopSimplify::runOnFunction(Function &F) { 798 bool Changed = false; 799 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 800 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 801 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 802 SE = SEWP ? &SEWP->getSE() : nullptr; 803 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 804 805 // Simplify each loop nest in the function. 806 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 807 Changed |= simplifyLoop(*I, DT, LI, this, SE, AC); 808 809 return Changed; 810 } 811 812 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 813 // below. 814 #if 0 815 static void verifyLoop(Loop *L) { 816 // Verify subloops. 817 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 818 verifyLoop(*I); 819 820 // It used to be possible to just assert L->isLoopSimplifyForm(), however 821 // with the introduction of indirectbr, there are now cases where it's 822 // not possible to transform a loop as necessary. We can at least check 823 // that there is an indirectbr near any time there's trouble. 824 825 // Indirectbr can interfere with preheader and unique backedge insertion. 826 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 827 bool HasIndBrPred = false; 828 for (pred_iterator PI = pred_begin(L->getHeader()), 829 PE = pred_end(L->getHeader()); PI != PE; ++PI) 830 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 831 HasIndBrPred = true; 832 break; 833 } 834 assert(HasIndBrPred && 835 "LoopSimplify has no excuse for missing loop header info!"); 836 (void)HasIndBrPred; 837 } 838 839 // Indirectbr can interfere with exit block canonicalization. 840 if (!L->hasDedicatedExits()) { 841 bool HasIndBrExiting = false; 842 SmallVector<BasicBlock*, 8> ExitingBlocks; 843 L->getExitingBlocks(ExitingBlocks); 844 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 845 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 846 HasIndBrExiting = true; 847 break; 848 } 849 } 850 851 assert(HasIndBrExiting && 852 "LoopSimplify has no excuse for missing exit block info!"); 853 (void)HasIndBrExiting; 854 } 855 } 856 #endif 857 858 void LoopSimplify::verifyAnalysis() const { 859 // FIXME: This routine is being called mid-way through the loop pass manager 860 // as loop passes destroy this analysis. That's actually fine, but we have no 861 // way of expressing that here. Once all of the passes that destroy this are 862 // hoisted out of the loop pass manager we can add back verification here. 863 #if 0 864 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 865 verifyLoop(*I); 866 #endif 867 } 868