1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/IR/CFG.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Utils.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/LoopUtils.h"
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "loop-simplify"
77 
78 STATISTIC(NumNested  , "Number of nested loops split out");
79 
80 // If the block isn't already, move the new block to right after some 'outside
81 // block' block.  This prevents the preheader from being placed inside the loop
82 // body, e.g. when the loop hasn't been rotated.
83 static void placeSplitBlockCarefully(BasicBlock *NewBB,
84                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
85                                      Loop *L) {
86   // Check to see if NewBB is already well placed.
87   Function::iterator BBI = --NewBB->getIterator();
88   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
89     if (&*BBI == SplitPreds[i])
90       return;
91   }
92 
93   // If it isn't already after an outside block, move it after one.  This is
94   // always good as it makes the uncond branch from the outside block into a
95   // fall-through.
96 
97   // Figure out *which* outside block to put this after.  Prefer an outside
98   // block that neighbors a BB actually in the loop.
99   BasicBlock *FoundBB = nullptr;
100   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
101     Function::iterator BBI = SplitPreds[i]->getIterator();
102     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
103       FoundBB = SplitPreds[i];
104       break;
105     }
106   }
107 
108   // If our heuristic for a *good* bb to place this after doesn't find
109   // anything, just pick something.  It's likely better than leaving it within
110   // the loop.
111   if (!FoundBB)
112     FoundBB = SplitPreds[0];
113   NewBB->moveAfter(FoundBB);
114 }
115 
116 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
117 /// preheader, this method is called to insert one.  This method has two phases:
118 /// preheader insertion and analysis updating.
119 ///
120 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
121                                          LoopInfo *LI, bool PreserveLCSSA) {
122   BasicBlock *Header = L->getHeader();
123 
124   // Compute the set of predecessors of the loop that are not in the loop.
125   SmallVector<BasicBlock*, 8> OutsideBlocks;
126   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
127        PI != PE; ++PI) {
128     BasicBlock *P = *PI;
129     if (!L->contains(P)) {         // Coming in from outside the loop?
130       // If the loop is branched to from an indirect terminator, we won't
131       // be able to fully transform the loop, because it prohibits
132       // edge splitting.
133       if (P->getTerminator()->isIndirectTerminator())
134         return nullptr;
135 
136       // Keep track of it.
137       OutsideBlocks.push_back(P);
138     }
139   }
140 
141   // Split out the loop pre-header.
142   BasicBlock *PreheaderBB;
143   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
144                                        LI, nullptr, PreserveLCSSA);
145   if (!PreheaderBB)
146     return nullptr;
147 
148   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
149                     << PreheaderBB->getName() << "\n");
150 
151   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
152   // code layout too horribly.
153   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
154 
155   return PreheaderBB;
156 }
157 
158 /// Add the specified block, and all of its predecessors, to the specified set,
159 /// if it's not already in there.  Stop predecessor traversal when we reach
160 /// StopBlock.
161 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
162                                   std::set<BasicBlock*> &Blocks) {
163   SmallVector<BasicBlock *, 8> Worklist;
164   Worklist.push_back(InputBB);
165   do {
166     BasicBlock *BB = Worklist.pop_back_val();
167     if (Blocks.insert(BB).second && BB != StopBlock)
168       // If BB is not already processed and it is not a stop block then
169       // insert its predecessor in the work list
170       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
171         BasicBlock *WBB = *I;
172         Worklist.push_back(WBB);
173       }
174   } while (!Worklist.empty());
175 }
176 
177 /// The first part of loop-nestification is to find a PHI node that tells
178 /// us how to partition the loops.
179 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
180                                         AssumptionCache *AC) {
181   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
182   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
183     PHINode *PN = cast<PHINode>(I);
184     ++I;
185     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
186       // This is a degenerate PHI already, don't modify it!
187       PN->replaceAllUsesWith(V);
188       PN->eraseFromParent();
189       continue;
190     }
191 
192     // Scan this PHI node looking for a use of the PHI node by itself.
193     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
194       if (PN->getIncomingValue(i) == PN &&
195           L->contains(PN->getIncomingBlock(i)))
196         // We found something tasty to remove.
197         return PN;
198   }
199   return nullptr;
200 }
201 
202 /// If this loop has multiple backedges, try to pull one of them out into
203 /// a nested loop.
204 ///
205 /// This is important for code that looks like
206 /// this:
207 ///
208 ///  Loop:
209 ///     ...
210 ///     br cond, Loop, Next
211 ///     ...
212 ///     br cond2, Loop, Out
213 ///
214 /// To identify this common case, we look at the PHI nodes in the header of the
215 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
216 /// that change in the "outer" loop, but not in the "inner" loop.
217 ///
218 /// If we are able to separate out a loop, return the new outer loop that was
219 /// created.
220 ///
221 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
222                                 DominatorTree *DT, LoopInfo *LI,
223                                 ScalarEvolution *SE, bool PreserveLCSSA,
224                                 AssumptionCache *AC) {
225   // Don't try to separate loops without a preheader.
226   if (!Preheader)
227     return nullptr;
228 
229   // The header is not a landing pad; preheader insertion should ensure this.
230   BasicBlock *Header = L->getHeader();
231   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
232 
233   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
234   if (!PN) return nullptr;  // No known way to partition.
235 
236   // Pull out all predecessors that have varying values in the loop.  This
237   // handles the case when a PHI node has multiple instances of itself as
238   // arguments.
239   SmallVector<BasicBlock*, 8> OuterLoopPreds;
240   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
241     if (PN->getIncomingValue(i) != PN ||
242         !L->contains(PN->getIncomingBlock(i))) {
243       // We can't split indirect control flow edges.
244       if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
245         return nullptr;
246       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
247     }
248   }
249   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
250 
251   // If ScalarEvolution is around and knows anything about values in
252   // this loop, tell it to forget them, because we're about to
253   // substantially change it.
254   if (SE)
255     SE->forgetLoop(L);
256 
257   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
258                                              DT, LI, nullptr, PreserveLCSSA);
259 
260   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
261   // code layout too horribly.
262   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
263 
264   // Create the new outer loop.
265   Loop *NewOuter = LI->AllocateLoop();
266 
267   // Change the parent loop to use the outer loop as its child now.
268   if (Loop *Parent = L->getParentLoop())
269     Parent->replaceChildLoopWith(L, NewOuter);
270   else
271     LI->changeTopLevelLoop(L, NewOuter);
272 
273   // L is now a subloop of our outer loop.
274   NewOuter->addChildLoop(L);
275 
276   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
277        I != E; ++I)
278     NewOuter->addBlockEntry(*I);
279 
280   // Now reset the header in L, which had been moved by
281   // SplitBlockPredecessors for the outer loop.
282   L->moveToHeader(Header);
283 
284   // Determine which blocks should stay in L and which should be moved out to
285   // the Outer loop now.
286   std::set<BasicBlock*> BlocksInL;
287   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
288     BasicBlock *P = *PI;
289     if (DT->dominates(Header, P))
290       addBlockAndPredsToSet(P, Header, BlocksInL);
291   }
292 
293   // Scan all of the loop children of L, moving them to OuterLoop if they are
294   // not part of the inner loop.
295   const std::vector<Loop*> &SubLoops = L->getSubLoops();
296   for (size_t I = 0; I != SubLoops.size(); )
297     if (BlocksInL.count(SubLoops[I]->getHeader()))
298       ++I;   // Loop remains in L
299     else
300       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
301 
302   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
303   OuterLoopBlocks.push_back(NewBB);
304   // Now that we know which blocks are in L and which need to be moved to
305   // OuterLoop, move any blocks that need it.
306   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
307     BasicBlock *BB = L->getBlocks()[i];
308     if (!BlocksInL.count(BB)) {
309       // Move this block to the parent, updating the exit blocks sets
310       L->removeBlockFromLoop(BB);
311       if ((*LI)[BB] == L) {
312         LI->changeLoopFor(BB, NewOuter);
313         OuterLoopBlocks.push_back(BB);
314       }
315       --i;
316     }
317   }
318 
319   // Split edges to exit blocks from the inner loop, if they emerged in the
320   // process of separating the outer one.
321   formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
322 
323   if (PreserveLCSSA) {
324     // Fix LCSSA form for L. Some values, which previously were only used inside
325     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
326     // in corresponding exit blocks.
327     // We don't need to form LCSSA recursively, because there cannot be uses
328     // inside a newly created loop of defs from inner loops as those would
329     // already be a use of an LCSSA phi node.
330     formLCSSA(*L, *DT, LI, SE);
331 
332     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
333            "LCSSA is broken after separating nested loops!");
334   }
335 
336   return NewOuter;
337 }
338 
339 /// This method is called when the specified loop has more than one
340 /// backedge in it.
341 ///
342 /// If this occurs, revector all of these backedges to target a new basic block
343 /// and have that block branch to the loop header.  This ensures that loops
344 /// have exactly one backedge.
345 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
346                                              DominatorTree *DT, LoopInfo *LI) {
347   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
348 
349   // Get information about the loop
350   BasicBlock *Header = L->getHeader();
351   Function *F = Header->getParent();
352 
353   // Unique backedge insertion currently depends on having a preheader.
354   if (!Preheader)
355     return nullptr;
356 
357   // The header is not an EH pad; preheader insertion should ensure this.
358   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
359 
360   // Figure out which basic blocks contain back-edges to the loop header.
361   std::vector<BasicBlock*> BackedgeBlocks;
362   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
363     BasicBlock *P = *I;
364 
365     // Indirect edges cannot be split, so we must fail if we find one.
366     if (P->getTerminator()->isIndirectTerminator())
367       return nullptr;
368 
369     if (P != Preheader) BackedgeBlocks.push_back(P);
370   }
371 
372   // Create and insert the new backedge block...
373   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
374                                            Header->getName() + ".backedge", F);
375   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
376   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
377 
378   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
379                     << BEBlock->getName() << "\n");
380 
381   // Move the new backedge block to right after the last backedge block.
382   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
383   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
384 
385   // Now that the block has been inserted into the function, create PHI nodes in
386   // the backedge block which correspond to any PHI nodes in the header block.
387   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
388     PHINode *PN = cast<PHINode>(I);
389     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
390                                      PN->getName()+".be", BETerminator);
391 
392     // Loop over the PHI node, moving all entries except the one for the
393     // preheader over to the new PHI node.
394     unsigned PreheaderIdx = ~0U;
395     bool HasUniqueIncomingValue = true;
396     Value *UniqueValue = nullptr;
397     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
398       BasicBlock *IBB = PN->getIncomingBlock(i);
399       Value *IV = PN->getIncomingValue(i);
400       if (IBB == Preheader) {
401         PreheaderIdx = i;
402       } else {
403         NewPN->addIncoming(IV, IBB);
404         if (HasUniqueIncomingValue) {
405           if (!UniqueValue)
406             UniqueValue = IV;
407           else if (UniqueValue != IV)
408             HasUniqueIncomingValue = false;
409         }
410       }
411     }
412 
413     // Delete all of the incoming values from the old PN except the preheader's
414     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
415     if (PreheaderIdx != 0) {
416       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
417       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
418     }
419     // Nuke all entries except the zero'th.
420     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
421       PN->removeIncomingValue(e-i, false);
422 
423     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
424     PN->addIncoming(NewPN, BEBlock);
425 
426     // As an optimization, if all incoming values in the new PhiNode (which is a
427     // subset of the incoming values of the old PHI node) have the same value,
428     // eliminate the PHI Node.
429     if (HasUniqueIncomingValue) {
430       NewPN->replaceAllUsesWith(UniqueValue);
431       BEBlock->getInstList().erase(NewPN);
432     }
433   }
434 
435   // Now that all of the PHI nodes have been inserted and adjusted, modify the
436   // backedge blocks to jump to the BEBlock instead of the header.
437   // If one of the backedges has llvm.loop metadata attached, we remove
438   // it from the backedge and add it to BEBlock.
439   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
440   MDNode *LoopMD = nullptr;
441   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
442     Instruction *TI = BackedgeBlocks[i]->getTerminator();
443     if (!LoopMD)
444       LoopMD = TI->getMetadata(LoopMDKind);
445     TI->setMetadata(LoopMDKind, nullptr);
446     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
447       if (TI->getSuccessor(Op) == Header)
448         TI->setSuccessor(Op, BEBlock);
449   }
450   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
451 
452   //===--- Update all analyses which we must preserve now -----------------===//
453 
454   // Update Loop Information - we know that this block is now in the current
455   // loop and all parent loops.
456   L->addBasicBlockToLoop(BEBlock, *LI);
457 
458   // Update dominator information
459   DT->splitBlock(BEBlock);
460 
461   return BEBlock;
462 }
463 
464 /// Simplify one loop and queue further loops for simplification.
465 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
466                             DominatorTree *DT, LoopInfo *LI,
467                             ScalarEvolution *SE, AssumptionCache *AC,
468                             bool PreserveLCSSA) {
469   bool Changed = false;
470 ReprocessLoop:
471 
472   // Check to see that no blocks (other than the header) in this loop have
473   // predecessors that are not in the loop.  This is not valid for natural
474   // loops, but can occur if the blocks are unreachable.  Since they are
475   // unreachable we can just shamelessly delete those CFG edges!
476   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
477        BB != E; ++BB) {
478     if (*BB == L->getHeader()) continue;
479 
480     SmallPtrSet<BasicBlock*, 4> BadPreds;
481     for (pred_iterator PI = pred_begin(*BB),
482          PE = pred_end(*BB); PI != PE; ++PI) {
483       BasicBlock *P = *PI;
484       if (!L->contains(P))
485         BadPreds.insert(P);
486     }
487 
488     // Delete each unique out-of-loop (and thus dead) predecessor.
489     for (BasicBlock *P : BadPreds) {
490 
491       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
492                         << P->getName() << "\n");
493 
494       // Zap the dead pred's terminator and replace it with unreachable.
495       Instruction *TI = P->getTerminator();
496       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA);
497       Changed = true;
498     }
499   }
500 
501   // If there are exiting blocks with branches on undef, resolve the undef in
502   // the direction which will exit the loop. This will help simplify loop
503   // trip count computations.
504   SmallVector<BasicBlock*, 8> ExitingBlocks;
505   L->getExitingBlocks(ExitingBlocks);
506   for (BasicBlock *ExitingBlock : ExitingBlocks)
507     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
508       if (BI->isConditional()) {
509         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
510 
511           LLVM_DEBUG(dbgs()
512                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
513                      << ExitingBlock->getName() << "\n");
514 
515           BI->setCondition(ConstantInt::get(Cond->getType(),
516                                             !L->contains(BI->getSuccessor(0))));
517 
518           Changed = true;
519         }
520       }
521 
522   // Does the loop already have a preheader?  If so, don't insert one.
523   BasicBlock *Preheader = L->getLoopPreheader();
524   if (!Preheader) {
525     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
526     if (Preheader)
527       Changed = true;
528   }
529 
530   // Next, check to make sure that all exit nodes of the loop only have
531   // predecessors that are inside of the loop.  This check guarantees that the
532   // loop preheader/header will dominate the exit blocks.  If the exit block has
533   // predecessors from outside of the loop, split the edge now.
534   if (formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA))
535     Changed = true;
536 
537   // If the header has more than two predecessors at this point (from the
538   // preheader and from multiple backedges), we must adjust the loop.
539   BasicBlock *LoopLatch = L->getLoopLatch();
540   if (!LoopLatch) {
541     // If this is really a nested loop, rip it out into a child loop.  Don't do
542     // this for loops with a giant number of backedges, just factor them into a
543     // common backedge instead.
544     if (L->getNumBackEdges() < 8) {
545       if (Loop *OuterL =
546               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
547         ++NumNested;
548         // Enqueue the outer loop as it should be processed next in our
549         // depth-first nest walk.
550         Worklist.push_back(OuterL);
551 
552         // This is a big restructuring change, reprocess the whole loop.
553         Changed = true;
554         // GCC doesn't tail recursion eliminate this.
555         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
556         goto ReprocessLoop;
557       }
558     }
559 
560     // If we either couldn't, or didn't want to, identify nesting of the loops,
561     // insert a new block that all backedges target, then make it jump to the
562     // loop header.
563     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
564     if (LoopLatch)
565       Changed = true;
566   }
567 
568   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
569 
570   // Scan over the PHI nodes in the loop header.  Since they now have only two
571   // incoming values (the loop is canonicalized), we may have simplified the PHI
572   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
573   PHINode *PN;
574   for (BasicBlock::iterator I = L->getHeader()->begin();
575        (PN = dyn_cast<PHINode>(I++)); )
576     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
577       if (SE) SE->forgetValue(PN);
578       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
579         PN->replaceAllUsesWith(V);
580         PN->eraseFromParent();
581       }
582     }
583 
584   // If this loop has multiple exits and the exits all go to the same
585   // block, attempt to merge the exits. This helps several passes, such
586   // as LoopRotation, which do not support loops with multiple exits.
587   // SimplifyCFG also does this (and this code uses the same utility
588   // function), however this code is loop-aware, where SimplifyCFG is
589   // not. That gives it the advantage of being able to hoist
590   // loop-invariant instructions out of the way to open up more
591   // opportunities, and the disadvantage of having the responsibility
592   // to preserve dominator information.
593   auto HasUniqueExitBlock = [&]() {
594     BasicBlock *UniqueExit = nullptr;
595     for (auto *ExitingBB : ExitingBlocks)
596       for (auto *SuccBB : successors(ExitingBB)) {
597         if (L->contains(SuccBB))
598           continue;
599 
600         if (!UniqueExit)
601           UniqueExit = SuccBB;
602         else if (UniqueExit != SuccBB)
603           return false;
604       }
605 
606     return true;
607   };
608   if (HasUniqueExitBlock()) {
609     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
610       BasicBlock *ExitingBlock = ExitingBlocks[i];
611       if (!ExitingBlock->getSinglePredecessor()) continue;
612       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
613       if (!BI || !BI->isConditional()) continue;
614       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
615       if (!CI || CI->getParent() != ExitingBlock) continue;
616 
617       // Attempt to hoist out all instructions except for the
618       // comparison and the branch.
619       bool AllInvariant = true;
620       bool AnyInvariant = false;
621       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
622         Instruction *Inst = &*I++;
623         if (Inst == CI)
624           continue;
625         if (!L->makeLoopInvariant(Inst, AnyInvariant,
626                                   Preheader ? Preheader->getTerminator()
627                                             : nullptr)) {
628           AllInvariant = false;
629           break;
630         }
631       }
632       if (AnyInvariant) {
633         Changed = true;
634         // The loop disposition of all SCEV expressions that depend on any
635         // hoisted values have also changed.
636         if (SE)
637           SE->forgetLoopDispositions(L);
638       }
639       if (!AllInvariant) continue;
640 
641       // The block has now been cleared of all instructions except for
642       // a comparison and a conditional branch. SimplifyCFG may be able
643       // to fold it now.
644       if (!FoldBranchToCommonDest(BI))
645         continue;
646 
647       // Success. The block is now dead, so remove it from the loop,
648       // update the dominator tree and delete it.
649       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
650                         << ExitingBlock->getName() << "\n");
651 
652       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
653       Changed = true;
654       LI->removeBlock(ExitingBlock);
655 
656       DomTreeNode *Node = DT->getNode(ExitingBlock);
657       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
658         Node->getChildren();
659       while (!Children.empty()) {
660         DomTreeNode *Child = Children.front();
661         DT->changeImmediateDominator(Child, Node->getIDom());
662       }
663       DT->eraseNode(ExitingBlock);
664 
665       BI->getSuccessor(0)->removePredecessor(
666           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
667       BI->getSuccessor(1)->removePredecessor(
668           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
669       ExitingBlock->eraseFromParent();
670     }
671   }
672 
673   // Changing exit conditions for blocks may affect exit counts of this loop and
674   // any of its paretns, so we must invalidate the entire subtree if we've made
675   // any changes.
676   if (Changed && SE)
677     SE->forgetTopmostLoop(L);
678 
679   return Changed;
680 }
681 
682 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
683                         ScalarEvolution *SE, AssumptionCache *AC,
684                         bool PreserveLCSSA) {
685   bool Changed = false;
686 
687 #ifndef NDEBUG
688   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
689   // form.
690   if (PreserveLCSSA) {
691     assert(DT && "DT not available.");
692     assert(LI && "LI not available.");
693     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
694            "Requested to preserve LCSSA, but it's already broken.");
695   }
696 #endif
697 
698   // Worklist maintains our depth-first queue of loops in this nest to process.
699   SmallVector<Loop *, 4> Worklist;
700   Worklist.push_back(L);
701 
702   // Walk the worklist from front to back, pushing newly found sub loops onto
703   // the back. This will let us process loops from back to front in depth-first
704   // order. We can use this simple process because loops form a tree.
705   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
706     Loop *L2 = Worklist[Idx];
707     Worklist.append(L2->begin(), L2->end());
708   }
709 
710   while (!Worklist.empty())
711     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
712                                AC, PreserveLCSSA);
713 
714   return Changed;
715 }
716 
717 namespace {
718   struct LoopSimplify : public FunctionPass {
719     static char ID; // Pass identification, replacement for typeid
720     LoopSimplify() : FunctionPass(ID) {
721       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
722     }
723 
724     bool runOnFunction(Function &F) override;
725 
726     void getAnalysisUsage(AnalysisUsage &AU) const override {
727       AU.addRequired<AssumptionCacheTracker>();
728 
729       // We need loop information to identify the loops...
730       AU.addRequired<DominatorTreeWrapperPass>();
731       AU.addPreserved<DominatorTreeWrapperPass>();
732 
733       AU.addRequired<LoopInfoWrapperPass>();
734       AU.addPreserved<LoopInfoWrapperPass>();
735 
736       AU.addPreserved<BasicAAWrapperPass>();
737       AU.addPreserved<AAResultsWrapperPass>();
738       AU.addPreserved<GlobalsAAWrapperPass>();
739       AU.addPreserved<ScalarEvolutionWrapperPass>();
740       AU.addPreserved<SCEVAAWrapperPass>();
741       AU.addPreservedID(LCSSAID);
742       AU.addPreserved<DependenceAnalysisWrapperPass>();
743       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
744       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
745     }
746 
747     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
748     void verifyAnalysis() const override;
749   };
750 }
751 
752 char LoopSimplify::ID = 0;
753 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
754                 "Canonicalize natural loops", false, false)
755 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
756 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
757 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
758 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
759                 "Canonicalize natural loops", false, false)
760 
761 // Publicly exposed interface to pass...
762 char &llvm::LoopSimplifyID = LoopSimplify::ID;
763 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
764 
765 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
766 /// it in any convenient order) inserting preheaders...
767 ///
768 bool LoopSimplify::runOnFunction(Function &F) {
769   bool Changed = false;
770   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
771   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
772   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
773   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
774   AssumptionCache *AC =
775       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
776 
777   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
778 
779   // Simplify each loop nest in the function.
780   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
781     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
782 
783 #ifndef NDEBUG
784   if (PreserveLCSSA) {
785     bool InLCSSA = all_of(
786         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
787     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
788   }
789 #endif
790   return Changed;
791 }
792 
793 PreservedAnalyses LoopSimplifyPass::run(Function &F,
794                                         FunctionAnalysisManager &AM) {
795   bool Changed = false;
796   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
797   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
798   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
799   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
800 
801   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
802   // after simplifying the loops.
803   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
804     Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false);
805 
806   if (!Changed)
807     return PreservedAnalyses::all();
808 
809   PreservedAnalyses PA;
810   PA.preserve<DominatorTreeAnalysis>();
811   PA.preserve<LoopAnalysis>();
812   PA.preserve<BasicAA>();
813   PA.preserve<GlobalsAA>();
814   PA.preserve<SCEVAA>();
815   PA.preserve<ScalarEvolutionAnalysis>();
816   PA.preserve<DependenceAnalysis>();
817   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
818   // blocks, but it does so only by splitting existing blocks and edges. This
819   // results in the interesting property that all new terminators inserted are
820   // unconditional branches which do not appear in BPI. All deletions are
821   // handled via ValueHandle callbacks w/in BPI.
822   PA.preserve<BranchProbabilityAnalysis>();
823   return PA;
824 }
825 
826 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
827 // below.
828 #if 0
829 static void verifyLoop(Loop *L) {
830   // Verify subloops.
831   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
832     verifyLoop(*I);
833 
834   // It used to be possible to just assert L->isLoopSimplifyForm(), however
835   // with the introduction of indirectbr, there are now cases where it's
836   // not possible to transform a loop as necessary. We can at least check
837   // that there is an indirectbr near any time there's trouble.
838 
839   // Indirectbr can interfere with preheader and unique backedge insertion.
840   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
841     bool HasIndBrPred = false;
842     for (pred_iterator PI = pred_begin(L->getHeader()),
843          PE = pred_end(L->getHeader()); PI != PE; ++PI)
844       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
845         HasIndBrPred = true;
846         break;
847       }
848     assert(HasIndBrPred &&
849            "LoopSimplify has no excuse for missing loop header info!");
850     (void)HasIndBrPred;
851   }
852 
853   // Indirectbr can interfere with exit block canonicalization.
854   if (!L->hasDedicatedExits()) {
855     bool HasIndBrExiting = false;
856     SmallVector<BasicBlock*, 8> ExitingBlocks;
857     L->getExitingBlocks(ExitingBlocks);
858     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
859       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
860         HasIndBrExiting = true;
861         break;
862       }
863     }
864 
865     assert(HasIndBrExiting &&
866            "LoopSimplify has no excuse for missing exit block info!");
867     (void)HasIndBrExiting;
868   }
869 }
870 #endif
871 
872 void LoopSimplify::verifyAnalysis() const {
873   // FIXME: This routine is being called mid-way through the loop pass manager
874   // as loop passes destroy this analysis. That's actually fine, but we have no
875   // way of expressing that here. Once all of the passes that destroy this are
876   // hoisted out of the loop pass manager we can add back verification here.
877 #if 0
878   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
879     verifyLoop(*I);
880 #endif
881 }
882