1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/BasicAliasAnalysis.h" 48 #include "llvm/Analysis/AssumptionCache.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/GlobalsModRef.h" 51 #include "llvm/Analysis/InstructionSimplify.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/ScalarEvolution.h" 54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 55 #include "llvm/IR/CFG.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/LoopUtils.h" 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-simplify" 73 74 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 75 STATISTIC(NumNested , "Number of nested loops split out"); 76 77 // If the block isn't already, move the new block to right after some 'outside 78 // block' block. This prevents the preheader from being placed inside the loop 79 // body, e.g. when the loop hasn't been rotated. 80 static void placeSplitBlockCarefully(BasicBlock *NewBB, 81 SmallVectorImpl<BasicBlock *> &SplitPreds, 82 Loop *L) { 83 // Check to see if NewBB is already well placed. 84 Function::iterator BBI = NewBB; --BBI; 85 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 86 if (&*BBI == SplitPreds[i]) 87 return; 88 } 89 90 // If it isn't already after an outside block, move it after one. This is 91 // always good as it makes the uncond branch from the outside block into a 92 // fall-through. 93 94 // Figure out *which* outside block to put this after. Prefer an outside 95 // block that neighbors a BB actually in the loop. 96 BasicBlock *FoundBB = nullptr; 97 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 98 Function::iterator BBI = SplitPreds[i]; 99 if (++BBI != NewBB->getParent()->end() && 100 L->contains(BBI)) { 101 FoundBB = SplitPreds[i]; 102 break; 103 } 104 } 105 106 // If our heuristic for a *good* bb to place this after doesn't find 107 // anything, just pick something. It's likely better than leaving it within 108 // the loop. 109 if (!FoundBB) 110 FoundBB = SplitPreds[0]; 111 NewBB->moveAfter(FoundBB); 112 } 113 114 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 115 /// preheader, this method is called to insert one. This method has two phases: 116 /// preheader insertion and analysis updating. 117 /// 118 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 119 BasicBlock *Header = L->getHeader(); 120 121 // Get analyses that we try to update. 122 auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 123 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 124 auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 125 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 126 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 127 128 // Compute the set of predecessors of the loop that are not in the loop. 129 SmallVector<BasicBlock*, 8> OutsideBlocks; 130 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 131 PI != PE; ++PI) { 132 BasicBlock *P = *PI; 133 if (!L->contains(P)) { // Coming in from outside the loop? 134 // If the loop is branched to from an indirect branch, we won't 135 // be able to fully transform the loop, because it prohibits 136 // edge splitting. 137 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 138 139 // Keep track of it. 140 OutsideBlocks.push_back(P); 141 } 142 } 143 144 // Split out the loop pre-header. 145 BasicBlock *PreheaderBB; 146 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 147 LI, PreserveLCSSA); 148 if (!PreheaderBB) 149 return nullptr; 150 151 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 152 << PreheaderBB->getName() << "\n"); 153 154 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 155 // code layout too horribly. 156 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 157 158 return PreheaderBB; 159 } 160 161 /// \brief Ensure that the loop preheader dominates all exit blocks. 162 /// 163 /// This method is used to split exit blocks that have predecessors outside of 164 /// the loop. 165 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, 166 DominatorTree *DT, LoopInfo *LI, 167 Pass *PP) { 168 SmallVector<BasicBlock*, 8> LoopBlocks; 169 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 170 BasicBlock *P = *I; 171 if (L->contains(P)) { 172 // Don't do this if the loop is exited via an indirect branch. 173 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 174 175 LoopBlocks.push_back(P); 176 } 177 } 178 179 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 180 BasicBlock *NewExitBB = nullptr; 181 182 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 183 184 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI, 185 PreserveLCSSA); 186 if (!NewExitBB) 187 return nullptr; 188 189 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 190 << NewExitBB->getName() << "\n"); 191 return NewExitBB; 192 } 193 194 /// Add the specified block, and all of its predecessors, to the specified set, 195 /// if it's not already in there. Stop predecessor traversal when we reach 196 /// StopBlock. 197 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 198 std::set<BasicBlock*> &Blocks) { 199 SmallVector<BasicBlock *, 8> Worklist; 200 Worklist.push_back(InputBB); 201 do { 202 BasicBlock *BB = Worklist.pop_back_val(); 203 if (Blocks.insert(BB).second && BB != StopBlock) 204 // If BB is not already processed and it is not a stop block then 205 // insert its predecessor in the work list 206 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 207 BasicBlock *WBB = *I; 208 Worklist.push_back(WBB); 209 } 210 } while (!Worklist.empty()); 211 } 212 213 /// \brief The first part of loop-nestification is to find a PHI node that tells 214 /// us how to partition the loops. 215 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 216 AssumptionCache *AC) { 217 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 218 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 219 PHINode *PN = cast<PHINode>(I); 220 ++I; 221 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { 222 // This is a degenerate PHI already, don't modify it! 223 PN->replaceAllUsesWith(V); 224 PN->eraseFromParent(); 225 continue; 226 } 227 228 // Scan this PHI node looking for a use of the PHI node by itself. 229 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 230 if (PN->getIncomingValue(i) == PN && 231 L->contains(PN->getIncomingBlock(i))) 232 // We found something tasty to remove. 233 return PN; 234 } 235 return nullptr; 236 } 237 238 /// \brief If this loop has multiple backedges, try to pull one of them out into 239 /// a nested loop. 240 /// 241 /// This is important for code that looks like 242 /// this: 243 /// 244 /// Loop: 245 /// ... 246 /// br cond, Loop, Next 247 /// ... 248 /// br cond2, Loop, Out 249 /// 250 /// To identify this common case, we look at the PHI nodes in the header of the 251 /// loop. PHI nodes with unchanging values on one backedge correspond to values 252 /// that change in the "outer" loop, but not in the "inner" loop. 253 /// 254 /// If we are able to separate out a loop, return the new outer loop that was 255 /// created. 256 /// 257 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 258 DominatorTree *DT, LoopInfo *LI, 259 ScalarEvolution *SE, Pass *PP, 260 AssumptionCache *AC) { 261 // Don't try to separate loops without a preheader. 262 if (!Preheader) 263 return nullptr; 264 265 // The header is not a landing pad; preheader insertion should ensure this. 266 BasicBlock *Header = L->getHeader(); 267 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 268 269 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 270 if (!PN) return nullptr; // No known way to partition. 271 272 // Pull out all predecessors that have varying values in the loop. This 273 // handles the case when a PHI node has multiple instances of itself as 274 // arguments. 275 SmallVector<BasicBlock*, 8> OuterLoopPreds; 276 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 277 if (PN->getIncomingValue(i) != PN || 278 !L->contains(PN->getIncomingBlock(i))) { 279 // We can't split indirectbr edges. 280 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 281 return nullptr; 282 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 283 } 284 } 285 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 286 287 // If ScalarEvolution is around and knows anything about values in 288 // this loop, tell it to forget them, because we're about to 289 // substantially change it. 290 if (SE) 291 SE->forgetLoop(L); 292 293 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 294 295 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 296 DT, LI, PreserveLCSSA); 297 298 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 299 // code layout too horribly. 300 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 301 302 // Create the new outer loop. 303 Loop *NewOuter = new Loop(); 304 305 // Change the parent loop to use the outer loop as its child now. 306 if (Loop *Parent = L->getParentLoop()) 307 Parent->replaceChildLoopWith(L, NewOuter); 308 else 309 LI->changeTopLevelLoop(L, NewOuter); 310 311 // L is now a subloop of our outer loop. 312 NewOuter->addChildLoop(L); 313 314 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 315 I != E; ++I) 316 NewOuter->addBlockEntry(*I); 317 318 // Now reset the header in L, which had been moved by 319 // SplitBlockPredecessors for the outer loop. 320 L->moveToHeader(Header); 321 322 // Determine which blocks should stay in L and which should be moved out to 323 // the Outer loop now. 324 std::set<BasicBlock*> BlocksInL; 325 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 326 BasicBlock *P = *PI; 327 if (DT->dominates(Header, P)) 328 addBlockAndPredsToSet(P, Header, BlocksInL); 329 } 330 331 // Scan all of the loop children of L, moving them to OuterLoop if they are 332 // not part of the inner loop. 333 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 334 for (size_t I = 0; I != SubLoops.size(); ) 335 if (BlocksInL.count(SubLoops[I]->getHeader())) 336 ++I; // Loop remains in L 337 else 338 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 339 340 // Now that we know which blocks are in L and which need to be moved to 341 // OuterLoop, move any blocks that need it. 342 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 343 BasicBlock *BB = L->getBlocks()[i]; 344 if (!BlocksInL.count(BB)) { 345 // Move this block to the parent, updating the exit blocks sets 346 L->removeBlockFromLoop(BB); 347 if ((*LI)[BB] == L) 348 LI->changeLoopFor(BB, NewOuter); 349 --i; 350 } 351 } 352 353 return NewOuter; 354 } 355 356 /// \brief This method is called when the specified loop has more than one 357 /// backedge in it. 358 /// 359 /// If this occurs, revector all of these backedges to target a new basic block 360 /// and have that block branch to the loop header. This ensures that loops 361 /// have exactly one backedge. 362 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 363 DominatorTree *DT, LoopInfo *LI) { 364 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 365 366 // Get information about the loop 367 BasicBlock *Header = L->getHeader(); 368 Function *F = Header->getParent(); 369 370 // Unique backedge insertion currently depends on having a preheader. 371 if (!Preheader) 372 return nullptr; 373 374 // The header is not an EH pad; preheader insertion should ensure this. 375 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 376 377 // Figure out which basic blocks contain back-edges to the loop header. 378 std::vector<BasicBlock*> BackedgeBlocks; 379 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 380 BasicBlock *P = *I; 381 382 // Indirectbr edges cannot be split, so we must fail if we find one. 383 if (isa<IndirectBrInst>(P->getTerminator())) 384 return nullptr; 385 386 if (P != Preheader) BackedgeBlocks.push_back(P); 387 } 388 389 // Create and insert the new backedge block... 390 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 391 Header->getName() + ".backedge", F); 392 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 393 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 394 395 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 396 << BEBlock->getName() << "\n"); 397 398 // Move the new backedge block to right after the last backedge block. 399 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 400 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 401 402 // Now that the block has been inserted into the function, create PHI nodes in 403 // the backedge block which correspond to any PHI nodes in the header block. 404 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 405 PHINode *PN = cast<PHINode>(I); 406 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 407 PN->getName()+".be", BETerminator); 408 409 // Loop over the PHI node, moving all entries except the one for the 410 // preheader over to the new PHI node. 411 unsigned PreheaderIdx = ~0U; 412 bool HasUniqueIncomingValue = true; 413 Value *UniqueValue = nullptr; 414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 415 BasicBlock *IBB = PN->getIncomingBlock(i); 416 Value *IV = PN->getIncomingValue(i); 417 if (IBB == Preheader) { 418 PreheaderIdx = i; 419 } else { 420 NewPN->addIncoming(IV, IBB); 421 if (HasUniqueIncomingValue) { 422 if (!UniqueValue) 423 UniqueValue = IV; 424 else if (UniqueValue != IV) 425 HasUniqueIncomingValue = false; 426 } 427 } 428 } 429 430 // Delete all of the incoming values from the old PN except the preheader's 431 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 432 if (PreheaderIdx != 0) { 433 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 434 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 435 } 436 // Nuke all entries except the zero'th. 437 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 438 PN->removeIncomingValue(e-i, false); 439 440 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 441 PN->addIncoming(NewPN, BEBlock); 442 443 // As an optimization, if all incoming values in the new PhiNode (which is a 444 // subset of the incoming values of the old PHI node) have the same value, 445 // eliminate the PHI Node. 446 if (HasUniqueIncomingValue) { 447 NewPN->replaceAllUsesWith(UniqueValue); 448 BEBlock->getInstList().erase(NewPN); 449 } 450 } 451 452 // Now that all of the PHI nodes have been inserted and adjusted, modify the 453 // backedge blocks to just to the BEBlock instead of the header. 454 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 455 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 456 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 457 if (TI->getSuccessor(Op) == Header) 458 TI->setSuccessor(Op, BEBlock); 459 } 460 461 //===--- Update all analyses which we must preserve now -----------------===// 462 463 // Update Loop Information - we know that this block is now in the current 464 // loop and all parent loops. 465 L->addBasicBlockToLoop(BEBlock, *LI); 466 467 // Update dominator information 468 DT->splitBlock(BEBlock); 469 470 return BEBlock; 471 } 472 473 /// \brief Simplify one loop and queue further loops for simplification. 474 /// 475 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 476 /// Pass pointer. The Pass pointer is used by numerous utilities to update 477 /// specific analyses. Rather than a pass it would be much cleaner and more 478 /// explicit if they accepted the analysis directly and then updated it. 479 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 480 DominatorTree *DT, LoopInfo *LI, 481 ScalarEvolution *SE, Pass *PP, 482 AssumptionCache *AC) { 483 bool Changed = false; 484 ReprocessLoop: 485 486 // Check to see that no blocks (other than the header) in this loop have 487 // predecessors that are not in the loop. This is not valid for natural 488 // loops, but can occur if the blocks are unreachable. Since they are 489 // unreachable we can just shamelessly delete those CFG edges! 490 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 491 BB != E; ++BB) { 492 if (*BB == L->getHeader()) continue; 493 494 SmallPtrSet<BasicBlock*, 4> BadPreds; 495 for (pred_iterator PI = pred_begin(*BB), 496 PE = pred_end(*BB); PI != PE; ++PI) { 497 BasicBlock *P = *PI; 498 if (!L->contains(P)) 499 BadPreds.insert(P); 500 } 501 502 // Delete each unique out-of-loop (and thus dead) predecessor. 503 for (BasicBlock *P : BadPreds) { 504 505 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 506 << P->getName() << "\n"); 507 508 // Inform each successor of each dead pred. 509 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI) 510 (*SI)->removePredecessor(P); 511 // Zap the dead pred's terminator and replace it with unreachable. 512 TerminatorInst *TI = P->getTerminator(); 513 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 514 P->getTerminator()->eraseFromParent(); 515 new UnreachableInst(P->getContext(), P); 516 Changed = true; 517 } 518 } 519 520 // If there are exiting blocks with branches on undef, resolve the undef in 521 // the direction which will exit the loop. This will help simplify loop 522 // trip count computations. 523 SmallVector<BasicBlock*, 8> ExitingBlocks; 524 L->getExitingBlocks(ExitingBlocks); 525 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 526 E = ExitingBlocks.end(); I != E; ++I) 527 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 528 if (BI->isConditional()) { 529 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 530 531 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 532 << (*I)->getName() << "\n"); 533 534 BI->setCondition(ConstantInt::get(Cond->getType(), 535 !L->contains(BI->getSuccessor(0)))); 536 537 // This may make the loop analyzable, force SCEV recomputation. 538 if (SE) 539 SE->forgetLoop(L); 540 541 Changed = true; 542 } 543 } 544 545 // Does the loop already have a preheader? If so, don't insert one. 546 BasicBlock *Preheader = L->getLoopPreheader(); 547 if (!Preheader) { 548 Preheader = InsertPreheaderForLoop(L, PP); 549 if (Preheader) { 550 ++NumInserted; 551 Changed = true; 552 } 553 } 554 555 // Next, check to make sure that all exit nodes of the loop only have 556 // predecessors that are inside of the loop. This check guarantees that the 557 // loop preheader/header will dominate the exit blocks. If the exit block has 558 // predecessors from outside of the loop, split the edge now. 559 SmallVector<BasicBlock*, 8> ExitBlocks; 560 L->getExitBlocks(ExitBlocks); 561 562 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 563 ExitBlocks.end()); 564 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 565 E = ExitBlockSet.end(); I != E; ++I) { 566 BasicBlock *ExitBlock = *I; 567 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 568 PI != PE; ++PI) 569 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 570 // allowed. 571 if (!L->contains(*PI)) { 572 if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PP)) { 573 ++NumInserted; 574 Changed = true; 575 } 576 break; 577 } 578 } 579 580 // If the header has more than two predecessors at this point (from the 581 // preheader and from multiple backedges), we must adjust the loop. 582 BasicBlock *LoopLatch = L->getLoopLatch(); 583 if (!LoopLatch) { 584 // If this is really a nested loop, rip it out into a child loop. Don't do 585 // this for loops with a giant number of backedges, just factor them into a 586 // common backedge instead. 587 if (L->getNumBackEdges() < 8) { 588 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, PP, AC)) { 589 ++NumNested; 590 // Enqueue the outer loop as it should be processed next in our 591 // depth-first nest walk. 592 Worklist.push_back(OuterL); 593 594 // This is a big restructuring change, reprocess the whole loop. 595 Changed = true; 596 // GCC doesn't tail recursion eliminate this. 597 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 598 goto ReprocessLoop; 599 } 600 } 601 602 // If we either couldn't, or didn't want to, identify nesting of the loops, 603 // insert a new block that all backedges target, then make it jump to the 604 // loop header. 605 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI); 606 if (LoopLatch) { 607 ++NumInserted; 608 Changed = true; 609 } 610 } 611 612 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 613 614 // Scan over the PHI nodes in the loop header. Since they now have only two 615 // incoming values (the loop is canonicalized), we may have simplified the PHI 616 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 617 PHINode *PN; 618 for (BasicBlock::iterator I = L->getHeader()->begin(); 619 (PN = dyn_cast<PHINode>(I++)); ) 620 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { 621 if (SE) SE->forgetValue(PN); 622 PN->replaceAllUsesWith(V); 623 PN->eraseFromParent(); 624 } 625 626 // If this loop has multiple exits and the exits all go to the same 627 // block, attempt to merge the exits. This helps several passes, such 628 // as LoopRotation, which do not support loops with multiple exits. 629 // SimplifyCFG also does this (and this code uses the same utility 630 // function), however this code is loop-aware, where SimplifyCFG is 631 // not. That gives it the advantage of being able to hoist 632 // loop-invariant instructions out of the way to open up more 633 // opportunities, and the disadvantage of having the responsibility 634 // to preserve dominator information. 635 bool UniqueExit = true; 636 if (!ExitBlocks.empty()) 637 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 638 if (ExitBlocks[i] != ExitBlocks[0]) { 639 UniqueExit = false; 640 break; 641 } 642 if (UniqueExit) { 643 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 644 BasicBlock *ExitingBlock = ExitingBlocks[i]; 645 if (!ExitingBlock->getSinglePredecessor()) continue; 646 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 647 if (!BI || !BI->isConditional()) continue; 648 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 649 if (!CI || CI->getParent() != ExitingBlock) continue; 650 651 // Attempt to hoist out all instructions except for the 652 // comparison and the branch. 653 bool AllInvariant = true; 654 bool AnyInvariant = false; 655 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 656 Instruction *Inst = I++; 657 // Skip debug info intrinsics. 658 if (isa<DbgInfoIntrinsic>(Inst)) 659 continue; 660 if (Inst == CI) 661 continue; 662 if (!L->makeLoopInvariant(Inst, AnyInvariant, 663 Preheader ? Preheader->getTerminator() 664 : nullptr)) { 665 AllInvariant = false; 666 break; 667 } 668 } 669 if (AnyInvariant) { 670 Changed = true; 671 // The loop disposition of all SCEV expressions that depend on any 672 // hoisted values have also changed. 673 if (SE) 674 SE->forgetLoopDispositions(L); 675 } 676 if (!AllInvariant) continue; 677 678 // The block has now been cleared of all instructions except for 679 // a comparison and a conditional branch. SimplifyCFG may be able 680 // to fold it now. 681 if (!FoldBranchToCommonDest(BI)) 682 continue; 683 684 // Success. The block is now dead, so remove it from the loop, 685 // update the dominator tree and delete it. 686 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 687 << ExitingBlock->getName() << "\n"); 688 689 // Notify ScalarEvolution before deleting this block. Currently assume the 690 // parent loop doesn't change (spliting edges doesn't count). If blocks, 691 // CFG edges, or other values in the parent loop change, then we need call 692 // to forgetLoop() for the parent instead. 693 if (SE) 694 SE->forgetLoop(L); 695 696 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 697 Changed = true; 698 LI->removeBlock(ExitingBlock); 699 700 DomTreeNode *Node = DT->getNode(ExitingBlock); 701 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 702 Node->getChildren(); 703 while (!Children.empty()) { 704 DomTreeNode *Child = Children.front(); 705 DT->changeImmediateDominator(Child, Node->getIDom()); 706 } 707 DT->eraseNode(ExitingBlock); 708 709 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 710 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 711 ExitingBlock->eraseFromParent(); 712 } 713 } 714 715 return Changed; 716 } 717 718 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 719 ScalarEvolution *SE, AssumptionCache *AC) { 720 bool Changed = false; 721 722 // Worklist maintains our depth-first queue of loops in this nest to process. 723 SmallVector<Loop *, 4> Worklist; 724 Worklist.push_back(L); 725 726 // Walk the worklist from front to back, pushing newly found sub loops onto 727 // the back. This will let us process loops from back to front in depth-first 728 // order. We can use this simple process because loops form a tree. 729 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 730 Loop *L2 = Worklist[Idx]; 731 Worklist.append(L2->begin(), L2->end()); 732 } 733 734 while (!Worklist.empty()) 735 Changed |= 736 simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, PP, AC); 737 738 return Changed; 739 } 740 741 namespace { 742 struct LoopSimplify : public FunctionPass { 743 static char ID; // Pass identification, replacement for typeid 744 LoopSimplify() : FunctionPass(ID) { 745 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 746 } 747 748 DominatorTree *DT; 749 LoopInfo *LI; 750 ScalarEvolution *SE; 751 AssumptionCache *AC; 752 753 bool runOnFunction(Function &F) override; 754 755 void getAnalysisUsage(AnalysisUsage &AU) const override { 756 AU.addRequired<AssumptionCacheTracker>(); 757 758 // We need loop information to identify the loops... 759 AU.addRequired<DominatorTreeWrapperPass>(); 760 AU.addPreserved<DominatorTreeWrapperPass>(); 761 762 AU.addRequired<LoopInfoWrapperPass>(); 763 AU.addPreserved<LoopInfoWrapperPass>(); 764 765 AU.addPreserved<BasicAAWrapperPass>(); 766 AU.addPreserved<AAResultsWrapperPass>(); 767 AU.addPreserved<GlobalsAAWrapperPass>(); 768 AU.addPreserved<ScalarEvolutionWrapperPass>(); 769 AU.addPreserved<SCEVAAWrapperPass>(); 770 AU.addPreserved<DependenceAnalysis>(); 771 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 772 } 773 774 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 775 void verifyAnalysis() const override; 776 }; 777 } 778 779 char LoopSimplify::ID = 0; 780 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 781 "Canonicalize natural loops", false, false) 782 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 783 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 784 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 785 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 786 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 787 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 788 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 789 "Canonicalize natural loops", false, false) 790 791 // Publicly exposed interface to pass... 792 char &llvm::LoopSimplifyID = LoopSimplify::ID; 793 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 794 795 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 796 /// it in any convenient order) inserting preheaders... 797 /// 798 bool LoopSimplify::runOnFunction(Function &F) { 799 bool Changed = false; 800 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 801 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 802 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 803 SE = SEWP ? &SEWP->getSE() : nullptr; 804 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 805 806 // Simplify each loop nest in the function. 807 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 808 Changed |= simplifyLoop(*I, DT, LI, this, SE, AC); 809 810 return Changed; 811 } 812 813 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 814 // below. 815 #if 0 816 static void verifyLoop(Loop *L) { 817 // Verify subloops. 818 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 819 verifyLoop(*I); 820 821 // It used to be possible to just assert L->isLoopSimplifyForm(), however 822 // with the introduction of indirectbr, there are now cases where it's 823 // not possible to transform a loop as necessary. We can at least check 824 // that there is an indirectbr near any time there's trouble. 825 826 // Indirectbr can interfere with preheader and unique backedge insertion. 827 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 828 bool HasIndBrPred = false; 829 for (pred_iterator PI = pred_begin(L->getHeader()), 830 PE = pred_end(L->getHeader()); PI != PE; ++PI) 831 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 832 HasIndBrPred = true; 833 break; 834 } 835 assert(HasIndBrPred && 836 "LoopSimplify has no excuse for missing loop header info!"); 837 (void)HasIndBrPred; 838 } 839 840 // Indirectbr can interfere with exit block canonicalization. 841 if (!L->hasDedicatedExits()) { 842 bool HasIndBrExiting = false; 843 SmallVector<BasicBlock*, 8> ExitingBlocks; 844 L->getExitingBlocks(ExitingBlocks); 845 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 846 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 847 HasIndBrExiting = true; 848 break; 849 } 850 } 851 852 assert(HasIndBrExiting && 853 "LoopSimplify has no excuse for missing exit block info!"); 854 (void)HasIndBrExiting; 855 } 856 } 857 #endif 858 859 void LoopSimplify::verifyAnalysis() const { 860 // FIXME: This routine is being called mid-way through the loop pass manager 861 // as loop passes destroy this analysis. That's actually fine, but we have no 862 // way of expressing that here. Once all of the passes that destroy this are 863 // hoisted out of the loop pass manager we can add back verification here. 864 #if 0 865 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 866 verifyLoop(*I); 867 #endif 868 } 869