1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/SetOperations.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/BasicAliasAnalysis.h" 51 #include "llvm/Analysis/DependenceAnalysis.h" 52 #include "llvm/Analysis/GlobalsModRef.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/LoopInfo.h" 55 #include "llvm/Analysis/ScalarEvolution.h" 56 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include "llvm/IR/CFG.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Dominators.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/Utils.h" 71 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 72 #include "llvm/Transforms/Utils/LoopUtils.h" 73 using namespace llvm; 74 75 #define DEBUG_TYPE "loop-simplify" 76 77 STATISTIC(NumNested , "Number of nested loops split out"); 78 79 // If the block isn't already, move the new block to right after some 'outside 80 // block' block. This prevents the preheader from being placed inside the loop 81 // body, e.g. when the loop hasn't been rotated. 82 static void placeSplitBlockCarefully(BasicBlock *NewBB, 83 SmallVectorImpl<BasicBlock *> &SplitPreds, 84 Loop *L) { 85 // Check to see if NewBB is already well placed. 86 Function::iterator BBI = --NewBB->getIterator(); 87 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 88 if (&*BBI == SplitPreds[i]) 89 return; 90 } 91 92 // If it isn't already after an outside block, move it after one. This is 93 // always good as it makes the uncond branch from the outside block into a 94 // fall-through. 95 96 // Figure out *which* outside block to put this after. Prefer an outside 97 // block that neighbors a BB actually in the loop. 98 BasicBlock *FoundBB = nullptr; 99 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 100 Function::iterator BBI = SplitPreds[i]->getIterator(); 101 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 102 FoundBB = SplitPreds[i]; 103 break; 104 } 105 } 106 107 // If our heuristic for a *good* bb to place this after doesn't find 108 // anything, just pick something. It's likely better than leaving it within 109 // the loop. 110 if (!FoundBB) 111 FoundBB = SplitPreds[0]; 112 NewBB->moveAfter(FoundBB); 113 } 114 115 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 116 /// preheader, this method is called to insert one. This method has two phases: 117 /// preheader insertion and analysis updating. 118 /// 119 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 120 LoopInfo *LI, bool PreserveLCSSA) { 121 BasicBlock *Header = L->getHeader(); 122 123 // Compute the set of predecessors of the loop that are not in the loop. 124 SmallVector<BasicBlock*, 8> OutsideBlocks; 125 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 126 PI != PE; ++PI) { 127 BasicBlock *P = *PI; 128 if (!L->contains(P)) { // Coming in from outside the loop? 129 // If the loop is branched to from an indirect terminator, we won't 130 // be able to fully transform the loop, because it prohibits 131 // edge splitting. 132 if (P->getTerminator()->isIndirectTerminator()) 133 return nullptr; 134 135 // Keep track of it. 136 OutsideBlocks.push_back(P); 137 } 138 } 139 140 // Split out the loop pre-header. 141 BasicBlock *PreheaderBB; 142 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 143 LI, nullptr, PreserveLCSSA); 144 if (!PreheaderBB) 145 return nullptr; 146 147 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 148 << PreheaderBB->getName() << "\n"); 149 150 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 151 // code layout too horribly. 152 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 153 154 return PreheaderBB; 155 } 156 157 /// Add the specified block, and all of its predecessors, to the specified set, 158 /// if it's not already in there. Stop predecessor traversal when we reach 159 /// StopBlock. 160 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 161 std::set<BasicBlock*> &Blocks) { 162 SmallVector<BasicBlock *, 8> Worklist; 163 Worklist.push_back(InputBB); 164 do { 165 BasicBlock *BB = Worklist.pop_back_val(); 166 if (Blocks.insert(BB).second && BB != StopBlock) 167 // If BB is not already processed and it is not a stop block then 168 // insert its predecessor in the work list 169 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 170 BasicBlock *WBB = *I; 171 Worklist.push_back(WBB); 172 } 173 } while (!Worklist.empty()); 174 } 175 176 /// The first part of loop-nestification is to find a PHI node that tells 177 /// us how to partition the loops. 178 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 179 AssumptionCache *AC) { 180 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 181 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 182 PHINode *PN = cast<PHINode>(I); 183 ++I; 184 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 185 // This is a degenerate PHI already, don't modify it! 186 PN->replaceAllUsesWith(V); 187 PN->eraseFromParent(); 188 continue; 189 } 190 191 // Scan this PHI node looking for a use of the PHI node by itself. 192 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 193 if (PN->getIncomingValue(i) == PN && 194 L->contains(PN->getIncomingBlock(i))) 195 // We found something tasty to remove. 196 return PN; 197 } 198 return nullptr; 199 } 200 201 /// If this loop has multiple backedges, try to pull one of them out into 202 /// a nested loop. 203 /// 204 /// This is important for code that looks like 205 /// this: 206 /// 207 /// Loop: 208 /// ... 209 /// br cond, Loop, Next 210 /// ... 211 /// br cond2, Loop, Out 212 /// 213 /// To identify this common case, we look at the PHI nodes in the header of the 214 /// loop. PHI nodes with unchanging values on one backedge correspond to values 215 /// that change in the "outer" loop, but not in the "inner" loop. 216 /// 217 /// If we are able to separate out a loop, return the new outer loop that was 218 /// created. 219 /// 220 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 221 DominatorTree *DT, LoopInfo *LI, 222 ScalarEvolution *SE, bool PreserveLCSSA, 223 AssumptionCache *AC) { 224 // Don't try to separate loops without a preheader. 225 if (!Preheader) 226 return nullptr; 227 228 // The header is not a landing pad; preheader insertion should ensure this. 229 BasicBlock *Header = L->getHeader(); 230 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 231 232 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 233 if (!PN) return nullptr; // No known way to partition. 234 235 // Pull out all predecessors that have varying values in the loop. This 236 // handles the case when a PHI node has multiple instances of itself as 237 // arguments. 238 SmallVector<BasicBlock*, 8> OuterLoopPreds; 239 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 240 if (PN->getIncomingValue(i) != PN || 241 !L->contains(PN->getIncomingBlock(i))) { 242 // We can't split indirect control flow edges. 243 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) 244 return nullptr; 245 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 246 } 247 } 248 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 249 250 // If ScalarEvolution is around and knows anything about values in 251 // this loop, tell it to forget them, because we're about to 252 // substantially change it. 253 if (SE) 254 SE->forgetLoop(L); 255 256 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 257 DT, LI, nullptr, PreserveLCSSA); 258 259 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 260 // code layout too horribly. 261 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 262 263 // Create the new outer loop. 264 Loop *NewOuter = LI->AllocateLoop(); 265 266 // Change the parent loop to use the outer loop as its child now. 267 if (Loop *Parent = L->getParentLoop()) 268 Parent->replaceChildLoopWith(L, NewOuter); 269 else 270 LI->changeTopLevelLoop(L, NewOuter); 271 272 // L is now a subloop of our outer loop. 273 NewOuter->addChildLoop(L); 274 275 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 276 I != E; ++I) 277 NewOuter->addBlockEntry(*I); 278 279 // Now reset the header in L, which had been moved by 280 // SplitBlockPredecessors for the outer loop. 281 L->moveToHeader(Header); 282 283 // Determine which blocks should stay in L and which should be moved out to 284 // the Outer loop now. 285 std::set<BasicBlock*> BlocksInL; 286 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 287 BasicBlock *P = *PI; 288 if (DT->dominates(Header, P)) 289 addBlockAndPredsToSet(P, Header, BlocksInL); 290 } 291 292 // Scan all of the loop children of L, moving them to OuterLoop if they are 293 // not part of the inner loop. 294 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 295 for (size_t I = 0; I != SubLoops.size(); ) 296 if (BlocksInL.count(SubLoops[I]->getHeader())) 297 ++I; // Loop remains in L 298 else 299 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 300 301 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 302 OuterLoopBlocks.push_back(NewBB); 303 // Now that we know which blocks are in L and which need to be moved to 304 // OuterLoop, move any blocks that need it. 305 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 306 BasicBlock *BB = L->getBlocks()[i]; 307 if (!BlocksInL.count(BB)) { 308 // Move this block to the parent, updating the exit blocks sets 309 L->removeBlockFromLoop(BB); 310 if ((*LI)[BB] == L) { 311 LI->changeLoopFor(BB, NewOuter); 312 OuterLoopBlocks.push_back(BB); 313 } 314 --i; 315 } 316 } 317 318 // Split edges to exit blocks from the inner loop, if they emerged in the 319 // process of separating the outer one. 320 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 321 322 if (PreserveLCSSA) { 323 // Fix LCSSA form for L. Some values, which previously were only used inside 324 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 325 // in corresponding exit blocks. 326 // We don't need to form LCSSA recursively, because there cannot be uses 327 // inside a newly created loop of defs from inner loops as those would 328 // already be a use of an LCSSA phi node. 329 formLCSSA(*L, *DT, LI, SE); 330 331 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 332 "LCSSA is broken after separating nested loops!"); 333 } 334 335 return NewOuter; 336 } 337 338 /// This method is called when the specified loop has more than one 339 /// backedge in it. 340 /// 341 /// If this occurs, revector all of these backedges to target a new basic block 342 /// and have that block branch to the loop header. This ensures that loops 343 /// have exactly one backedge. 344 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 345 DominatorTree *DT, LoopInfo *LI) { 346 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 347 348 // Get information about the loop 349 BasicBlock *Header = L->getHeader(); 350 Function *F = Header->getParent(); 351 352 // Unique backedge insertion currently depends on having a preheader. 353 if (!Preheader) 354 return nullptr; 355 356 // The header is not an EH pad; preheader insertion should ensure this. 357 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 358 359 // Figure out which basic blocks contain back-edges to the loop header. 360 std::vector<BasicBlock*> BackedgeBlocks; 361 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 362 BasicBlock *P = *I; 363 364 // Indirect edges cannot be split, so we must fail if we find one. 365 if (P->getTerminator()->isIndirectTerminator()) 366 return nullptr; 367 368 if (P != Preheader) BackedgeBlocks.push_back(P); 369 } 370 371 // Create and insert the new backedge block... 372 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 373 Header->getName() + ".backedge", F); 374 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 375 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 376 377 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 378 << BEBlock->getName() << "\n"); 379 380 // Move the new backedge block to right after the last backedge block. 381 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 382 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 383 384 // Now that the block has been inserted into the function, create PHI nodes in 385 // the backedge block which correspond to any PHI nodes in the header block. 386 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 387 PHINode *PN = cast<PHINode>(I); 388 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 389 PN->getName()+".be", BETerminator); 390 391 // Loop over the PHI node, moving all entries except the one for the 392 // preheader over to the new PHI node. 393 unsigned PreheaderIdx = ~0U; 394 bool HasUniqueIncomingValue = true; 395 Value *UniqueValue = nullptr; 396 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 397 BasicBlock *IBB = PN->getIncomingBlock(i); 398 Value *IV = PN->getIncomingValue(i); 399 if (IBB == Preheader) { 400 PreheaderIdx = i; 401 } else { 402 NewPN->addIncoming(IV, IBB); 403 if (HasUniqueIncomingValue) { 404 if (!UniqueValue) 405 UniqueValue = IV; 406 else if (UniqueValue != IV) 407 HasUniqueIncomingValue = false; 408 } 409 } 410 } 411 412 // Delete all of the incoming values from the old PN except the preheader's 413 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 414 if (PreheaderIdx != 0) { 415 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 416 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 417 } 418 // Nuke all entries except the zero'th. 419 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 420 PN->removeIncomingValue(e-i, false); 421 422 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 423 PN->addIncoming(NewPN, BEBlock); 424 425 // As an optimization, if all incoming values in the new PhiNode (which is a 426 // subset of the incoming values of the old PHI node) have the same value, 427 // eliminate the PHI Node. 428 if (HasUniqueIncomingValue) { 429 NewPN->replaceAllUsesWith(UniqueValue); 430 BEBlock->getInstList().erase(NewPN); 431 } 432 } 433 434 // Now that all of the PHI nodes have been inserted and adjusted, modify the 435 // backedge blocks to jump to the BEBlock instead of the header. 436 // If one of the backedges has llvm.loop metadata attached, we remove 437 // it from the backedge and add it to BEBlock. 438 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); 439 MDNode *LoopMD = nullptr; 440 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 441 Instruction *TI = BackedgeBlocks[i]->getTerminator(); 442 if (!LoopMD) 443 LoopMD = TI->getMetadata(LoopMDKind); 444 TI->setMetadata(LoopMDKind, nullptr); 445 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 446 if (TI->getSuccessor(Op) == Header) 447 TI->setSuccessor(Op, BEBlock); 448 } 449 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); 450 451 //===--- Update all analyses which we must preserve now -----------------===// 452 453 // Update Loop Information - we know that this block is now in the current 454 // loop and all parent loops. 455 L->addBasicBlockToLoop(BEBlock, *LI); 456 457 // Update dominator information 458 DT->splitBlock(BEBlock); 459 460 return BEBlock; 461 } 462 463 /// Simplify one loop and queue further loops for simplification. 464 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 465 DominatorTree *DT, LoopInfo *LI, 466 ScalarEvolution *SE, AssumptionCache *AC, 467 bool PreserveLCSSA) { 468 bool Changed = false; 469 ReprocessLoop: 470 471 // Check to see that no blocks (other than the header) in this loop have 472 // predecessors that are not in the loop. This is not valid for natural 473 // loops, but can occur if the blocks are unreachable. Since they are 474 // unreachable we can just shamelessly delete those CFG edges! 475 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 476 BB != E; ++BB) { 477 if (*BB == L->getHeader()) continue; 478 479 SmallPtrSet<BasicBlock*, 4> BadPreds; 480 for (pred_iterator PI = pred_begin(*BB), 481 PE = pred_end(*BB); PI != PE; ++PI) { 482 BasicBlock *P = *PI; 483 if (!L->contains(P)) 484 BadPreds.insert(P); 485 } 486 487 // Delete each unique out-of-loop (and thus dead) predecessor. 488 for (BasicBlock *P : BadPreds) { 489 490 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 491 << P->getName() << "\n"); 492 493 // Zap the dead pred's terminator and replace it with unreachable. 494 Instruction *TI = P->getTerminator(); 495 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA); 496 Changed = true; 497 } 498 } 499 500 // If there are exiting blocks with branches on undef, resolve the undef in 501 // the direction which will exit the loop. This will help simplify loop 502 // trip count computations. 503 SmallVector<BasicBlock*, 8> ExitingBlocks; 504 L->getExitingBlocks(ExitingBlocks); 505 for (BasicBlock *ExitingBlock : ExitingBlocks) 506 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 507 if (BI->isConditional()) { 508 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 509 510 LLVM_DEBUG(dbgs() 511 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 512 << ExitingBlock->getName() << "\n"); 513 514 BI->setCondition(ConstantInt::get(Cond->getType(), 515 !L->contains(BI->getSuccessor(0)))); 516 517 Changed = true; 518 } 519 } 520 521 // Does the loop already have a preheader? If so, don't insert one. 522 BasicBlock *Preheader = L->getLoopPreheader(); 523 if (!Preheader) { 524 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 525 if (Preheader) 526 Changed = true; 527 } 528 529 // Next, check to make sure that all exit nodes of the loop only have 530 // predecessors that are inside of the loop. This check guarantees that the 531 // loop preheader/header will dominate the exit blocks. If the exit block has 532 // predecessors from outside of the loop, split the edge now. 533 if (formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA)) 534 Changed = true; 535 536 // If the header has more than two predecessors at this point (from the 537 // preheader and from multiple backedges), we must adjust the loop. 538 BasicBlock *LoopLatch = L->getLoopLatch(); 539 if (!LoopLatch) { 540 // If this is really a nested loop, rip it out into a child loop. Don't do 541 // this for loops with a giant number of backedges, just factor them into a 542 // common backedge instead. 543 if (L->getNumBackEdges() < 8) { 544 if (Loop *OuterL = 545 separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) { 546 ++NumNested; 547 // Enqueue the outer loop as it should be processed next in our 548 // depth-first nest walk. 549 Worklist.push_back(OuterL); 550 551 // This is a big restructuring change, reprocess the whole loop. 552 Changed = true; 553 // GCC doesn't tail recursion eliminate this. 554 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 555 goto ReprocessLoop; 556 } 557 } 558 559 // If we either couldn't, or didn't want to, identify nesting of the loops, 560 // insert a new block that all backedges target, then make it jump to the 561 // loop header. 562 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI); 563 if (LoopLatch) 564 Changed = true; 565 } 566 567 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 568 569 // Scan over the PHI nodes in the loop header. Since they now have only two 570 // incoming values (the loop is canonicalized), we may have simplified the PHI 571 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 572 PHINode *PN; 573 for (BasicBlock::iterator I = L->getHeader()->begin(); 574 (PN = dyn_cast<PHINode>(I++)); ) 575 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 576 if (SE) SE->forgetValue(PN); 577 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 578 PN->replaceAllUsesWith(V); 579 PN->eraseFromParent(); 580 } 581 } 582 583 // If this loop has multiple exits and the exits all go to the same 584 // block, attempt to merge the exits. This helps several passes, such 585 // as LoopRotation, which do not support loops with multiple exits. 586 // SimplifyCFG also does this (and this code uses the same utility 587 // function), however this code is loop-aware, where SimplifyCFG is 588 // not. That gives it the advantage of being able to hoist 589 // loop-invariant instructions out of the way to open up more 590 // opportunities, and the disadvantage of having the responsibility 591 // to preserve dominator information. 592 auto HasUniqueExitBlock = [&]() { 593 BasicBlock *UniqueExit = nullptr; 594 for (auto *ExitingBB : ExitingBlocks) 595 for (auto *SuccBB : successors(ExitingBB)) { 596 if (L->contains(SuccBB)) 597 continue; 598 599 if (!UniqueExit) 600 UniqueExit = SuccBB; 601 else if (UniqueExit != SuccBB) 602 return false; 603 } 604 605 return true; 606 }; 607 if (HasUniqueExitBlock()) { 608 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 609 BasicBlock *ExitingBlock = ExitingBlocks[i]; 610 if (!ExitingBlock->getSinglePredecessor()) continue; 611 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 612 if (!BI || !BI->isConditional()) continue; 613 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 614 if (!CI || CI->getParent() != ExitingBlock) continue; 615 616 // Attempt to hoist out all instructions except for the 617 // comparison and the branch. 618 bool AllInvariant = true; 619 bool AnyInvariant = false; 620 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 621 Instruction *Inst = &*I++; 622 if (Inst == CI) 623 continue; 624 if (!L->makeLoopInvariant(Inst, AnyInvariant, 625 Preheader ? Preheader->getTerminator() 626 : nullptr)) { 627 AllInvariant = false; 628 break; 629 } 630 } 631 if (AnyInvariant) { 632 Changed = true; 633 // The loop disposition of all SCEV expressions that depend on any 634 // hoisted values have also changed. 635 if (SE) 636 SE->forgetLoopDispositions(L); 637 } 638 if (!AllInvariant) continue; 639 640 // The block has now been cleared of all instructions except for 641 // a comparison and a conditional branch. SimplifyCFG may be able 642 // to fold it now. 643 if (!FoldBranchToCommonDest(BI)) 644 continue; 645 646 // Success. The block is now dead, so remove it from the loop, 647 // update the dominator tree and delete it. 648 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 649 << ExitingBlock->getName() << "\n"); 650 651 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 652 Changed = true; 653 LI->removeBlock(ExitingBlock); 654 655 DomTreeNode *Node = DT->getNode(ExitingBlock); 656 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 657 Node->getChildren(); 658 while (!Children.empty()) { 659 DomTreeNode *Child = Children.front(); 660 DT->changeImmediateDominator(Child, Node->getIDom()); 661 } 662 DT->eraseNode(ExitingBlock); 663 664 BI->getSuccessor(0)->removePredecessor( 665 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 666 BI->getSuccessor(1)->removePredecessor( 667 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 668 ExitingBlock->eraseFromParent(); 669 } 670 } 671 672 // Changing exit conditions for blocks may affect exit counts of this loop and 673 // any of its paretns, so we must invalidate the entire subtree if we've made 674 // any changes. 675 if (Changed && SE) 676 SE->forgetTopmostLoop(L); 677 678 return Changed; 679 } 680 681 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 682 ScalarEvolution *SE, AssumptionCache *AC, 683 bool PreserveLCSSA) { 684 bool Changed = false; 685 686 #ifndef NDEBUG 687 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 688 // form. 689 if (PreserveLCSSA) { 690 assert(DT && "DT not available."); 691 assert(LI && "LI not available."); 692 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 693 "Requested to preserve LCSSA, but it's already broken."); 694 } 695 #endif 696 697 // Worklist maintains our depth-first queue of loops in this nest to process. 698 SmallVector<Loop *, 4> Worklist; 699 Worklist.push_back(L); 700 701 // Walk the worklist from front to back, pushing newly found sub loops onto 702 // the back. This will let us process loops from back to front in depth-first 703 // order. We can use this simple process because loops form a tree. 704 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 705 Loop *L2 = Worklist[Idx]; 706 Worklist.append(L2->begin(), L2->end()); 707 } 708 709 while (!Worklist.empty()) 710 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 711 AC, PreserveLCSSA); 712 713 return Changed; 714 } 715 716 namespace { 717 struct LoopSimplify : public FunctionPass { 718 static char ID; // Pass identification, replacement for typeid 719 LoopSimplify() : FunctionPass(ID) { 720 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 721 } 722 723 bool runOnFunction(Function &F) override; 724 725 void getAnalysisUsage(AnalysisUsage &AU) const override { 726 AU.addRequired<AssumptionCacheTracker>(); 727 728 // We need loop information to identify the loops... 729 AU.addRequired<DominatorTreeWrapperPass>(); 730 AU.addPreserved<DominatorTreeWrapperPass>(); 731 732 AU.addRequired<LoopInfoWrapperPass>(); 733 AU.addPreserved<LoopInfoWrapperPass>(); 734 735 AU.addPreserved<BasicAAWrapperPass>(); 736 AU.addPreserved<AAResultsWrapperPass>(); 737 AU.addPreserved<GlobalsAAWrapperPass>(); 738 AU.addPreserved<ScalarEvolutionWrapperPass>(); 739 AU.addPreserved<SCEVAAWrapperPass>(); 740 AU.addPreservedID(LCSSAID); 741 AU.addPreserved<DependenceAnalysisWrapperPass>(); 742 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 743 } 744 745 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 746 void verifyAnalysis() const override; 747 }; 748 } 749 750 char LoopSimplify::ID = 0; 751 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 752 "Canonicalize natural loops", false, false) 753 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 754 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 755 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 756 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 757 "Canonicalize natural loops", false, false) 758 759 // Publicly exposed interface to pass... 760 char &llvm::LoopSimplifyID = LoopSimplify::ID; 761 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 762 763 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 764 /// it in any convenient order) inserting preheaders... 765 /// 766 bool LoopSimplify::runOnFunction(Function &F) { 767 bool Changed = false; 768 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 769 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 770 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 771 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 772 AssumptionCache *AC = 773 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 774 775 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 776 777 // Simplify each loop nest in the function. 778 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 779 Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA); 780 781 #ifndef NDEBUG 782 if (PreserveLCSSA) { 783 bool InLCSSA = all_of( 784 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 785 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 786 } 787 #endif 788 return Changed; 789 } 790 791 PreservedAnalyses LoopSimplifyPass::run(Function &F, 792 FunctionAnalysisManager &AM) { 793 bool Changed = false; 794 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 795 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 796 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 797 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 798 799 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 800 // after simplifying the loops. 801 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 802 Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false); 803 804 if (!Changed) 805 return PreservedAnalyses::all(); 806 807 PreservedAnalyses PA; 808 PA.preserve<DominatorTreeAnalysis>(); 809 PA.preserve<LoopAnalysis>(); 810 PA.preserve<BasicAA>(); 811 PA.preserve<GlobalsAA>(); 812 PA.preserve<SCEVAA>(); 813 PA.preserve<ScalarEvolutionAnalysis>(); 814 PA.preserve<DependenceAnalysis>(); 815 return PA; 816 } 817 818 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 819 // below. 820 #if 0 821 static void verifyLoop(Loop *L) { 822 // Verify subloops. 823 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 824 verifyLoop(*I); 825 826 // It used to be possible to just assert L->isLoopSimplifyForm(), however 827 // with the introduction of indirectbr, there are now cases where it's 828 // not possible to transform a loop as necessary. We can at least check 829 // that there is an indirectbr near any time there's trouble. 830 831 // Indirectbr can interfere with preheader and unique backedge insertion. 832 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 833 bool HasIndBrPred = false; 834 for (pred_iterator PI = pred_begin(L->getHeader()), 835 PE = pred_end(L->getHeader()); PI != PE; ++PI) 836 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 837 HasIndBrPred = true; 838 break; 839 } 840 assert(HasIndBrPred && 841 "LoopSimplify has no excuse for missing loop header info!"); 842 (void)HasIndBrPred; 843 } 844 845 // Indirectbr can interfere with exit block canonicalization. 846 if (!L->hasDedicatedExits()) { 847 bool HasIndBrExiting = false; 848 SmallVector<BasicBlock*, 8> ExitingBlocks; 849 L->getExitingBlocks(ExitingBlocks); 850 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 851 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 852 HasIndBrExiting = true; 853 break; 854 } 855 } 856 857 assert(HasIndBrExiting && 858 "LoopSimplify has no excuse for missing exit block info!"); 859 (void)HasIndBrExiting; 860 } 861 } 862 #endif 863 864 void LoopSimplify::verifyAnalysis() const { 865 // FIXME: This routine is being called mid-way through the loop pass manager 866 // as loop passes destroy this analysis. That's actually fine, but we have no 867 // way of expressing that here. Once all of the passes that destroy this are 868 // hoisted out of the loop pass manager we can add back verification here. 869 #if 0 870 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 871 verifyLoop(*I); 872 #endif 873 } 874