1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/DependenceAnalysis.h"
52 #include "llvm/Analysis/GlobalsModRef.h"
53 #include "llvm/Analysis/InstructionSimplify.h"
54 #include "llvm/Analysis/LoopInfo.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/IR/CFG.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Dominators.h"
62 #include "llvm/IR/Function.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Utils.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/LoopUtils.h"
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "loop-simplify"
76 
77 STATISTIC(NumNested  , "Number of nested loops split out");
78 
79 // If the block isn't already, move the new block to right after some 'outside
80 // block' block.  This prevents the preheader from being placed inside the loop
81 // body, e.g. when the loop hasn't been rotated.
82 static void placeSplitBlockCarefully(BasicBlock *NewBB,
83                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
84                                      Loop *L) {
85   // Check to see if NewBB is already well placed.
86   Function::iterator BBI = --NewBB->getIterator();
87   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
88     if (&*BBI == SplitPreds[i])
89       return;
90   }
91 
92   // If it isn't already after an outside block, move it after one.  This is
93   // always good as it makes the uncond branch from the outside block into a
94   // fall-through.
95 
96   // Figure out *which* outside block to put this after.  Prefer an outside
97   // block that neighbors a BB actually in the loop.
98   BasicBlock *FoundBB = nullptr;
99   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
100     Function::iterator BBI = SplitPreds[i]->getIterator();
101     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
102       FoundBB = SplitPreds[i];
103       break;
104     }
105   }
106 
107   // If our heuristic for a *good* bb to place this after doesn't find
108   // anything, just pick something.  It's likely better than leaving it within
109   // the loop.
110   if (!FoundBB)
111     FoundBB = SplitPreds[0];
112   NewBB->moveAfter(FoundBB);
113 }
114 
115 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
116 /// preheader, this method is called to insert one.  This method has two phases:
117 /// preheader insertion and analysis updating.
118 ///
119 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
120                                          LoopInfo *LI, bool PreserveLCSSA) {
121   BasicBlock *Header = L->getHeader();
122 
123   // Compute the set of predecessors of the loop that are not in the loop.
124   SmallVector<BasicBlock*, 8> OutsideBlocks;
125   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
126        PI != PE; ++PI) {
127     BasicBlock *P = *PI;
128     if (!L->contains(P)) {         // Coming in from outside the loop?
129       // If the loop is branched to from an indirect terminator, we won't
130       // be able to fully transform the loop, because it prohibits
131       // edge splitting.
132       if (P->getTerminator()->isIndirectTerminator())
133         return nullptr;
134 
135       // Keep track of it.
136       OutsideBlocks.push_back(P);
137     }
138   }
139 
140   // Split out the loop pre-header.
141   BasicBlock *PreheaderBB;
142   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
143                                        LI, nullptr, PreserveLCSSA);
144   if (!PreheaderBB)
145     return nullptr;
146 
147   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
148                     << PreheaderBB->getName() << "\n");
149 
150   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
151   // code layout too horribly.
152   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
153 
154   return PreheaderBB;
155 }
156 
157 /// Add the specified block, and all of its predecessors, to the specified set,
158 /// if it's not already in there.  Stop predecessor traversal when we reach
159 /// StopBlock.
160 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
161                                   std::set<BasicBlock*> &Blocks) {
162   SmallVector<BasicBlock *, 8> Worklist;
163   Worklist.push_back(InputBB);
164   do {
165     BasicBlock *BB = Worklist.pop_back_val();
166     if (Blocks.insert(BB).second && BB != StopBlock)
167       // If BB is not already processed and it is not a stop block then
168       // insert its predecessor in the work list
169       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
170         BasicBlock *WBB = *I;
171         Worklist.push_back(WBB);
172       }
173   } while (!Worklist.empty());
174 }
175 
176 /// The first part of loop-nestification is to find a PHI node that tells
177 /// us how to partition the loops.
178 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
179                                         AssumptionCache *AC) {
180   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
181   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
182     PHINode *PN = cast<PHINode>(I);
183     ++I;
184     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
185       // This is a degenerate PHI already, don't modify it!
186       PN->replaceAllUsesWith(V);
187       PN->eraseFromParent();
188       continue;
189     }
190 
191     // Scan this PHI node looking for a use of the PHI node by itself.
192     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
193       if (PN->getIncomingValue(i) == PN &&
194           L->contains(PN->getIncomingBlock(i)))
195         // We found something tasty to remove.
196         return PN;
197   }
198   return nullptr;
199 }
200 
201 /// If this loop has multiple backedges, try to pull one of them out into
202 /// a nested loop.
203 ///
204 /// This is important for code that looks like
205 /// this:
206 ///
207 ///  Loop:
208 ///     ...
209 ///     br cond, Loop, Next
210 ///     ...
211 ///     br cond2, Loop, Out
212 ///
213 /// To identify this common case, we look at the PHI nodes in the header of the
214 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
215 /// that change in the "outer" loop, but not in the "inner" loop.
216 ///
217 /// If we are able to separate out a loop, return the new outer loop that was
218 /// created.
219 ///
220 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
221                                 DominatorTree *DT, LoopInfo *LI,
222                                 ScalarEvolution *SE, bool PreserveLCSSA,
223                                 AssumptionCache *AC) {
224   // Don't try to separate loops without a preheader.
225   if (!Preheader)
226     return nullptr;
227 
228   // The header is not a landing pad; preheader insertion should ensure this.
229   BasicBlock *Header = L->getHeader();
230   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
231 
232   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
233   if (!PN) return nullptr;  // No known way to partition.
234 
235   // Pull out all predecessors that have varying values in the loop.  This
236   // handles the case when a PHI node has multiple instances of itself as
237   // arguments.
238   SmallVector<BasicBlock*, 8> OuterLoopPreds;
239   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
240     if (PN->getIncomingValue(i) != PN ||
241         !L->contains(PN->getIncomingBlock(i))) {
242       // We can't split indirect control flow edges.
243       if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
244         return nullptr;
245       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
246     }
247   }
248   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
249 
250   // If ScalarEvolution is around and knows anything about values in
251   // this loop, tell it to forget them, because we're about to
252   // substantially change it.
253   if (SE)
254     SE->forgetLoop(L);
255 
256   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
257                                              DT, LI, nullptr, PreserveLCSSA);
258 
259   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
260   // code layout too horribly.
261   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
262 
263   // Create the new outer loop.
264   Loop *NewOuter = LI->AllocateLoop();
265 
266   // Change the parent loop to use the outer loop as its child now.
267   if (Loop *Parent = L->getParentLoop())
268     Parent->replaceChildLoopWith(L, NewOuter);
269   else
270     LI->changeTopLevelLoop(L, NewOuter);
271 
272   // L is now a subloop of our outer loop.
273   NewOuter->addChildLoop(L);
274 
275   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
276        I != E; ++I)
277     NewOuter->addBlockEntry(*I);
278 
279   // Now reset the header in L, which had been moved by
280   // SplitBlockPredecessors for the outer loop.
281   L->moveToHeader(Header);
282 
283   // Determine which blocks should stay in L and which should be moved out to
284   // the Outer loop now.
285   std::set<BasicBlock*> BlocksInL;
286   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
287     BasicBlock *P = *PI;
288     if (DT->dominates(Header, P))
289       addBlockAndPredsToSet(P, Header, BlocksInL);
290   }
291 
292   // Scan all of the loop children of L, moving them to OuterLoop if they are
293   // not part of the inner loop.
294   const std::vector<Loop*> &SubLoops = L->getSubLoops();
295   for (size_t I = 0; I != SubLoops.size(); )
296     if (BlocksInL.count(SubLoops[I]->getHeader()))
297       ++I;   // Loop remains in L
298     else
299       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
300 
301   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
302   OuterLoopBlocks.push_back(NewBB);
303   // Now that we know which blocks are in L and which need to be moved to
304   // OuterLoop, move any blocks that need it.
305   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
306     BasicBlock *BB = L->getBlocks()[i];
307     if (!BlocksInL.count(BB)) {
308       // Move this block to the parent, updating the exit blocks sets
309       L->removeBlockFromLoop(BB);
310       if ((*LI)[BB] == L) {
311         LI->changeLoopFor(BB, NewOuter);
312         OuterLoopBlocks.push_back(BB);
313       }
314       --i;
315     }
316   }
317 
318   // Split edges to exit blocks from the inner loop, if they emerged in the
319   // process of separating the outer one.
320   formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
321 
322   if (PreserveLCSSA) {
323     // Fix LCSSA form for L. Some values, which previously were only used inside
324     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
325     // in corresponding exit blocks.
326     // We don't need to form LCSSA recursively, because there cannot be uses
327     // inside a newly created loop of defs from inner loops as those would
328     // already be a use of an LCSSA phi node.
329     formLCSSA(*L, *DT, LI, SE);
330 
331     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
332            "LCSSA is broken after separating nested loops!");
333   }
334 
335   return NewOuter;
336 }
337 
338 /// This method is called when the specified loop has more than one
339 /// backedge in it.
340 ///
341 /// If this occurs, revector all of these backedges to target a new basic block
342 /// and have that block branch to the loop header.  This ensures that loops
343 /// have exactly one backedge.
344 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
345                                              DominatorTree *DT, LoopInfo *LI) {
346   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
347 
348   // Get information about the loop
349   BasicBlock *Header = L->getHeader();
350   Function *F = Header->getParent();
351 
352   // Unique backedge insertion currently depends on having a preheader.
353   if (!Preheader)
354     return nullptr;
355 
356   // The header is not an EH pad; preheader insertion should ensure this.
357   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
358 
359   // Figure out which basic blocks contain back-edges to the loop header.
360   std::vector<BasicBlock*> BackedgeBlocks;
361   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
362     BasicBlock *P = *I;
363 
364     // Indirect edges cannot be split, so we must fail if we find one.
365     if (P->getTerminator()->isIndirectTerminator())
366       return nullptr;
367 
368     if (P != Preheader) BackedgeBlocks.push_back(P);
369   }
370 
371   // Create and insert the new backedge block...
372   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
373                                            Header->getName() + ".backedge", F);
374   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
375   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
376 
377   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
378                     << BEBlock->getName() << "\n");
379 
380   // Move the new backedge block to right after the last backedge block.
381   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
382   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
383 
384   // Now that the block has been inserted into the function, create PHI nodes in
385   // the backedge block which correspond to any PHI nodes in the header block.
386   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
387     PHINode *PN = cast<PHINode>(I);
388     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
389                                      PN->getName()+".be", BETerminator);
390 
391     // Loop over the PHI node, moving all entries except the one for the
392     // preheader over to the new PHI node.
393     unsigned PreheaderIdx = ~0U;
394     bool HasUniqueIncomingValue = true;
395     Value *UniqueValue = nullptr;
396     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
397       BasicBlock *IBB = PN->getIncomingBlock(i);
398       Value *IV = PN->getIncomingValue(i);
399       if (IBB == Preheader) {
400         PreheaderIdx = i;
401       } else {
402         NewPN->addIncoming(IV, IBB);
403         if (HasUniqueIncomingValue) {
404           if (!UniqueValue)
405             UniqueValue = IV;
406           else if (UniqueValue != IV)
407             HasUniqueIncomingValue = false;
408         }
409       }
410     }
411 
412     // Delete all of the incoming values from the old PN except the preheader's
413     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
414     if (PreheaderIdx != 0) {
415       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
416       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
417     }
418     // Nuke all entries except the zero'th.
419     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
420       PN->removeIncomingValue(e-i, false);
421 
422     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
423     PN->addIncoming(NewPN, BEBlock);
424 
425     // As an optimization, if all incoming values in the new PhiNode (which is a
426     // subset of the incoming values of the old PHI node) have the same value,
427     // eliminate the PHI Node.
428     if (HasUniqueIncomingValue) {
429       NewPN->replaceAllUsesWith(UniqueValue);
430       BEBlock->getInstList().erase(NewPN);
431     }
432   }
433 
434   // Now that all of the PHI nodes have been inserted and adjusted, modify the
435   // backedge blocks to jump to the BEBlock instead of the header.
436   // If one of the backedges has llvm.loop metadata attached, we remove
437   // it from the backedge and add it to BEBlock.
438   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
439   MDNode *LoopMD = nullptr;
440   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
441     Instruction *TI = BackedgeBlocks[i]->getTerminator();
442     if (!LoopMD)
443       LoopMD = TI->getMetadata(LoopMDKind);
444     TI->setMetadata(LoopMDKind, nullptr);
445     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
446       if (TI->getSuccessor(Op) == Header)
447         TI->setSuccessor(Op, BEBlock);
448   }
449   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
450 
451   //===--- Update all analyses which we must preserve now -----------------===//
452 
453   // Update Loop Information - we know that this block is now in the current
454   // loop and all parent loops.
455   L->addBasicBlockToLoop(BEBlock, *LI);
456 
457   // Update dominator information
458   DT->splitBlock(BEBlock);
459 
460   return BEBlock;
461 }
462 
463 /// Simplify one loop and queue further loops for simplification.
464 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
465                             DominatorTree *DT, LoopInfo *LI,
466                             ScalarEvolution *SE, AssumptionCache *AC,
467                             bool PreserveLCSSA) {
468   bool Changed = false;
469 ReprocessLoop:
470 
471   // Check to see that no blocks (other than the header) in this loop have
472   // predecessors that are not in the loop.  This is not valid for natural
473   // loops, but can occur if the blocks are unreachable.  Since they are
474   // unreachable we can just shamelessly delete those CFG edges!
475   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
476        BB != E; ++BB) {
477     if (*BB == L->getHeader()) continue;
478 
479     SmallPtrSet<BasicBlock*, 4> BadPreds;
480     for (pred_iterator PI = pred_begin(*BB),
481          PE = pred_end(*BB); PI != PE; ++PI) {
482       BasicBlock *P = *PI;
483       if (!L->contains(P))
484         BadPreds.insert(P);
485     }
486 
487     // Delete each unique out-of-loop (and thus dead) predecessor.
488     for (BasicBlock *P : BadPreds) {
489 
490       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
491                         << P->getName() << "\n");
492 
493       // Zap the dead pred's terminator and replace it with unreachable.
494       Instruction *TI = P->getTerminator();
495       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA);
496       Changed = true;
497     }
498   }
499 
500   // If there are exiting blocks with branches on undef, resolve the undef in
501   // the direction which will exit the loop. This will help simplify loop
502   // trip count computations.
503   SmallVector<BasicBlock*, 8> ExitingBlocks;
504   L->getExitingBlocks(ExitingBlocks);
505   for (BasicBlock *ExitingBlock : ExitingBlocks)
506     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
507       if (BI->isConditional()) {
508         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
509 
510           LLVM_DEBUG(dbgs()
511                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
512                      << ExitingBlock->getName() << "\n");
513 
514           BI->setCondition(ConstantInt::get(Cond->getType(),
515                                             !L->contains(BI->getSuccessor(0))));
516 
517           Changed = true;
518         }
519       }
520 
521   // Does the loop already have a preheader?  If so, don't insert one.
522   BasicBlock *Preheader = L->getLoopPreheader();
523   if (!Preheader) {
524     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
525     if (Preheader)
526       Changed = true;
527   }
528 
529   // Next, check to make sure that all exit nodes of the loop only have
530   // predecessors that are inside of the loop.  This check guarantees that the
531   // loop preheader/header will dominate the exit blocks.  If the exit block has
532   // predecessors from outside of the loop, split the edge now.
533   if (formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA))
534     Changed = true;
535 
536   // If the header has more than two predecessors at this point (from the
537   // preheader and from multiple backedges), we must adjust the loop.
538   BasicBlock *LoopLatch = L->getLoopLatch();
539   if (!LoopLatch) {
540     // If this is really a nested loop, rip it out into a child loop.  Don't do
541     // this for loops with a giant number of backedges, just factor them into a
542     // common backedge instead.
543     if (L->getNumBackEdges() < 8) {
544       if (Loop *OuterL =
545               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
546         ++NumNested;
547         // Enqueue the outer loop as it should be processed next in our
548         // depth-first nest walk.
549         Worklist.push_back(OuterL);
550 
551         // This is a big restructuring change, reprocess the whole loop.
552         Changed = true;
553         // GCC doesn't tail recursion eliminate this.
554         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
555         goto ReprocessLoop;
556       }
557     }
558 
559     // If we either couldn't, or didn't want to, identify nesting of the loops,
560     // insert a new block that all backedges target, then make it jump to the
561     // loop header.
562     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
563     if (LoopLatch)
564       Changed = true;
565   }
566 
567   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
568 
569   // Scan over the PHI nodes in the loop header.  Since they now have only two
570   // incoming values (the loop is canonicalized), we may have simplified the PHI
571   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
572   PHINode *PN;
573   for (BasicBlock::iterator I = L->getHeader()->begin();
574        (PN = dyn_cast<PHINode>(I++)); )
575     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
576       if (SE) SE->forgetValue(PN);
577       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
578         PN->replaceAllUsesWith(V);
579         PN->eraseFromParent();
580       }
581     }
582 
583   // If this loop has multiple exits and the exits all go to the same
584   // block, attempt to merge the exits. This helps several passes, such
585   // as LoopRotation, which do not support loops with multiple exits.
586   // SimplifyCFG also does this (and this code uses the same utility
587   // function), however this code is loop-aware, where SimplifyCFG is
588   // not. That gives it the advantage of being able to hoist
589   // loop-invariant instructions out of the way to open up more
590   // opportunities, and the disadvantage of having the responsibility
591   // to preserve dominator information.
592   auto HasUniqueExitBlock = [&]() {
593     BasicBlock *UniqueExit = nullptr;
594     for (auto *ExitingBB : ExitingBlocks)
595       for (auto *SuccBB : successors(ExitingBB)) {
596         if (L->contains(SuccBB))
597           continue;
598 
599         if (!UniqueExit)
600           UniqueExit = SuccBB;
601         else if (UniqueExit != SuccBB)
602           return false;
603       }
604 
605     return true;
606   };
607   if (HasUniqueExitBlock()) {
608     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
609       BasicBlock *ExitingBlock = ExitingBlocks[i];
610       if (!ExitingBlock->getSinglePredecessor()) continue;
611       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
612       if (!BI || !BI->isConditional()) continue;
613       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
614       if (!CI || CI->getParent() != ExitingBlock) continue;
615 
616       // Attempt to hoist out all instructions except for the
617       // comparison and the branch.
618       bool AllInvariant = true;
619       bool AnyInvariant = false;
620       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
621         Instruction *Inst = &*I++;
622         if (Inst == CI)
623           continue;
624         if (!L->makeLoopInvariant(Inst, AnyInvariant,
625                                   Preheader ? Preheader->getTerminator()
626                                             : nullptr)) {
627           AllInvariant = false;
628           break;
629         }
630       }
631       if (AnyInvariant) {
632         Changed = true;
633         // The loop disposition of all SCEV expressions that depend on any
634         // hoisted values have also changed.
635         if (SE)
636           SE->forgetLoopDispositions(L);
637       }
638       if (!AllInvariant) continue;
639 
640       // The block has now been cleared of all instructions except for
641       // a comparison and a conditional branch. SimplifyCFG may be able
642       // to fold it now.
643       if (!FoldBranchToCommonDest(BI))
644         continue;
645 
646       // Success. The block is now dead, so remove it from the loop,
647       // update the dominator tree and delete it.
648       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
649                         << ExitingBlock->getName() << "\n");
650 
651       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
652       Changed = true;
653       LI->removeBlock(ExitingBlock);
654 
655       DomTreeNode *Node = DT->getNode(ExitingBlock);
656       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
657         Node->getChildren();
658       while (!Children.empty()) {
659         DomTreeNode *Child = Children.front();
660         DT->changeImmediateDominator(Child, Node->getIDom());
661       }
662       DT->eraseNode(ExitingBlock);
663 
664       BI->getSuccessor(0)->removePredecessor(
665           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
666       BI->getSuccessor(1)->removePredecessor(
667           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
668       ExitingBlock->eraseFromParent();
669     }
670   }
671 
672   // Changing exit conditions for blocks may affect exit counts of this loop and
673   // any of its paretns, so we must invalidate the entire subtree if we've made
674   // any changes.
675   if (Changed && SE)
676     SE->forgetTopmostLoop(L);
677 
678   return Changed;
679 }
680 
681 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
682                         ScalarEvolution *SE, AssumptionCache *AC,
683                         bool PreserveLCSSA) {
684   bool Changed = false;
685 
686 #ifndef NDEBUG
687   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
688   // form.
689   if (PreserveLCSSA) {
690     assert(DT && "DT not available.");
691     assert(LI && "LI not available.");
692     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
693            "Requested to preserve LCSSA, but it's already broken.");
694   }
695 #endif
696 
697   // Worklist maintains our depth-first queue of loops in this nest to process.
698   SmallVector<Loop *, 4> Worklist;
699   Worklist.push_back(L);
700 
701   // Walk the worklist from front to back, pushing newly found sub loops onto
702   // the back. This will let us process loops from back to front in depth-first
703   // order. We can use this simple process because loops form a tree.
704   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
705     Loop *L2 = Worklist[Idx];
706     Worklist.append(L2->begin(), L2->end());
707   }
708 
709   while (!Worklist.empty())
710     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
711                                AC, PreserveLCSSA);
712 
713   return Changed;
714 }
715 
716 namespace {
717   struct LoopSimplify : public FunctionPass {
718     static char ID; // Pass identification, replacement for typeid
719     LoopSimplify() : FunctionPass(ID) {
720       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
721     }
722 
723     bool runOnFunction(Function &F) override;
724 
725     void getAnalysisUsage(AnalysisUsage &AU) const override {
726       AU.addRequired<AssumptionCacheTracker>();
727 
728       // We need loop information to identify the loops...
729       AU.addRequired<DominatorTreeWrapperPass>();
730       AU.addPreserved<DominatorTreeWrapperPass>();
731 
732       AU.addRequired<LoopInfoWrapperPass>();
733       AU.addPreserved<LoopInfoWrapperPass>();
734 
735       AU.addPreserved<BasicAAWrapperPass>();
736       AU.addPreserved<AAResultsWrapperPass>();
737       AU.addPreserved<GlobalsAAWrapperPass>();
738       AU.addPreserved<ScalarEvolutionWrapperPass>();
739       AU.addPreserved<SCEVAAWrapperPass>();
740       AU.addPreservedID(LCSSAID);
741       AU.addPreserved<DependenceAnalysisWrapperPass>();
742       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
743     }
744 
745     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
746     void verifyAnalysis() const override;
747   };
748 }
749 
750 char LoopSimplify::ID = 0;
751 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
752                 "Canonicalize natural loops", false, false)
753 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
754 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
755 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
756 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
757                 "Canonicalize natural loops", false, false)
758 
759 // Publicly exposed interface to pass...
760 char &llvm::LoopSimplifyID = LoopSimplify::ID;
761 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
762 
763 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
764 /// it in any convenient order) inserting preheaders...
765 ///
766 bool LoopSimplify::runOnFunction(Function &F) {
767   bool Changed = false;
768   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
769   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
770   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
771   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
772   AssumptionCache *AC =
773       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
774 
775   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
776 
777   // Simplify each loop nest in the function.
778   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
779     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
780 
781 #ifndef NDEBUG
782   if (PreserveLCSSA) {
783     bool InLCSSA = all_of(
784         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
785     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
786   }
787 #endif
788   return Changed;
789 }
790 
791 PreservedAnalyses LoopSimplifyPass::run(Function &F,
792                                         FunctionAnalysisManager &AM) {
793   bool Changed = false;
794   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
795   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
796   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
797   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
798 
799   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
800   // after simplifying the loops.
801   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
802     Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false);
803 
804   if (!Changed)
805     return PreservedAnalyses::all();
806 
807   PreservedAnalyses PA;
808   PA.preserve<DominatorTreeAnalysis>();
809   PA.preserve<LoopAnalysis>();
810   PA.preserve<BasicAA>();
811   PA.preserve<GlobalsAA>();
812   PA.preserve<SCEVAA>();
813   PA.preserve<ScalarEvolutionAnalysis>();
814   PA.preserve<DependenceAnalysis>();
815   return PA;
816 }
817 
818 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
819 // below.
820 #if 0
821 static void verifyLoop(Loop *L) {
822   // Verify subloops.
823   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
824     verifyLoop(*I);
825 
826   // It used to be possible to just assert L->isLoopSimplifyForm(), however
827   // with the introduction of indirectbr, there are now cases where it's
828   // not possible to transform a loop as necessary. We can at least check
829   // that there is an indirectbr near any time there's trouble.
830 
831   // Indirectbr can interfere with preheader and unique backedge insertion.
832   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
833     bool HasIndBrPred = false;
834     for (pred_iterator PI = pred_begin(L->getHeader()),
835          PE = pred_end(L->getHeader()); PI != PE; ++PI)
836       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
837         HasIndBrPred = true;
838         break;
839       }
840     assert(HasIndBrPred &&
841            "LoopSimplify has no excuse for missing loop header info!");
842     (void)HasIndBrPred;
843   }
844 
845   // Indirectbr can interfere with exit block canonicalization.
846   if (!L->hasDedicatedExits()) {
847     bool HasIndBrExiting = false;
848     SmallVector<BasicBlock*, 8> ExitingBlocks;
849     L->getExitingBlocks(ExitingBlocks);
850     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
851       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
852         HasIndBrExiting = true;
853         break;
854       }
855     }
856 
857     assert(HasIndBrExiting &&
858            "LoopSimplify has no excuse for missing exit block info!");
859     (void)HasIndBrExiting;
860   }
861 }
862 #endif
863 
864 void LoopSimplify::verifyAnalysis() const {
865   // FIXME: This routine is being called mid-way through the loop pass manager
866   // as loop passes destroy this analysis. That's actually fine, but we have no
867   // way of expressing that here. Once all of the passes that destroy this are
868   // hoisted out of the loop pass manager we can add back verification here.
869 #if 0
870   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
871     verifyLoop(*I);
872 #endif
873 }
874