1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/DependenceAnalysis.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/LoopUtils.h" 67 using namespace llvm; 68 69 #define DEBUG_TYPE "loop-simplify" 70 71 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 72 STATISTIC(NumNested , "Number of nested loops split out"); 73 74 // If the block isn't already, move the new block to right after some 'outside 75 // block' block. This prevents the preheader from being placed inside the loop 76 // body, e.g. when the loop hasn't been rotated. 77 static void placeSplitBlockCarefully(BasicBlock *NewBB, 78 SmallVectorImpl<BasicBlock *> &SplitPreds, 79 Loop *L) { 80 // Check to see if NewBB is already well placed. 81 Function::iterator BBI = NewBB; --BBI; 82 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 83 if (&*BBI == SplitPreds[i]) 84 return; 85 } 86 87 // If it isn't already after an outside block, move it after one. This is 88 // always good as it makes the uncond branch from the outside block into a 89 // fall-through. 90 91 // Figure out *which* outside block to put this after. Prefer an outside 92 // block that neighbors a BB actually in the loop. 93 BasicBlock *FoundBB = nullptr; 94 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 95 Function::iterator BBI = SplitPreds[i]; 96 if (++BBI != NewBB->getParent()->end() && 97 L->contains(BBI)) { 98 FoundBB = SplitPreds[i]; 99 break; 100 } 101 } 102 103 // If our heuristic for a *good* bb to place this after doesn't find 104 // anything, just pick something. It's likely better than leaving it within 105 // the loop. 106 if (!FoundBB) 107 FoundBB = SplitPreds[0]; 108 NewBB->moveAfter(FoundBB); 109 } 110 111 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 112 /// preheader, this method is called to insert one. This method has two phases: 113 /// preheader insertion and analysis updating. 114 /// 115 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 116 BasicBlock *Header = L->getHeader(); 117 118 // Get analyses that we try to update. 119 auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 120 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 121 auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 122 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 123 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 124 125 // Compute the set of predecessors of the loop that are not in the loop. 126 SmallVector<BasicBlock*, 8> OutsideBlocks; 127 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 128 PI != PE; ++PI) { 129 BasicBlock *P = *PI; 130 if (!L->contains(P)) { // Coming in from outside the loop? 131 // If the loop is branched to from an indirect branch, we won't 132 // be able to fully transform the loop, because it prohibits 133 // edge splitting. 134 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 135 136 // Keep track of it. 137 OutsideBlocks.push_back(P); 138 } 139 } 140 141 // Split out the loop pre-header. 142 BasicBlock *PreheaderBB; 143 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 144 LI, PreserveLCSSA); 145 146 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 147 << PreheaderBB->getName() << "\n"); 148 149 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 150 // code layout too horribly. 151 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 152 153 return PreheaderBB; 154 } 155 156 /// \brief Ensure that the loop preheader dominates all exit blocks. 157 /// 158 /// This method is used to split exit blocks that have predecessors outside of 159 /// the loop. 160 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, 161 DominatorTree *DT, LoopInfo *LI, 162 Pass *PP) { 163 SmallVector<BasicBlock*, 8> LoopBlocks; 164 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 165 BasicBlock *P = *I; 166 if (L->contains(P)) { 167 // Don't do this if the loop is exited via an indirect branch. 168 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 169 170 LoopBlocks.push_back(P); 171 } 172 } 173 174 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 175 BasicBlock *NewExitBB = nullptr; 176 177 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 178 179 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI, 180 PreserveLCSSA); 181 182 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 183 << NewExitBB->getName() << "\n"); 184 return NewExitBB; 185 } 186 187 /// Add the specified block, and all of its predecessors, to the specified set, 188 /// if it's not already in there. Stop predecessor traversal when we reach 189 /// StopBlock. 190 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 191 std::set<BasicBlock*> &Blocks) { 192 SmallVector<BasicBlock *, 8> Worklist; 193 Worklist.push_back(InputBB); 194 do { 195 BasicBlock *BB = Worklist.pop_back_val(); 196 if (Blocks.insert(BB).second && BB != StopBlock) 197 // If BB is not already processed and it is not a stop block then 198 // insert its predecessor in the work list 199 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 200 BasicBlock *WBB = *I; 201 Worklist.push_back(WBB); 202 } 203 } while (!Worklist.empty()); 204 } 205 206 /// \brief The first part of loop-nestification is to find a PHI node that tells 207 /// us how to partition the loops. 208 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 209 AssumptionCache *AC) { 210 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 211 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 212 PHINode *PN = cast<PHINode>(I); 213 ++I; 214 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { 215 // This is a degenerate PHI already, don't modify it! 216 PN->replaceAllUsesWith(V); 217 PN->eraseFromParent(); 218 continue; 219 } 220 221 // Scan this PHI node looking for a use of the PHI node by itself. 222 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 223 if (PN->getIncomingValue(i) == PN && 224 L->contains(PN->getIncomingBlock(i))) 225 // We found something tasty to remove. 226 return PN; 227 } 228 return nullptr; 229 } 230 231 /// \brief If this loop has multiple backedges, try to pull one of them out into 232 /// a nested loop. 233 /// 234 /// This is important for code that looks like 235 /// this: 236 /// 237 /// Loop: 238 /// ... 239 /// br cond, Loop, Next 240 /// ... 241 /// br cond2, Loop, Out 242 /// 243 /// To identify this common case, we look at the PHI nodes in the header of the 244 /// loop. PHI nodes with unchanging values on one backedge correspond to values 245 /// that change in the "outer" loop, but not in the "inner" loop. 246 /// 247 /// If we are able to separate out a loop, return the new outer loop that was 248 /// created. 249 /// 250 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 251 DominatorTree *DT, LoopInfo *LI, 252 ScalarEvolution *SE, Pass *PP, 253 AssumptionCache *AC) { 254 // Don't try to separate loops without a preheader. 255 if (!Preheader) 256 return nullptr; 257 258 // The header is not a landing pad; preheader insertion should ensure this. 259 assert(!L->getHeader()->isLandingPad() && 260 "Can't insert backedge to landing pad"); 261 262 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 263 if (!PN) return nullptr; // No known way to partition. 264 265 // Pull out all predecessors that have varying values in the loop. This 266 // handles the case when a PHI node has multiple instances of itself as 267 // arguments. 268 SmallVector<BasicBlock*, 8> OuterLoopPreds; 269 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 270 if (PN->getIncomingValue(i) != PN || 271 !L->contains(PN->getIncomingBlock(i))) { 272 // We can't split indirectbr edges. 273 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 274 return nullptr; 275 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 276 } 277 } 278 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 279 280 // If ScalarEvolution is around and knows anything about values in 281 // this loop, tell it to forget them, because we're about to 282 // substantially change it. 283 if (SE) 284 SE->forgetLoop(L); 285 286 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 287 288 BasicBlock *Header = L->getHeader(); 289 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 290 DT, LI, PreserveLCSSA); 291 292 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 293 // code layout too horribly. 294 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 295 296 // Create the new outer loop. 297 Loop *NewOuter = new Loop(); 298 299 // Change the parent loop to use the outer loop as its child now. 300 if (Loop *Parent = L->getParentLoop()) 301 Parent->replaceChildLoopWith(L, NewOuter); 302 else 303 LI->changeTopLevelLoop(L, NewOuter); 304 305 // L is now a subloop of our outer loop. 306 NewOuter->addChildLoop(L); 307 308 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 309 I != E; ++I) 310 NewOuter->addBlockEntry(*I); 311 312 // Now reset the header in L, which had been moved by 313 // SplitBlockPredecessors for the outer loop. 314 L->moveToHeader(Header); 315 316 // Determine which blocks should stay in L and which should be moved out to 317 // the Outer loop now. 318 std::set<BasicBlock*> BlocksInL; 319 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 320 BasicBlock *P = *PI; 321 if (DT->dominates(Header, P)) 322 addBlockAndPredsToSet(P, Header, BlocksInL); 323 } 324 325 // Scan all of the loop children of L, moving them to OuterLoop if they are 326 // not part of the inner loop. 327 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 328 for (size_t I = 0; I != SubLoops.size(); ) 329 if (BlocksInL.count(SubLoops[I]->getHeader())) 330 ++I; // Loop remains in L 331 else 332 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 333 334 // Now that we know which blocks are in L and which need to be moved to 335 // OuterLoop, move any blocks that need it. 336 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 337 BasicBlock *BB = L->getBlocks()[i]; 338 if (!BlocksInL.count(BB)) { 339 // Move this block to the parent, updating the exit blocks sets 340 L->removeBlockFromLoop(BB); 341 if ((*LI)[BB] == L) 342 LI->changeLoopFor(BB, NewOuter); 343 --i; 344 } 345 } 346 347 return NewOuter; 348 } 349 350 /// \brief This method is called when the specified loop has more than one 351 /// backedge in it. 352 /// 353 /// If this occurs, revector all of these backedges to target a new basic block 354 /// and have that block branch to the loop header. This ensures that loops 355 /// have exactly one backedge. 356 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 357 DominatorTree *DT, LoopInfo *LI) { 358 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 359 360 // Get information about the loop 361 BasicBlock *Header = L->getHeader(); 362 Function *F = Header->getParent(); 363 364 // Unique backedge insertion currently depends on having a preheader. 365 if (!Preheader) 366 return nullptr; 367 368 // The header is not a landing pad; preheader insertion should ensure this. 369 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 370 371 // Figure out which basic blocks contain back-edges to the loop header. 372 std::vector<BasicBlock*> BackedgeBlocks; 373 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 374 BasicBlock *P = *I; 375 376 // Indirectbr edges cannot be split, so we must fail if we find one. 377 if (isa<IndirectBrInst>(P->getTerminator())) 378 return nullptr; 379 380 if (P != Preheader) BackedgeBlocks.push_back(P); 381 } 382 383 // Create and insert the new backedge block... 384 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 385 Header->getName() + ".backedge", F); 386 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 387 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 388 389 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 390 << BEBlock->getName() << "\n"); 391 392 // Move the new backedge block to right after the last backedge block. 393 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 394 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 395 396 // Now that the block has been inserted into the function, create PHI nodes in 397 // the backedge block which correspond to any PHI nodes in the header block. 398 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 399 PHINode *PN = cast<PHINode>(I); 400 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 401 PN->getName()+".be", BETerminator); 402 403 // Loop over the PHI node, moving all entries except the one for the 404 // preheader over to the new PHI node. 405 unsigned PreheaderIdx = ~0U; 406 bool HasUniqueIncomingValue = true; 407 Value *UniqueValue = nullptr; 408 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 409 BasicBlock *IBB = PN->getIncomingBlock(i); 410 Value *IV = PN->getIncomingValue(i); 411 if (IBB == Preheader) { 412 PreheaderIdx = i; 413 } else { 414 NewPN->addIncoming(IV, IBB); 415 if (HasUniqueIncomingValue) { 416 if (!UniqueValue) 417 UniqueValue = IV; 418 else if (UniqueValue != IV) 419 HasUniqueIncomingValue = false; 420 } 421 } 422 } 423 424 // Delete all of the incoming values from the old PN except the preheader's 425 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 426 if (PreheaderIdx != 0) { 427 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 428 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 429 } 430 // Nuke all entries except the zero'th. 431 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 432 PN->removeIncomingValue(e-i, false); 433 434 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 435 PN->addIncoming(NewPN, BEBlock); 436 437 // As an optimization, if all incoming values in the new PhiNode (which is a 438 // subset of the incoming values of the old PHI node) have the same value, 439 // eliminate the PHI Node. 440 if (HasUniqueIncomingValue) { 441 NewPN->replaceAllUsesWith(UniqueValue); 442 BEBlock->getInstList().erase(NewPN); 443 } 444 } 445 446 // Now that all of the PHI nodes have been inserted and adjusted, modify the 447 // backedge blocks to just to the BEBlock instead of the header. 448 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 449 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 450 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 451 if (TI->getSuccessor(Op) == Header) 452 TI->setSuccessor(Op, BEBlock); 453 } 454 455 //===--- Update all analyses which we must preserve now -----------------===// 456 457 // Update Loop Information - we know that this block is now in the current 458 // loop and all parent loops. 459 L->addBasicBlockToLoop(BEBlock, *LI); 460 461 // Update dominator information 462 DT->splitBlock(BEBlock); 463 464 return BEBlock; 465 } 466 467 /// \brief Simplify one loop and queue further loops for simplification. 468 /// 469 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 470 /// Pass pointer. The Pass pointer is used by numerous utilities to update 471 /// specific analyses. Rather than a pass it would be much cleaner and more 472 /// explicit if they accepted the analysis directly and then updated it. 473 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 474 DominatorTree *DT, LoopInfo *LI, 475 ScalarEvolution *SE, Pass *PP, 476 AssumptionCache *AC) { 477 bool Changed = false; 478 ReprocessLoop: 479 480 // Check to see that no blocks (other than the header) in this loop have 481 // predecessors that are not in the loop. This is not valid for natural 482 // loops, but can occur if the blocks are unreachable. Since they are 483 // unreachable we can just shamelessly delete those CFG edges! 484 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 485 BB != E; ++BB) { 486 if (*BB == L->getHeader()) continue; 487 488 SmallPtrSet<BasicBlock*, 4> BadPreds; 489 for (pred_iterator PI = pred_begin(*BB), 490 PE = pred_end(*BB); PI != PE; ++PI) { 491 BasicBlock *P = *PI; 492 if (!L->contains(P)) 493 BadPreds.insert(P); 494 } 495 496 // Delete each unique out-of-loop (and thus dead) predecessor. 497 for (BasicBlock *P : BadPreds) { 498 499 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 500 << P->getName() << "\n"); 501 502 // Inform each successor of each dead pred. 503 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI) 504 (*SI)->removePredecessor(P); 505 // Zap the dead pred's terminator and replace it with unreachable. 506 TerminatorInst *TI = P->getTerminator(); 507 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 508 P->getTerminator()->eraseFromParent(); 509 new UnreachableInst(P->getContext(), P); 510 Changed = true; 511 } 512 } 513 514 // If there are exiting blocks with branches on undef, resolve the undef in 515 // the direction which will exit the loop. This will help simplify loop 516 // trip count computations. 517 SmallVector<BasicBlock*, 8> ExitingBlocks; 518 L->getExitingBlocks(ExitingBlocks); 519 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 520 E = ExitingBlocks.end(); I != E; ++I) 521 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 522 if (BI->isConditional()) { 523 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 524 525 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 526 << (*I)->getName() << "\n"); 527 528 BI->setCondition(ConstantInt::get(Cond->getType(), 529 !L->contains(BI->getSuccessor(0)))); 530 531 // This may make the loop analyzable, force SCEV recomputation. 532 if (SE) 533 SE->forgetLoop(L); 534 535 Changed = true; 536 } 537 } 538 539 // Does the loop already have a preheader? If so, don't insert one. 540 BasicBlock *Preheader = L->getLoopPreheader(); 541 if (!Preheader) { 542 Preheader = InsertPreheaderForLoop(L, PP); 543 if (Preheader) { 544 ++NumInserted; 545 Changed = true; 546 } 547 } 548 549 // Next, check to make sure that all exit nodes of the loop only have 550 // predecessors that are inside of the loop. This check guarantees that the 551 // loop preheader/header will dominate the exit blocks. If the exit block has 552 // predecessors from outside of the loop, split the edge now. 553 SmallVector<BasicBlock*, 8> ExitBlocks; 554 L->getExitBlocks(ExitBlocks); 555 556 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 557 ExitBlocks.end()); 558 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 559 E = ExitBlockSet.end(); I != E; ++I) { 560 BasicBlock *ExitBlock = *I; 561 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 562 PI != PE; ++PI) 563 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 564 // allowed. 565 if (!L->contains(*PI)) { 566 if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PP)) { 567 ++NumInserted; 568 Changed = true; 569 } 570 break; 571 } 572 } 573 574 // If the header has more than two predecessors at this point (from the 575 // preheader and from multiple backedges), we must adjust the loop. 576 BasicBlock *LoopLatch = L->getLoopLatch(); 577 if (!LoopLatch) { 578 // If this is really a nested loop, rip it out into a child loop. Don't do 579 // this for loops with a giant number of backedges, just factor them into a 580 // common backedge instead. 581 if (L->getNumBackEdges() < 8) { 582 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, PP, AC)) { 583 ++NumNested; 584 // Enqueue the outer loop as it should be processed next in our 585 // depth-first nest walk. 586 Worklist.push_back(OuterL); 587 588 // This is a big restructuring change, reprocess the whole loop. 589 Changed = true; 590 // GCC doesn't tail recursion eliminate this. 591 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 592 goto ReprocessLoop; 593 } 594 } 595 596 // If we either couldn't, or didn't want to, identify nesting of the loops, 597 // insert a new block that all backedges target, then make it jump to the 598 // loop header. 599 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI); 600 if (LoopLatch) { 601 ++NumInserted; 602 Changed = true; 603 } 604 } 605 606 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 607 608 // Scan over the PHI nodes in the loop header. Since they now have only two 609 // incoming values (the loop is canonicalized), we may have simplified the PHI 610 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 611 PHINode *PN; 612 for (BasicBlock::iterator I = L->getHeader()->begin(); 613 (PN = dyn_cast<PHINode>(I++)); ) 614 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { 615 if (SE) SE->forgetValue(PN); 616 PN->replaceAllUsesWith(V); 617 PN->eraseFromParent(); 618 } 619 620 // If this loop has multiple exits and the exits all go to the same 621 // block, attempt to merge the exits. This helps several passes, such 622 // as LoopRotation, which do not support loops with multiple exits. 623 // SimplifyCFG also does this (and this code uses the same utility 624 // function), however this code is loop-aware, where SimplifyCFG is 625 // not. That gives it the advantage of being able to hoist 626 // loop-invariant instructions out of the way to open up more 627 // opportunities, and the disadvantage of having the responsibility 628 // to preserve dominator information. 629 bool UniqueExit = true; 630 if (!ExitBlocks.empty()) 631 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 632 if (ExitBlocks[i] != ExitBlocks[0]) { 633 UniqueExit = false; 634 break; 635 } 636 if (UniqueExit) { 637 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 638 BasicBlock *ExitingBlock = ExitingBlocks[i]; 639 if (!ExitingBlock->getSinglePredecessor()) continue; 640 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 641 if (!BI || !BI->isConditional()) continue; 642 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 643 if (!CI || CI->getParent() != ExitingBlock) continue; 644 645 // Attempt to hoist out all instructions except for the 646 // comparison and the branch. 647 bool AllInvariant = true; 648 bool AnyInvariant = false; 649 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 650 Instruction *Inst = I++; 651 // Skip debug info intrinsics. 652 if (isa<DbgInfoIntrinsic>(Inst)) 653 continue; 654 if (Inst == CI) 655 continue; 656 if (!L->makeLoopInvariant(Inst, AnyInvariant, 657 Preheader ? Preheader->getTerminator() 658 : nullptr)) { 659 AllInvariant = false; 660 break; 661 } 662 } 663 if (AnyInvariant) { 664 Changed = true; 665 // The loop disposition of all SCEV expressions that depend on any 666 // hoisted values have also changed. 667 if (SE) 668 SE->forgetLoopDispositions(L); 669 } 670 if (!AllInvariant) continue; 671 672 // The block has now been cleared of all instructions except for 673 // a comparison and a conditional branch. SimplifyCFG may be able 674 // to fold it now. 675 if (!FoldBranchToCommonDest(BI)) 676 continue; 677 678 // Success. The block is now dead, so remove it from the loop, 679 // update the dominator tree and delete it. 680 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 681 << ExitingBlock->getName() << "\n"); 682 683 // Notify ScalarEvolution before deleting this block. Currently assume the 684 // parent loop doesn't change (spliting edges doesn't count). If blocks, 685 // CFG edges, or other values in the parent loop change, then we need call 686 // to forgetLoop() for the parent instead. 687 if (SE) 688 SE->forgetLoop(L); 689 690 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 691 Changed = true; 692 LI->removeBlock(ExitingBlock); 693 694 DomTreeNode *Node = DT->getNode(ExitingBlock); 695 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 696 Node->getChildren(); 697 while (!Children.empty()) { 698 DomTreeNode *Child = Children.front(); 699 DT->changeImmediateDominator(Child, Node->getIDom()); 700 } 701 DT->eraseNode(ExitingBlock); 702 703 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 704 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 705 ExitingBlock->eraseFromParent(); 706 } 707 } 708 709 return Changed; 710 } 711 712 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 713 ScalarEvolution *SE, AssumptionCache *AC) { 714 bool Changed = false; 715 716 // Worklist maintains our depth-first queue of loops in this nest to process. 717 SmallVector<Loop *, 4> Worklist; 718 Worklist.push_back(L); 719 720 // Walk the worklist from front to back, pushing newly found sub loops onto 721 // the back. This will let us process loops from back to front in depth-first 722 // order. We can use this simple process because loops form a tree. 723 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 724 Loop *L2 = Worklist[Idx]; 725 Worklist.append(L2->begin(), L2->end()); 726 } 727 728 while (!Worklist.empty()) 729 Changed |= 730 simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, PP, AC); 731 732 return Changed; 733 } 734 735 namespace { 736 struct LoopSimplify : public FunctionPass { 737 static char ID; // Pass identification, replacement for typeid 738 LoopSimplify() : FunctionPass(ID) { 739 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 740 } 741 742 DominatorTree *DT; 743 LoopInfo *LI; 744 ScalarEvolution *SE; 745 AssumptionCache *AC; 746 747 bool runOnFunction(Function &F) override; 748 749 void getAnalysisUsage(AnalysisUsage &AU) const override { 750 AU.addRequired<AssumptionCacheTracker>(); 751 752 // We need loop information to identify the loops... 753 AU.addRequired<DominatorTreeWrapperPass>(); 754 AU.addPreserved<DominatorTreeWrapperPass>(); 755 756 AU.addRequired<LoopInfoWrapperPass>(); 757 AU.addPreserved<LoopInfoWrapperPass>(); 758 759 AU.addPreserved<AliasAnalysis>(); 760 AU.addPreserved<ScalarEvolution>(); 761 AU.addPreserved<DependenceAnalysis>(); 762 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 763 } 764 765 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 766 void verifyAnalysis() const override; 767 }; 768 } 769 770 char LoopSimplify::ID = 0; 771 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 772 "Canonicalize natural loops", false, false) 773 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 774 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 775 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 776 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 777 "Canonicalize natural loops", false, false) 778 779 // Publicly exposed interface to pass... 780 char &llvm::LoopSimplifyID = LoopSimplify::ID; 781 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 782 783 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 784 /// it in any convenient order) inserting preheaders... 785 /// 786 bool LoopSimplify::runOnFunction(Function &F) { 787 bool Changed = false; 788 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 789 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 790 SE = getAnalysisIfAvailable<ScalarEvolution>(); 791 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 792 793 // Simplify each loop nest in the function. 794 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 795 Changed |= simplifyLoop(*I, DT, LI, this, SE, AC); 796 797 return Changed; 798 } 799 800 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 801 // below. 802 #if 0 803 static void verifyLoop(Loop *L) { 804 // Verify subloops. 805 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 806 verifyLoop(*I); 807 808 // It used to be possible to just assert L->isLoopSimplifyForm(), however 809 // with the introduction of indirectbr, there are now cases where it's 810 // not possible to transform a loop as necessary. We can at least check 811 // that there is an indirectbr near any time there's trouble. 812 813 // Indirectbr can interfere with preheader and unique backedge insertion. 814 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 815 bool HasIndBrPred = false; 816 for (pred_iterator PI = pred_begin(L->getHeader()), 817 PE = pred_end(L->getHeader()); PI != PE; ++PI) 818 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 819 HasIndBrPred = true; 820 break; 821 } 822 assert(HasIndBrPred && 823 "LoopSimplify has no excuse for missing loop header info!"); 824 (void)HasIndBrPred; 825 } 826 827 // Indirectbr can interfere with exit block canonicalization. 828 if (!L->hasDedicatedExits()) { 829 bool HasIndBrExiting = false; 830 SmallVector<BasicBlock*, 8> ExitingBlocks; 831 L->getExitingBlocks(ExitingBlocks); 832 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 833 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 834 HasIndBrExiting = true; 835 break; 836 } 837 } 838 839 assert(HasIndBrExiting && 840 "LoopSimplify has no excuse for missing exit block info!"); 841 (void)HasIndBrExiting; 842 } 843 } 844 #endif 845 846 void LoopSimplify::verifyAnalysis() const { 847 // FIXME: This routine is being called mid-way through the loop pass manager 848 // as loop passes destroy this analysis. That's actually fine, but we have no 849 // way of expressing that here. Once all of the passes that destroy this are 850 // hoisted out of the loop pass manager we can add back verification here. 851 #if 0 852 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 853 verifyLoop(*I); 854 #endif 855 } 856