1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loopsimplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/IntrinsicInst.h" 45 #include "llvm/Function.h" 46 #include "llvm/LLVMContext.h" 47 #include "llvm/Type.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/Dominators.h" 50 #include "llvm/Analysis/LoopPass.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Support/CFG.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/ADT/SetOperations.h" 57 #include "llvm/ADT/SetVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/DepthFirstIterator.h" 60 using namespace llvm; 61 62 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 63 STATISTIC(NumNested , "Number of nested loops split out"); 64 65 namespace { 66 struct LoopSimplify : public LoopPass { 67 static char ID; // Pass identification, replacement for typeid 68 LoopSimplify() : LoopPass(&ID) {} 69 70 // AA - If we have an alias analysis object to update, this is it, otherwise 71 // this is null. 72 AliasAnalysis *AA; 73 LoopInfo *LI; 74 DominatorTree *DT; 75 Loop *L; 76 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 77 78 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 79 // We need loop information to identify the loops... 80 AU.addRequiredTransitive<LoopInfo>(); 81 AU.addRequiredTransitive<DominatorTree>(); 82 83 AU.addPreserved<LoopInfo>(); 84 AU.addPreserved<DominatorTree>(); 85 AU.addPreserved<DominanceFrontier>(); 86 AU.addPreserved<AliasAnalysis>(); 87 AU.addPreserved<ScalarEvolution>(); 88 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 89 } 90 91 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 92 void verifyAnalysis() const; 93 94 private: 95 bool ProcessLoop(Loop *L, LPPassManager &LPM); 96 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 97 BasicBlock *InsertPreheaderForLoop(Loop *L); 98 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM); 99 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 100 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 101 SmallVectorImpl<BasicBlock*> &SplitPreds, 102 Loop *L); 103 }; 104 } 105 106 char LoopSimplify::ID = 0; 107 static RegisterPass<LoopSimplify> 108 X("loopsimplify", "Canonicalize natural loops", true); 109 110 // Publically exposed interface to pass... 111 const PassInfo *const llvm::LoopSimplifyID = &X; 112 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 113 114 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 115 /// it in any convenient order) inserting preheaders... 116 /// 117 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 118 L = l; 119 bool Changed = false; 120 LI = &getAnalysis<LoopInfo>(); 121 AA = getAnalysisIfAvailable<AliasAnalysis>(); 122 DT = &getAnalysis<DominatorTree>(); 123 124 Changed |= ProcessLoop(L, LPM); 125 126 return Changed; 127 } 128 129 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 130 /// all loops have preheaders. 131 /// 132 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 133 bool Changed = false; 134 ReprocessLoop: 135 136 // Check to see that no blocks (other than the header) in this loop have 137 // predecessors that are not in the loop. This is not valid for natural 138 // loops, but can occur if the blocks are unreachable. Since they are 139 // unreachable we can just shamelessly delete those CFG edges! 140 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 141 BB != E; ++BB) { 142 if (*BB == L->getHeader()) continue; 143 144 SmallPtrSet<BasicBlock *, 4> BadPreds; 145 for (pred_iterator PI = pred_begin(*BB), PE = pred_end(*BB); PI != PE; ++PI) 146 if (!L->contains(*PI)) 147 BadPreds.insert(*PI); 148 149 // Delete each unique out-of-loop (and thus dead) predecessor. 150 for (SmallPtrSet<BasicBlock *, 4>::iterator I = BadPreds.begin(), 151 E = BadPreds.end(); I != E; ++I) { 152 153 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "; 154 WriteAsOperand(dbgs(), *I, false); 155 dbgs() << "\n"); 156 157 // Inform each successor of each dead pred. 158 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 159 (*SI)->removePredecessor(*I); 160 // Zap the dead pred's terminator and replace it with unreachable. 161 TerminatorInst *TI = (*I)->getTerminator(); 162 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 163 (*I)->getTerminator()->eraseFromParent(); 164 new UnreachableInst((*I)->getContext(), *I); 165 Changed = true; 166 } 167 } 168 169 // If there are exiting blocks with branches on undef, resolve the undef in 170 // the direction which will exit the loop. This will help simplify loop 171 // trip count computations. 172 SmallVector<BasicBlock*, 8> ExitingBlocks; 173 L->getExitingBlocks(ExitingBlocks); 174 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 175 E = ExitingBlocks.end(); I != E; ++I) 176 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 177 if (BI->isConditional()) { 178 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 179 180 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "; 181 WriteAsOperand(dbgs(), *I, false); 182 dbgs() << "\n"); 183 184 BI->setCondition(ConstantInt::get(Cond->getType(), 185 !L->contains(BI->getSuccessor(0)))); 186 Changed = true; 187 } 188 } 189 190 // Does the loop already have a preheader? If so, don't insert one. 191 BasicBlock *Preheader = L->getLoopPreheader(); 192 if (!Preheader) { 193 Preheader = InsertPreheaderForLoop(L); 194 if (Preheader) { 195 ++NumInserted; 196 Changed = true; 197 } 198 } 199 200 // Next, check to make sure that all exit nodes of the loop only have 201 // predecessors that are inside of the loop. This check guarantees that the 202 // loop preheader/header will dominate the exit blocks. If the exit block has 203 // predecessors from outside of the loop, split the edge now. 204 SmallVector<BasicBlock*, 8> ExitBlocks; 205 L->getExitBlocks(ExitBlocks); 206 207 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 208 ExitBlocks.end()); 209 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 210 E = ExitBlockSet.end(); I != E; ++I) { 211 BasicBlock *ExitBlock = *I; 212 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 213 PI != PE; ++PI) 214 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 215 // allowed. 216 if (!L->contains(*PI)) { 217 if (RewriteLoopExitBlock(L, ExitBlock)) { 218 ++NumInserted; 219 Changed = true; 220 } 221 break; 222 } 223 } 224 225 // If the header has more than two predecessors at this point (from the 226 // preheader and from multiple backedges), we must adjust the loop. 227 BasicBlock *LoopLatch = L->getLoopLatch(); 228 if (!LoopLatch) { 229 // If this is really a nested loop, rip it out into a child loop. Don't do 230 // this for loops with a giant number of backedges, just factor them into a 231 // common backedge instead. 232 if (L->getNumBackEdges() < 8) { 233 if (SeparateNestedLoop(L, LPM)) { 234 ++NumNested; 235 // This is a big restructuring change, reprocess the whole loop. 236 Changed = true; 237 // GCC doesn't tail recursion eliminate this. 238 goto ReprocessLoop; 239 } 240 } 241 242 // If we either couldn't, or didn't want to, identify nesting of the loops, 243 // insert a new block that all backedges target, then make it jump to the 244 // loop header. 245 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 246 if (LoopLatch) { 247 ++NumInserted; 248 Changed = true; 249 } 250 } 251 252 // Scan over the PHI nodes in the loop header. Since they now have only two 253 // incoming values (the loop is canonicalized), we may have simplified the PHI 254 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 255 PHINode *PN; 256 for (BasicBlock::iterator I = L->getHeader()->begin(); 257 (PN = dyn_cast<PHINode>(I++)); ) 258 if (Value *V = PN->hasConstantValue(DT)) { 259 if (AA) AA->deleteValue(PN); 260 PN->replaceAllUsesWith(V); 261 PN->eraseFromParent(); 262 } 263 264 // If this loop has multiple exits and the exits all go to the same 265 // block, attempt to merge the exits. This helps several passes, such 266 // as LoopRotation, which do not support loops with multiple exits. 267 // SimplifyCFG also does this (and this code uses the same utility 268 // function), however this code is loop-aware, where SimplifyCFG is 269 // not. That gives it the advantage of being able to hoist 270 // loop-invariant instructions out of the way to open up more 271 // opportunities, and the disadvantage of having the responsibility 272 // to preserve dominator information. 273 bool UniqueExit = true; 274 if (!ExitBlocks.empty()) 275 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 276 if (ExitBlocks[i] != ExitBlocks[0]) { 277 UniqueExit = false; 278 break; 279 } 280 if (UniqueExit) { 281 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 282 BasicBlock *ExitingBlock = ExitingBlocks[i]; 283 if (!ExitingBlock->getSinglePredecessor()) continue; 284 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 285 if (!BI || !BI->isConditional()) continue; 286 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 287 if (!CI || CI->getParent() != ExitingBlock) continue; 288 289 // Attempt to hoist out all instructions except for the 290 // comparison and the branch. 291 bool AllInvariant = true; 292 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 293 Instruction *Inst = I++; 294 // Skip debug info intrinsics. 295 if (isa<DbgInfoIntrinsic>(Inst)) 296 continue; 297 if (Inst == CI) 298 continue; 299 if (!L->makeLoopInvariant(Inst, Changed, 300 Preheader ? Preheader->getTerminator() : 0)) { 301 AllInvariant = false; 302 break; 303 } 304 } 305 if (!AllInvariant) continue; 306 307 // The block has now been cleared of all instructions except for 308 // a comparison and a conditional branch. SimplifyCFG may be able 309 // to fold it now. 310 if (!FoldBranchToCommonDest(BI)) continue; 311 312 // Success. The block is now dead, so remove it from the loop, 313 // update the dominator tree and dominance frontier, and delete it. 314 315 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "; 316 WriteAsOperand(dbgs(), ExitingBlock, false); 317 dbgs() << "\n"); 318 319 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 320 Changed = true; 321 LI->removeBlock(ExitingBlock); 322 323 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>(); 324 DomTreeNode *Node = DT->getNode(ExitingBlock); 325 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 326 Node->getChildren(); 327 while (!Children.empty()) { 328 DomTreeNode *Child = Children.front(); 329 DT->changeImmediateDominator(Child, Node->getIDom()); 330 if (DF) DF->changeImmediateDominator(Child->getBlock(), 331 Node->getIDom()->getBlock(), 332 DT); 333 } 334 DT->eraseNode(ExitingBlock); 335 if (DF) DF->removeBlock(ExitingBlock); 336 337 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 338 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 339 ExitingBlock->eraseFromParent(); 340 } 341 } 342 343 return Changed; 344 } 345 346 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 347 /// preheader, this method is called to insert one. This method has two phases: 348 /// preheader insertion and analysis updating. 349 /// 350 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 351 BasicBlock *Header = L->getHeader(); 352 353 // Compute the set of predecessors of the loop that are not in the loop. 354 SmallVector<BasicBlock*, 8> OutsideBlocks; 355 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 356 PI != PE; ++PI) 357 if (!L->contains(*PI)) { // Coming in from outside the loop? 358 // If the loop is branched to from an indirect branch, we won't 359 // be able to fully transform the loop, because it prohibits 360 // edge splitting. 361 if (isa<IndirectBrInst>((*PI)->getTerminator())) return 0; 362 363 // Keep track of it. 364 OutsideBlocks.push_back(*PI); 365 } 366 367 // Split out the loop pre-header. 368 BasicBlock *NewBB = 369 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), 370 ".preheader", this); 371 372 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "; 373 WriteAsOperand(dbgs(), NewBB, false); 374 dbgs() << "\n"); 375 376 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 377 // code layout too horribly. 378 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); 379 380 return NewBB; 381 } 382 383 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 384 /// blocks. This method is used to split exit blocks that have predecessors 385 /// outside of the loop. 386 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 387 SmallVector<BasicBlock*, 8> LoopBlocks; 388 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) 389 if (L->contains(*I)) { 390 // Don't do this if the loop is exited via an indirect branch. 391 if (isa<IndirectBrInst>((*I)->getTerminator())) return 0; 392 393 LoopBlocks.push_back(*I); 394 } 395 396 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 397 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 398 LoopBlocks.size(), ".loopexit", 399 this); 400 401 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "; 402 WriteAsOperand(dbgs(), NewBB, false); 403 dbgs() << "\n"); 404 405 return NewBB; 406 } 407 408 /// AddBlockAndPredsToSet - Add the specified block, and all of its 409 /// predecessors, to the specified set, if it's not already in there. Stop 410 /// predecessor traversal when we reach StopBlock. 411 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 412 std::set<BasicBlock*> &Blocks) { 413 std::vector<BasicBlock *> WorkList; 414 WorkList.push_back(InputBB); 415 do { 416 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 417 if (Blocks.insert(BB).second && BB != StopBlock) 418 // If BB is not already processed and it is not a stop block then 419 // insert its predecessor in the work list 420 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 421 BasicBlock *WBB = *I; 422 WorkList.push_back(WBB); 423 } 424 } while(!WorkList.empty()); 425 } 426 427 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 428 /// PHI node that tells us how to partition the loops. 429 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 430 AliasAnalysis *AA) { 431 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 432 PHINode *PN = cast<PHINode>(I); 433 ++I; 434 if (Value *V = PN->hasConstantValue(DT)) { 435 // This is a degenerate PHI already, don't modify it! 436 PN->replaceAllUsesWith(V); 437 if (AA) AA->deleteValue(PN); 438 PN->eraseFromParent(); 439 continue; 440 } 441 442 // Scan this PHI node looking for a use of the PHI node by itself. 443 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 444 if (PN->getIncomingValue(i) == PN && 445 L->contains(PN->getIncomingBlock(i))) 446 // We found something tasty to remove. 447 return PN; 448 } 449 return 0; 450 } 451 452 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 453 // right after some 'outside block' block. This prevents the preheader from 454 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 455 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 456 SmallVectorImpl<BasicBlock*> &SplitPreds, 457 Loop *L) { 458 // Check to see if NewBB is already well placed. 459 Function::iterator BBI = NewBB; --BBI; 460 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 461 if (&*BBI == SplitPreds[i]) 462 return; 463 } 464 465 // If it isn't already after an outside block, move it after one. This is 466 // always good as it makes the uncond branch from the outside block into a 467 // fall-through. 468 469 // Figure out *which* outside block to put this after. Prefer an outside 470 // block that neighbors a BB actually in the loop. 471 BasicBlock *FoundBB = 0; 472 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 473 Function::iterator BBI = SplitPreds[i]; 474 if (++BBI != NewBB->getParent()->end() && 475 L->contains(BBI)) { 476 FoundBB = SplitPreds[i]; 477 break; 478 } 479 } 480 481 // If our heuristic for a *good* bb to place this after doesn't find 482 // anything, just pick something. It's likely better than leaving it within 483 // the loop. 484 if (!FoundBB) 485 FoundBB = SplitPreds[0]; 486 NewBB->moveAfter(FoundBB); 487 } 488 489 490 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 491 /// them out into a nested loop. This is important for code that looks like 492 /// this: 493 /// 494 /// Loop: 495 /// ... 496 /// br cond, Loop, Next 497 /// ... 498 /// br cond2, Loop, Out 499 /// 500 /// To identify this common case, we look at the PHI nodes in the header of the 501 /// loop. PHI nodes with unchanging values on one backedge correspond to values 502 /// that change in the "outer" loop, but not in the "inner" loop. 503 /// 504 /// If we are able to separate out a loop, return the new outer loop that was 505 /// created. 506 /// 507 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) { 508 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA); 509 if (PN == 0) return 0; // No known way to partition. 510 511 // Pull out all predecessors that have varying values in the loop. This 512 // handles the case when a PHI node has multiple instances of itself as 513 // arguments. 514 SmallVector<BasicBlock*, 8> OuterLoopPreds; 515 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 516 if (PN->getIncomingValue(i) != PN || 517 !L->contains(PN->getIncomingBlock(i))) { 518 // We can't split indirectbr edges. 519 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 520 return 0; 521 522 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 523 } 524 525 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 526 527 BasicBlock *Header = L->getHeader(); 528 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], 529 OuterLoopPreds.size(), 530 ".outer", this); 531 532 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 533 // code layout too horribly. 534 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 535 536 // Create the new outer loop. 537 Loop *NewOuter = new Loop(); 538 539 // Change the parent loop to use the outer loop as its child now. 540 if (Loop *Parent = L->getParentLoop()) 541 Parent->replaceChildLoopWith(L, NewOuter); 542 else 543 LI->changeTopLevelLoop(L, NewOuter); 544 545 // L is now a subloop of our outer loop. 546 NewOuter->addChildLoop(L); 547 548 // Add the new loop to the pass manager queue. 549 LPM.insertLoopIntoQueue(NewOuter); 550 551 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 552 I != E; ++I) 553 NewOuter->addBlockEntry(*I); 554 555 // Now reset the header in L, which had been moved by 556 // SplitBlockPredecessors for the outer loop. 557 L->moveToHeader(Header); 558 559 // Determine which blocks should stay in L and which should be moved out to 560 // the Outer loop now. 561 std::set<BasicBlock*> BlocksInL; 562 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) 563 if (DT->dominates(Header, *PI)) 564 AddBlockAndPredsToSet(*PI, Header, BlocksInL); 565 566 567 // Scan all of the loop children of L, moving them to OuterLoop if they are 568 // not part of the inner loop. 569 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 570 for (size_t I = 0; I != SubLoops.size(); ) 571 if (BlocksInL.count(SubLoops[I]->getHeader())) 572 ++I; // Loop remains in L 573 else 574 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 575 576 // Now that we know which blocks are in L and which need to be moved to 577 // OuterLoop, move any blocks that need it. 578 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 579 BasicBlock *BB = L->getBlocks()[i]; 580 if (!BlocksInL.count(BB)) { 581 // Move this block to the parent, updating the exit blocks sets 582 L->removeBlockFromLoop(BB); 583 if ((*LI)[BB] == L) 584 LI->changeLoopFor(BB, NewOuter); 585 --i; 586 } 587 } 588 589 return NewOuter; 590 } 591 592 593 594 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 595 /// has more than one backedge in it. If this occurs, revector all of these 596 /// backedges to target a new basic block and have that block branch to the loop 597 /// header. This ensures that loops have exactly one backedge. 598 /// 599 BasicBlock * 600 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 601 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 602 603 // Get information about the loop 604 BasicBlock *Header = L->getHeader(); 605 Function *F = Header->getParent(); 606 607 // Unique backedge insertion currently depends on having a preheader. 608 if (!Preheader) 609 return 0; 610 611 // Figure out which basic blocks contain back-edges to the loop header. 612 std::vector<BasicBlock*> BackedgeBlocks; 613 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I) 614 if (*I != Preheader) BackedgeBlocks.push_back(*I); 615 616 // Create and insert the new backedge block... 617 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 618 Header->getName()+".backedge", F); 619 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 620 621 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "; 622 WriteAsOperand(dbgs(), BEBlock, false); 623 dbgs() << "\n"); 624 625 // Move the new backedge block to right after the last backedge block. 626 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 627 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 628 629 // Now that the block has been inserted into the function, create PHI nodes in 630 // the backedge block which correspond to any PHI nodes in the header block. 631 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 632 PHINode *PN = cast<PHINode>(I); 633 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", 634 BETerminator); 635 NewPN->reserveOperandSpace(BackedgeBlocks.size()); 636 if (AA) AA->copyValue(PN, NewPN); 637 638 // Loop over the PHI node, moving all entries except the one for the 639 // preheader over to the new PHI node. 640 unsigned PreheaderIdx = ~0U; 641 bool HasUniqueIncomingValue = true; 642 Value *UniqueValue = 0; 643 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 644 BasicBlock *IBB = PN->getIncomingBlock(i); 645 Value *IV = PN->getIncomingValue(i); 646 if (IBB == Preheader) { 647 PreheaderIdx = i; 648 } else { 649 NewPN->addIncoming(IV, IBB); 650 if (HasUniqueIncomingValue) { 651 if (UniqueValue == 0) 652 UniqueValue = IV; 653 else if (UniqueValue != IV) 654 HasUniqueIncomingValue = false; 655 } 656 } 657 } 658 659 // Delete all of the incoming values from the old PN except the preheader's 660 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 661 if (PreheaderIdx != 0) { 662 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 663 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 664 } 665 // Nuke all entries except the zero'th. 666 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 667 PN->removeIncomingValue(e-i, false); 668 669 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 670 PN->addIncoming(NewPN, BEBlock); 671 672 // As an optimization, if all incoming values in the new PhiNode (which is a 673 // subset of the incoming values of the old PHI node) have the same value, 674 // eliminate the PHI Node. 675 if (HasUniqueIncomingValue) { 676 NewPN->replaceAllUsesWith(UniqueValue); 677 if (AA) AA->deleteValue(NewPN); 678 BEBlock->getInstList().erase(NewPN); 679 } 680 } 681 682 // Now that all of the PHI nodes have been inserted and adjusted, modify the 683 // backedge blocks to just to the BEBlock instead of the header. 684 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 685 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 686 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 687 if (TI->getSuccessor(Op) == Header) 688 TI->setSuccessor(Op, BEBlock); 689 } 690 691 //===--- Update all analyses which we must preserve now -----------------===// 692 693 // Update Loop Information - we know that this block is now in the current 694 // loop and all parent loops. 695 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 696 697 // Update dominator information 698 DT->splitBlock(BEBlock); 699 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) 700 DF->splitBlock(BEBlock); 701 702 return BEBlock; 703 } 704 705 void LoopSimplify::verifyAnalysis() const { 706 // It used to be possible to just assert L->isLoopSimplifyForm(), however 707 // with the introduction of indirectbr, there are now cases where it's 708 // not possible to transform a loop as necessary. We can at least check 709 // that there is an indirectbr near any time there's trouble. 710 711 // Indirectbr can interfere with preheader and unique backedge insertion. 712 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 713 bool HasIndBrPred = false; 714 for (pred_iterator PI = pred_begin(L->getHeader()), 715 PE = pred_end(L->getHeader()); PI != PE; ++PI) 716 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 717 HasIndBrPred = true; 718 break; 719 } 720 assert(HasIndBrPred && 721 "LoopSimplify has no excuse for missing loop header info!"); 722 } 723 724 // Indirectbr can interfere with exit block canonicalization. 725 if (!L->hasDedicatedExits()) { 726 bool HasIndBrExiting = false; 727 SmallVector<BasicBlock*, 8> ExitingBlocks; 728 L->getExitingBlocks(ExitingBlocks); 729 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) 730 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 731 HasIndBrExiting = true; 732 break; 733 } 734 assert(HasIndBrExiting && 735 "LoopSimplify has no excuse for missing exit block info!"); 736 } 737 } 738