1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/DependenceAnalysis.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/Transforms/Utils/LoopUtils.h" 65 using namespace llvm; 66 67 #define DEBUG_TYPE "loop-simplify" 68 69 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 70 STATISTIC(NumNested , "Number of nested loops split out"); 71 72 // If the block isn't already, move the new block to right after some 'outside 73 // block' block. This prevents the preheader from being placed inside the loop 74 // body, e.g. when the loop hasn't been rotated. 75 static void placeSplitBlockCarefully(BasicBlock *NewBB, 76 SmallVectorImpl<BasicBlock *> &SplitPreds, 77 Loop *L) { 78 // Check to see if NewBB is already well placed. 79 Function::iterator BBI = NewBB; --BBI; 80 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 81 if (&*BBI == SplitPreds[i]) 82 return; 83 } 84 85 // If it isn't already after an outside block, move it after one. This is 86 // always good as it makes the uncond branch from the outside block into a 87 // fall-through. 88 89 // Figure out *which* outside block to put this after. Prefer an outside 90 // block that neighbors a BB actually in the loop. 91 BasicBlock *FoundBB = nullptr; 92 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 93 Function::iterator BBI = SplitPreds[i]; 94 if (++BBI != NewBB->getParent()->end() && 95 L->contains(BBI)) { 96 FoundBB = SplitPreds[i]; 97 break; 98 } 99 } 100 101 // If our heuristic for a *good* bb to place this after doesn't find 102 // anything, just pick something. It's likely better than leaving it within 103 // the loop. 104 if (!FoundBB) 105 FoundBB = SplitPreds[0]; 106 NewBB->moveAfter(FoundBB); 107 } 108 109 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 110 /// preheader, this method is called to insert one. This method has two phases: 111 /// preheader insertion and analysis updating. 112 /// 113 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 114 BasicBlock *Header = L->getHeader(); 115 116 // Get analyses that we try to update. 117 auto *AA = PP->getAnalysisIfAvailable<AliasAnalysis>(); 118 auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 119 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 120 auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>(); 121 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 122 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 123 124 // Compute the set of predecessors of the loop that are not in the loop. 125 SmallVector<BasicBlock*, 8> OutsideBlocks; 126 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 127 PI != PE; ++PI) { 128 BasicBlock *P = *PI; 129 if (!L->contains(P)) { // Coming in from outside the loop? 130 // If the loop is branched to from an indirect branch, we won't 131 // be able to fully transform the loop, because it prohibits 132 // edge splitting. 133 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 134 135 // Keep track of it. 136 OutsideBlocks.push_back(P); 137 } 138 } 139 140 // Split out the loop pre-header. 141 BasicBlock *PreheaderBB; 142 if (!Header->isLandingPad()) { 143 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 144 AA, DT, LI, PreserveLCSSA); 145 } else { 146 SmallVector<BasicBlock*, 2> NewBBs; 147 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 148 ".split-lp", NewBBs, AA, DT, LI, PreserveLCSSA); 149 PreheaderBB = NewBBs[0]; 150 } 151 152 PreheaderBB->getTerminator()->setDebugLoc( 153 Header->getFirstNonPHI()->getDebugLoc()); 154 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 155 << PreheaderBB->getName() << "\n"); 156 157 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 158 // code layout too horribly. 159 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 160 161 return PreheaderBB; 162 } 163 164 /// \brief Ensure that the loop preheader dominates all exit blocks. 165 /// 166 /// This method is used to split exit blocks that have predecessors outside of 167 /// the loop. 168 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, 169 AliasAnalysis *AA, DominatorTree *DT, 170 LoopInfo *LI, Pass *PP) { 171 SmallVector<BasicBlock*, 8> LoopBlocks; 172 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 173 BasicBlock *P = *I; 174 if (L->contains(P)) { 175 // Don't do this if the loop is exited via an indirect branch. 176 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 177 178 LoopBlocks.push_back(P); 179 } 180 } 181 182 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 183 BasicBlock *NewExitBB = nullptr; 184 185 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 186 187 if (Exit->isLandingPad()) { 188 SmallVector<BasicBlock*, 2> NewBBs; 189 SplitLandingPadPredecessors(Exit, LoopBlocks, ".loopexit", ".nonloopexit", 190 NewBBs, AA, DT, LI, PreserveLCSSA); 191 NewExitBB = NewBBs[0]; 192 } else { 193 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", AA, DT, 194 LI, PreserveLCSSA); 195 } 196 197 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 198 << NewExitBB->getName() << "\n"); 199 return NewExitBB; 200 } 201 202 /// Add the specified block, and all of its predecessors, to the specified set, 203 /// if it's not already in there. Stop predecessor traversal when we reach 204 /// StopBlock. 205 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 206 std::set<BasicBlock*> &Blocks) { 207 SmallVector<BasicBlock *, 8> Worklist; 208 Worklist.push_back(InputBB); 209 do { 210 BasicBlock *BB = Worklist.pop_back_val(); 211 if (Blocks.insert(BB).second && BB != StopBlock) 212 // If BB is not already processed and it is not a stop block then 213 // insert its predecessor in the work list 214 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 215 BasicBlock *WBB = *I; 216 Worklist.push_back(WBB); 217 } 218 } while (!Worklist.empty()); 219 } 220 221 /// \brief The first part of loop-nestification is to find a PHI node that tells 222 /// us how to partition the loops. 223 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA, 224 DominatorTree *DT, 225 AssumptionCache *AC) { 226 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 227 PHINode *PN = cast<PHINode>(I); 228 ++I; 229 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) { 230 // This is a degenerate PHI already, don't modify it! 231 PN->replaceAllUsesWith(V); 232 if (AA) AA->deleteValue(PN); 233 PN->eraseFromParent(); 234 continue; 235 } 236 237 // Scan this PHI node looking for a use of the PHI node by itself. 238 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 239 if (PN->getIncomingValue(i) == PN && 240 L->contains(PN->getIncomingBlock(i))) 241 // We found something tasty to remove. 242 return PN; 243 } 244 return nullptr; 245 } 246 247 /// \brief If this loop has multiple backedges, try to pull one of them out into 248 /// a nested loop. 249 /// 250 /// This is important for code that looks like 251 /// this: 252 /// 253 /// Loop: 254 /// ... 255 /// br cond, Loop, Next 256 /// ... 257 /// br cond2, Loop, Out 258 /// 259 /// To identify this common case, we look at the PHI nodes in the header of the 260 /// loop. PHI nodes with unchanging values on one backedge correspond to values 261 /// that change in the "outer" loop, but not in the "inner" loop. 262 /// 263 /// If we are able to separate out a loop, return the new outer loop that was 264 /// created. 265 /// 266 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 267 AliasAnalysis *AA, DominatorTree *DT, 268 LoopInfo *LI, ScalarEvolution *SE, Pass *PP, 269 AssumptionCache *AC) { 270 // Don't try to separate loops without a preheader. 271 if (!Preheader) 272 return nullptr; 273 274 // The header is not a landing pad; preheader insertion should ensure this. 275 assert(!L->getHeader()->isLandingPad() && 276 "Can't insert backedge to landing pad"); 277 278 PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AC); 279 if (!PN) return nullptr; // No known way to partition. 280 281 // Pull out all predecessors that have varying values in the loop. This 282 // handles the case when a PHI node has multiple instances of itself as 283 // arguments. 284 SmallVector<BasicBlock*, 8> OuterLoopPreds; 285 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 286 if (PN->getIncomingValue(i) != PN || 287 !L->contains(PN->getIncomingBlock(i))) { 288 // We can't split indirectbr edges. 289 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 290 return nullptr; 291 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 292 } 293 } 294 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 295 296 // If ScalarEvolution is around and knows anything about values in 297 // this loop, tell it to forget them, because we're about to 298 // substantially change it. 299 if (SE) 300 SE->forgetLoop(L); 301 302 bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID); 303 304 BasicBlock *Header = L->getHeader(); 305 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 306 AA, DT, LI, PreserveLCSSA); 307 308 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 309 // code layout too horribly. 310 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 311 312 // Create the new outer loop. 313 Loop *NewOuter = new Loop(); 314 315 // Change the parent loop to use the outer loop as its child now. 316 if (Loop *Parent = L->getParentLoop()) 317 Parent->replaceChildLoopWith(L, NewOuter); 318 else 319 LI->changeTopLevelLoop(L, NewOuter); 320 321 // L is now a subloop of our outer loop. 322 NewOuter->addChildLoop(L); 323 324 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 325 I != E; ++I) 326 NewOuter->addBlockEntry(*I); 327 328 // Now reset the header in L, which had been moved by 329 // SplitBlockPredecessors for the outer loop. 330 L->moveToHeader(Header); 331 332 // Determine which blocks should stay in L and which should be moved out to 333 // the Outer loop now. 334 std::set<BasicBlock*> BlocksInL; 335 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 336 BasicBlock *P = *PI; 337 if (DT->dominates(Header, P)) 338 addBlockAndPredsToSet(P, Header, BlocksInL); 339 } 340 341 // Scan all of the loop children of L, moving them to OuterLoop if they are 342 // not part of the inner loop. 343 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 344 for (size_t I = 0; I != SubLoops.size(); ) 345 if (BlocksInL.count(SubLoops[I]->getHeader())) 346 ++I; // Loop remains in L 347 else 348 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 349 350 // Now that we know which blocks are in L and which need to be moved to 351 // OuterLoop, move any blocks that need it. 352 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 353 BasicBlock *BB = L->getBlocks()[i]; 354 if (!BlocksInL.count(BB)) { 355 // Move this block to the parent, updating the exit blocks sets 356 L->removeBlockFromLoop(BB); 357 if ((*LI)[BB] == L) 358 LI->changeLoopFor(BB, NewOuter); 359 --i; 360 } 361 } 362 363 return NewOuter; 364 } 365 366 /// \brief This method is called when the specified loop has more than one 367 /// backedge in it. 368 /// 369 /// If this occurs, revector all of these backedges to target a new basic block 370 /// and have that block branch to the loop header. This ensures that loops 371 /// have exactly one backedge. 372 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 373 AliasAnalysis *AA, 374 DominatorTree *DT, LoopInfo *LI) { 375 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 376 377 // Get information about the loop 378 BasicBlock *Header = L->getHeader(); 379 Function *F = Header->getParent(); 380 381 // Unique backedge insertion currently depends on having a preheader. 382 if (!Preheader) 383 return nullptr; 384 385 // The header is not a landing pad; preheader insertion should ensure this. 386 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 387 388 // Figure out which basic blocks contain back-edges to the loop header. 389 std::vector<BasicBlock*> BackedgeBlocks; 390 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 391 BasicBlock *P = *I; 392 393 // Indirectbr edges cannot be split, so we must fail if we find one. 394 if (isa<IndirectBrInst>(P->getTerminator())) 395 return nullptr; 396 397 if (P != Preheader) BackedgeBlocks.push_back(P); 398 } 399 400 // Create and insert the new backedge block... 401 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 402 Header->getName()+".backedge", F); 403 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 404 405 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 406 << BEBlock->getName() << "\n"); 407 408 // Move the new backedge block to right after the last backedge block. 409 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 410 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 411 412 // Now that the block has been inserted into the function, create PHI nodes in 413 // the backedge block which correspond to any PHI nodes in the header block. 414 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 415 PHINode *PN = cast<PHINode>(I); 416 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 417 PN->getName()+".be", BETerminator); 418 if (AA) AA->copyValue(PN, NewPN); 419 420 // Loop over the PHI node, moving all entries except the one for the 421 // preheader over to the new PHI node. 422 unsigned PreheaderIdx = ~0U; 423 bool HasUniqueIncomingValue = true; 424 Value *UniqueValue = nullptr; 425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 426 BasicBlock *IBB = PN->getIncomingBlock(i); 427 Value *IV = PN->getIncomingValue(i); 428 if (IBB == Preheader) { 429 PreheaderIdx = i; 430 } else { 431 NewPN->addIncoming(IV, IBB); 432 if (HasUniqueIncomingValue) { 433 if (!UniqueValue) 434 UniqueValue = IV; 435 else if (UniqueValue != IV) 436 HasUniqueIncomingValue = false; 437 } 438 } 439 } 440 441 // Delete all of the incoming values from the old PN except the preheader's 442 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 443 if (PreheaderIdx != 0) { 444 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 445 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 446 } 447 // Nuke all entries except the zero'th. 448 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 449 PN->removeIncomingValue(e-i, false); 450 451 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 452 PN->addIncoming(NewPN, BEBlock); 453 454 // As an optimization, if all incoming values in the new PhiNode (which is a 455 // subset of the incoming values of the old PHI node) have the same value, 456 // eliminate the PHI Node. 457 if (HasUniqueIncomingValue) { 458 NewPN->replaceAllUsesWith(UniqueValue); 459 if (AA) AA->deleteValue(NewPN); 460 BEBlock->getInstList().erase(NewPN); 461 } 462 } 463 464 // Now that all of the PHI nodes have been inserted and adjusted, modify the 465 // backedge blocks to just to the BEBlock instead of the header. 466 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 467 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 468 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 469 if (TI->getSuccessor(Op) == Header) 470 TI->setSuccessor(Op, BEBlock); 471 } 472 473 //===--- Update all analyses which we must preserve now -----------------===// 474 475 // Update Loop Information - we know that this block is now in the current 476 // loop and all parent loops. 477 L->addBasicBlockToLoop(BEBlock, *LI); 478 479 // Update dominator information 480 DT->splitBlock(BEBlock); 481 482 return BEBlock; 483 } 484 485 /// \brief Simplify one loop and queue further loops for simplification. 486 /// 487 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 488 /// Pass pointer. The Pass pointer is used by numerous utilities to update 489 /// specific analyses. Rather than a pass it would be much cleaner and more 490 /// explicit if they accepted the analysis directly and then updated it. 491 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 492 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 493 ScalarEvolution *SE, Pass *PP, const DataLayout *DL, 494 AssumptionCache *AC) { 495 bool Changed = false; 496 ReprocessLoop: 497 498 // Check to see that no blocks (other than the header) in this loop have 499 // predecessors that are not in the loop. This is not valid for natural 500 // loops, but can occur if the blocks are unreachable. Since they are 501 // unreachable we can just shamelessly delete those CFG edges! 502 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 503 BB != E; ++BB) { 504 if (*BB == L->getHeader()) continue; 505 506 SmallPtrSet<BasicBlock*, 4> BadPreds; 507 for (pred_iterator PI = pred_begin(*BB), 508 PE = pred_end(*BB); PI != PE; ++PI) { 509 BasicBlock *P = *PI; 510 if (!L->contains(P)) 511 BadPreds.insert(P); 512 } 513 514 // Delete each unique out-of-loop (and thus dead) predecessor. 515 for (BasicBlock *P : BadPreds) { 516 517 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 518 << P->getName() << "\n"); 519 520 // Inform each successor of each dead pred. 521 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI) 522 (*SI)->removePredecessor(P); 523 // Zap the dead pred's terminator and replace it with unreachable. 524 TerminatorInst *TI = P->getTerminator(); 525 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 526 P->getTerminator()->eraseFromParent(); 527 new UnreachableInst(P->getContext(), P); 528 Changed = true; 529 } 530 } 531 532 // If there are exiting blocks with branches on undef, resolve the undef in 533 // the direction which will exit the loop. This will help simplify loop 534 // trip count computations. 535 SmallVector<BasicBlock*, 8> ExitingBlocks; 536 L->getExitingBlocks(ExitingBlocks); 537 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 538 E = ExitingBlocks.end(); I != E; ++I) 539 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 540 if (BI->isConditional()) { 541 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 542 543 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 544 << (*I)->getName() << "\n"); 545 546 BI->setCondition(ConstantInt::get(Cond->getType(), 547 !L->contains(BI->getSuccessor(0)))); 548 549 // This may make the loop analyzable, force SCEV recomputation. 550 if (SE) 551 SE->forgetLoop(L); 552 553 Changed = true; 554 } 555 } 556 557 // Does the loop already have a preheader? If so, don't insert one. 558 BasicBlock *Preheader = L->getLoopPreheader(); 559 if (!Preheader) { 560 Preheader = InsertPreheaderForLoop(L, PP); 561 if (Preheader) { 562 ++NumInserted; 563 Changed = true; 564 } 565 } 566 567 // Next, check to make sure that all exit nodes of the loop only have 568 // predecessors that are inside of the loop. This check guarantees that the 569 // loop preheader/header will dominate the exit blocks. If the exit block has 570 // predecessors from outside of the loop, split the edge now. 571 SmallVector<BasicBlock*, 8> ExitBlocks; 572 L->getExitBlocks(ExitBlocks); 573 574 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 575 ExitBlocks.end()); 576 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 577 E = ExitBlockSet.end(); I != E; ++I) { 578 BasicBlock *ExitBlock = *I; 579 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 580 PI != PE; ++PI) 581 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 582 // allowed. 583 if (!L->contains(*PI)) { 584 if (rewriteLoopExitBlock(L, ExitBlock, AA, DT, LI, PP)) { 585 ++NumInserted; 586 Changed = true; 587 } 588 break; 589 } 590 } 591 592 // If the header has more than two predecessors at this point (from the 593 // preheader and from multiple backedges), we must adjust the loop. 594 BasicBlock *LoopLatch = L->getLoopLatch(); 595 if (!LoopLatch) { 596 // If this is really a nested loop, rip it out into a child loop. Don't do 597 // this for loops with a giant number of backedges, just factor them into a 598 // common backedge instead. 599 if (L->getNumBackEdges() < 8) { 600 if (Loop *OuterL = 601 separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP, AC)) { 602 ++NumNested; 603 // Enqueue the outer loop as it should be processed next in our 604 // depth-first nest walk. 605 Worklist.push_back(OuterL); 606 607 // This is a big restructuring change, reprocess the whole loop. 608 Changed = true; 609 // GCC doesn't tail recursion eliminate this. 610 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 611 goto ReprocessLoop; 612 } 613 } 614 615 // If we either couldn't, or didn't want to, identify nesting of the loops, 616 // insert a new block that all backedges target, then make it jump to the 617 // loop header. 618 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI); 619 if (LoopLatch) { 620 ++NumInserted; 621 Changed = true; 622 } 623 } 624 625 // Scan over the PHI nodes in the loop header. Since they now have only two 626 // incoming values (the loop is canonicalized), we may have simplified the PHI 627 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 628 PHINode *PN; 629 for (BasicBlock::iterator I = L->getHeader()->begin(); 630 (PN = dyn_cast<PHINode>(I++)); ) 631 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) { 632 if (AA) AA->deleteValue(PN); 633 if (SE) SE->forgetValue(PN); 634 PN->replaceAllUsesWith(V); 635 PN->eraseFromParent(); 636 } 637 638 // If this loop has multiple exits and the exits all go to the same 639 // block, attempt to merge the exits. This helps several passes, such 640 // as LoopRotation, which do not support loops with multiple exits. 641 // SimplifyCFG also does this (and this code uses the same utility 642 // function), however this code is loop-aware, where SimplifyCFG is 643 // not. That gives it the advantage of being able to hoist 644 // loop-invariant instructions out of the way to open up more 645 // opportunities, and the disadvantage of having the responsibility 646 // to preserve dominator information. 647 bool UniqueExit = true; 648 if (!ExitBlocks.empty()) 649 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 650 if (ExitBlocks[i] != ExitBlocks[0]) { 651 UniqueExit = false; 652 break; 653 } 654 if (UniqueExit) { 655 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 656 BasicBlock *ExitingBlock = ExitingBlocks[i]; 657 if (!ExitingBlock->getSinglePredecessor()) continue; 658 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 659 if (!BI || !BI->isConditional()) continue; 660 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 661 if (!CI || CI->getParent() != ExitingBlock) continue; 662 663 // Attempt to hoist out all instructions except for the 664 // comparison and the branch. 665 bool AllInvariant = true; 666 bool AnyInvariant = false; 667 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 668 Instruction *Inst = I++; 669 // Skip debug info intrinsics. 670 if (isa<DbgInfoIntrinsic>(Inst)) 671 continue; 672 if (Inst == CI) 673 continue; 674 if (!L->makeLoopInvariant(Inst, AnyInvariant, 675 Preheader ? Preheader->getTerminator() 676 : nullptr)) { 677 AllInvariant = false; 678 break; 679 } 680 } 681 if (AnyInvariant) { 682 Changed = true; 683 // The loop disposition of all SCEV expressions that depend on any 684 // hoisted values have also changed. 685 if (SE) 686 SE->forgetLoopDispositions(L); 687 } 688 if (!AllInvariant) continue; 689 690 // The block has now been cleared of all instructions except for 691 // a comparison and a conditional branch. SimplifyCFG may be able 692 // to fold it now. 693 if (!FoldBranchToCommonDest(BI, DL)) continue; 694 695 // Success. The block is now dead, so remove it from the loop, 696 // update the dominator tree and delete it. 697 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 698 << ExitingBlock->getName() << "\n"); 699 700 // Notify ScalarEvolution before deleting this block. Currently assume the 701 // parent loop doesn't change (spliting edges doesn't count). If blocks, 702 // CFG edges, or other values in the parent loop change, then we need call 703 // to forgetLoop() for the parent instead. 704 if (SE) 705 SE->forgetLoop(L); 706 707 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 708 Changed = true; 709 LI->removeBlock(ExitingBlock); 710 711 DomTreeNode *Node = DT->getNode(ExitingBlock); 712 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 713 Node->getChildren(); 714 while (!Children.empty()) { 715 DomTreeNode *Child = Children.front(); 716 DT->changeImmediateDominator(Child, Node->getIDom()); 717 } 718 DT->eraseNode(ExitingBlock); 719 720 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 721 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 722 ExitingBlock->eraseFromParent(); 723 } 724 } 725 726 return Changed; 727 } 728 729 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 730 AliasAnalysis *AA, ScalarEvolution *SE, 731 const DataLayout *DL, AssumptionCache *AC) { 732 bool Changed = false; 733 734 // Worklist maintains our depth-first queue of loops in this nest to process. 735 SmallVector<Loop *, 4> Worklist; 736 Worklist.push_back(L); 737 738 // Walk the worklist from front to back, pushing newly found sub loops onto 739 // the back. This will let us process loops from back to front in depth-first 740 // order. We can use this simple process because loops form a tree. 741 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 742 Loop *L2 = Worklist[Idx]; 743 for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I) 744 Worklist.push_back(*I); 745 } 746 747 while (!Worklist.empty()) 748 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, 749 SE, PP, DL, AC); 750 751 return Changed; 752 } 753 754 namespace { 755 struct LoopSimplify : public FunctionPass { 756 static char ID; // Pass identification, replacement for typeid 757 LoopSimplify() : FunctionPass(ID) { 758 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 759 } 760 761 // AA - If we have an alias analysis object to update, this is it, otherwise 762 // this is null. 763 AliasAnalysis *AA; 764 DominatorTree *DT; 765 LoopInfo *LI; 766 ScalarEvolution *SE; 767 const DataLayout *DL; 768 AssumptionCache *AC; 769 770 bool runOnFunction(Function &F) override; 771 772 void getAnalysisUsage(AnalysisUsage &AU) const override { 773 AU.addRequired<AssumptionCacheTracker>(); 774 775 // We need loop information to identify the loops... 776 AU.addRequired<DominatorTreeWrapperPass>(); 777 AU.addPreserved<DominatorTreeWrapperPass>(); 778 779 AU.addRequired<LoopInfoWrapperPass>(); 780 AU.addPreserved<LoopInfoWrapperPass>(); 781 782 AU.addPreserved<AliasAnalysis>(); 783 AU.addPreserved<ScalarEvolution>(); 784 AU.addPreserved<DependenceAnalysis>(); 785 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 786 } 787 788 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 789 void verifyAnalysis() const override; 790 }; 791 } 792 793 char LoopSimplify::ID = 0; 794 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 795 "Canonicalize natural loops", false, false) 796 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 797 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 798 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 799 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 800 "Canonicalize natural loops", false, false) 801 802 // Publicly exposed interface to pass... 803 char &llvm::LoopSimplifyID = LoopSimplify::ID; 804 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 805 806 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 807 /// it in any convenient order) inserting preheaders... 808 /// 809 bool LoopSimplify::runOnFunction(Function &F) { 810 bool Changed = false; 811 AA = getAnalysisIfAvailable<AliasAnalysis>(); 812 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 813 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 814 SE = getAnalysisIfAvailable<ScalarEvolution>(); 815 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 816 DL = DLP ? &DLP->getDataLayout() : nullptr; 817 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 818 819 // Simplify each loop nest in the function. 820 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 821 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL, AC); 822 823 return Changed; 824 } 825 826 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 827 // below. 828 #if 0 829 static void verifyLoop(Loop *L) { 830 // Verify subloops. 831 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 832 verifyLoop(*I); 833 834 // It used to be possible to just assert L->isLoopSimplifyForm(), however 835 // with the introduction of indirectbr, there are now cases where it's 836 // not possible to transform a loop as necessary. We can at least check 837 // that there is an indirectbr near any time there's trouble. 838 839 // Indirectbr can interfere with preheader and unique backedge insertion. 840 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 841 bool HasIndBrPred = false; 842 for (pred_iterator PI = pred_begin(L->getHeader()), 843 PE = pred_end(L->getHeader()); PI != PE; ++PI) 844 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 845 HasIndBrPred = true; 846 break; 847 } 848 assert(HasIndBrPred && 849 "LoopSimplify has no excuse for missing loop header info!"); 850 (void)HasIndBrPred; 851 } 852 853 // Indirectbr can interfere with exit block canonicalization. 854 if (!L->hasDedicatedExits()) { 855 bool HasIndBrExiting = false; 856 SmallVector<BasicBlock*, 8> ExitingBlocks; 857 L->getExitingBlocks(ExitingBlocks); 858 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 859 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 860 HasIndBrExiting = true; 861 break; 862 } 863 } 864 865 assert(HasIndBrExiting && 866 "LoopSimplify has no excuse for missing exit block info!"); 867 (void)HasIndBrExiting; 868 } 869 } 870 #endif 871 872 void LoopSimplify::verifyAnalysis() const { 873 // FIXME: This routine is being called mid-way through the loop pass manager 874 // as loop passes destroy this analysis. That's actually fine, but we have no 875 // way of expressing that here. Once all of the passes that destroy this are 876 // hoisted out of the loop pass manager we can add back verification here. 877 #if 0 878 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 879 verifyLoop(*I); 880 #endif 881 } 882